ON THE TOTAL IRREGULARITY STRENGTH OF GENERALIZED PETERSEN GRAPH

ALI AHMAD, MUHAMMAD IBRAHIM and MUHAMMAD KAMRAN SIDDIQUI

Communicated by Ioan Tomescu

Let $G=(V, E)$ be a graph. A total labeling $\phi: V \cup E \rightarrow\{1,2, \ldots, k\}$ is called totally irregular total k-labeling of G if every two distinct vertices x and y in $V(G)$ satisfy $w t(x) \neq w t(y)$, and every two distinct edges $x_{1} x_{2}$ and $y_{1} y_{2}$ in $E(G)$ satisfy $w t\left(x_{1} x_{2}\right) \neq w t\left(y_{1} y_{2}\right)$, where

$$
w t(x)=\phi(x)+\sum_{x z \in E(G)} \phi(x z)
$$

and

$$
w t\left(x_{1} x_{2}\right)=\phi\left(x_{1}\right)+\phi\left(x_{1} x_{2}\right)+\phi\left(x_{2}\right)
$$

The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by $t s(G)$. In this paper, we determined the total irregularity strength of generalized Petersen graph.

AMS 2010 Subject Classification: 05C78.
Key words: irregularity strength, total edge irregularity strength, total vertex irregularity strength, generalized Petersen graph, totally irregular total labeling.

1. INTRODUCTION

As a standard notation, assume that $G=G(V, E)$ is a finite, simple and undirected graph with p vertices and q edges. A labeling of a graph is any mapping that sends some set of graph elements to a set of numbers (usually positive integers). If the domain is the vertex-set or the edge-set, the labelings are called respectively vertex-labelings or edge-labelings. If the domain is $V \cup E$ then we call the labeling a total labeling. In many cases it is interesting to consider the sum of all labels associated with a graph element. This will be called the weight of element.

For a graph G we define a labeling $\phi: V \cup E \rightarrow\{1,2, \ldots, k\}$ to be a total k-labeling. A total k-labeling ϕ is defined to be an edge irregular total k labeling of the graph G if for every two different edges $x y$ and $x^{\prime} y^{\prime}$ their weights $\phi(x)+\phi(x y)+\phi(y)$ and $\phi\left(x^{\prime}\right)+\phi\left(x^{\prime} y^{\prime}\right)+\phi\left(y^{\prime}\right)$ are distinct. Similarly, a total
k-labeling ϕ is defined to be a vertex irregular total k-labeling of G if for every two distinct vertices x and y of G their weights $\mathrm{wt}(x)$ and $\mathrm{wt}(y)$ are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has an edge irregular total k-labeling is called the total edge irregularity strength of G, $\operatorname{tes}(G)$. Analogously, the minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G, $\operatorname{tvs}(G)$.

The total edge irregularity strength and total vertex irregularity strength are invariants analogous to irregular assignments and irregularity strength of a graph G introduced by Chartrand et al. [10] and studied by numerous authors, see $[9,13,14,16,23]$. The irregular assignment is a k-labeling of the edges $\phi: E \rightarrow\{1,2, \ldots, k\}$ such that the sum of the labels of edges incident with a vertex is different for all the vertices of G, and the smallest k for which there is an irregular assignment is the irregularity strength, $s(G)$.

A simple lower bounds for $\operatorname{tes}(G)$ and $\operatorname{tvs}(G)$ of a (p, q)-graph G in terms of maximum degree $\triangle(G)$ and minimum degree $\delta(G)$, determined in [7], are given by the following theorems.

Theorem 1.1 ([7]). Let G be a (p, q)-graph with maximum degree $\Delta=$ $\Delta(G)$. Then

$$
\operatorname{tes}(G) \geq \max \left\{\left\lceil\frac{q+2}{3}\right\rceil,\left\lceil\frac{\Delta+1}{2}\right\rceil\right\}
$$

Theorem 1.2 ([7]). Let G be a (p, q)-graph with minimum degree $\delta=$ $\delta(G)$ and maximum degree $\Delta=\Delta(G)$. Then

$$
\left\lceil\frac{p+\delta}{\Delta+1}\right\rceil \leq \operatorname{tvs}(G) \leq p+\Delta-2 \delta+1
$$

Ivančo and Jendrol [15] posed the following conjecture:
Conjecture 1.1 ([15]). Let G be an arbitrary graph different from K_{5}. Then

$$
\operatorname{tes}(G)=\max \left\{\left\lceil\frac{q+2}{3}\right\rceil,\left\lceil\frac{\Delta+1}{2}\right\rceil\right\}
$$

In [24] Nurdin et. al posed the following conjecture:
Conjecture $1.2([24])$. Let G be a connected graph having n_{i} vertices of degree $i(i=\delta, \delta+1, \delta+2, \ldots, \Delta)$, where δ and Δ are the minimum and the maximum degree of G, respectively. Then

$$
\operatorname{tvs}(G)=\max \left\{\left\lceil\frac{\delta+n_{\delta}}{\delta+1}\right\rceil,\left\lceil\frac{\delta+n_{\delta}+n_{\delta+1}}{\delta+2}\right\rceil, \ldots,\left\lceil\frac{\delta+\sum_{i=\delta}^{\Delta} n_{i}}{\Delta+1}\right\rceil\right\}
$$

Conjecture 1.1 has been verified for trees [15], for complete graphs and complete bipartite graphs [17, 18], for the grid [21], for hexagonal grid graphs [3], for toroidal grid [11], for generalized prism [8], for categorical product of two cycles [1], for strong product of cycles and paths [4], for zigzag graphs [5] and for strong product of two paths [2].

Conjecture 1.2 has been verified for trees [24], for circulant graphs [6].
Combining both total edge irregularity strength and total vertex irregularity strength notions, Marzuki et al. [20] introduced a new irregular total k-labeling of a graph G, which is required to be at the same time both vertex and edge irregular. The minimum value of k for which such labeling exist is called total irregularity strength of graph and is denoted by $t s(G)$. Besides that, they determined the total irregularity strength of cycles and paths. Marzuki, et al. [20] given a lower bond of $t s(G)$ as follows.

$$
\begin{equation*}
\text { For every graph G, } t s(G) \geq \max \{\operatorname{tes}(G), \operatorname{tvs}(G)\} \tag{1}
\end{equation*}
$$

Ramdani and Salman [25] showed that the lower bound in (1) for some cartesian product graphs is tight. In the present paper, we investigate the total irregularity strength of the generalized Petersen graph. Let n and m be positive integers, $n \geq 3$ and $1 \leq m \leq \frac{n}{2}$. The generalized Petersen graph $P(n, m)$ is a graph with vertex set $\left\{x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right\}$ and edge set consisting of all edges of the form $x_{i} x_{i+1}, x_{i} y_{i}$ and $y_{i} y_{i+m}$, where $1 \leq i \leq n$, the subscripts are reduced modulo n.

The generalized Petersen graph $P(n, m)$ has been studied extensively in recent years. Generalized Petersen graphs were first defined by Watkins [26]. Mominul Haque [22] determined the irregular total labelings of generalized Petersen graphs, Jendrol and Žoldák [19] determined the irregularity strength of generalized Petersen graphs and Chunling et. al [12] determined the total edge irregularity strength of generalized Petersen graphs.

In this paper, we determine the exact value of $\operatorname{ts}(P(n, m))$.

2. TOTAL IRREGULARITY STRENGTH OF GENERALIZED PETERSEN GRAPH

In the next theorem, we determine the total irregularity strength of generalized Petersen graph.

Theorem 2.1. Let $P(n, m)$ be a generalized Petersen graph with $n \geq 3$ and $1 \leq m<\frac{n}{2}$. Then $\operatorname{ts}(P(n, m))=n+1$.

Proof. $P(n, m)$ has $2 n$ vertices and $3 n$ edges. $P(n, m)$ is 3 -regular graph. From Theorem 1.1 and Theorem 1.2, we get $\operatorname{tes}(P(n, m)) \geq\left\lceil\frac{3 n+2}{3}\right\rceil=n+1$ and
$\operatorname{tvs}(P(n, m)) \geq\left\lceil\frac{2 n+3}{4}\right\rceil$. Therefore, From equation (1), we get $\operatorname{ts}(P(n, m)) \geq$ $n+1$. Next, we will show that $t s(P(n, m)) \leq n+1$.
Define a total labeling ϕ of $P(n, m)$ from $V(P(n, m)) \cup E(P(n, m))$ into $\{1,2, \ldots, n+1\}$ as follow:
For $1 \leq i \leq n, \phi\left(x_{i}\right)=n+1, \phi\left(y_{i}\right)=1, \phi\left(x_{i} x_{i+1}\right)=i+1, \phi\left(y_{i} y_{i+m}\right)=i$
$\phi\left(x_{i} y_{i}\right)= \begin{cases}1, & \text { for } i=1 \\ n+2-i, & \text { for } 2 \leq i \leq n\end{cases}$
Since,
$w t\left(y_{i} y_{i+m}\right)=\phi\left(y_{i}\right)+\phi\left(y_{i} y_{i+m}\right)+\phi\left(y_{i+m}\right)=i+2$, for $1 \leq i \leq n$.
$w t\left(x_{i} x_{i+1}\right)=\phi\left(x_{i}\right)+\phi\left(x_{i} x_{i+1}\right)+\phi\left(x_{i+1}\right)=2 n+3+i$, for $1 \leq i \leq n$.
$w t\left(x_{i} y_{i}\right)=\phi\left(x_{i}\right)+\phi\left(x_{i} y_{i}\right)+\phi\left(y_{i}\right)$
$w t\left(x_{i} y_{i}\right)= \begin{cases}n+3, & \text { for } i=1 \\ 2 n+4-i, & \text { for } 2 \leq i \leq n\end{cases}$
$w t\left(x_{i}\right)=2 n+4+i, \quad$ for $\quad 1 \leq i \leq n$
$w t\left(y_{i}\right)= \begin{cases}n+2, & \text { for } i=1 \\ 2 n+3, & \text { for } i=2 \\ n+1+i, & \text { for } 3 \leq i \leq n\end{cases}$
the weights of the edges and vertices of $P(n, m)$ under the labeling ϕ are distinct. It is easy to check that there are no two edges of the same weight and there are no two vertices of the same weight. So, ϕ is a totally irregular total k-labeling. We conclude that $\operatorname{ts}(P(n, m))=n+1$. Which completes the proof.

For illustration, we give a totally irregular total 10-labeling for $P(9,2)$ in Fig. 1.

The weights for all vertices and the weights for all edges under the totally irregular total 10-labeling are given in Fig. 2.

Lemma 2.1. If $n=4,6,8$ and $m=\frac{n}{2}$, then $t s(P(n, m))=\left\lceil\frac{5 n+4}{6}\right\rceil$.
Proof. For $m=\frac{n}{2}, P(n, m)$ has $2 n$ vertices and $\frac{5 n}{2}$ edges. From Theorem 1.1 and Theorem 1.2, we get $\operatorname{tes}(P(n, m)) \geq\left\lceil\frac{5 n+4}{6}\right\rceil$ and $\operatorname{tvs}(P(n, m)) \geq$ $\frac{n}{2}+1$. Therefore, from equation (1), it follows that $\operatorname{ts}(P(n, m)) \geq\left\lceil\frac{5 n+4}{6}\right\rceil$. Now the existence of the optimal labeling ϕ gives the converse inequality. Let $k=\left\lceil\frac{5 n+4}{6}\right\rceil$. For $1 \leq i \leq n, \phi\left(y_{i}\right)=1$ and for $1 \leq i \leq \frac{n}{2}, \phi\left(y_{i} y_{i+m}\right)=i$,
$\phi\left(x_{i} y_{i}\right)= \begin{cases}1, & \text { for } 1 \leq i \leq \frac{n}{2} \\ \frac{n}{2}+1, & \text { for } \frac{n}{2}+1 \leq i \leq n\end{cases}$

Fig. 1 - A totally irregular total 10-labeling for $P(9,2)$.

Fig. 2 - The weights of vertices and edges for $P(9,2)$.

$$
\begin{aligned}
& \phi\left(x_{i} x_{i+1}\right)= \begin{cases}\frac{n}{2}+1-i, & \text { for } 1 \leq i \leq \frac{n}{2}-1 \\
k, & \text { for } \frac{n}{2} \leq i \leq n\end{cases} \\
& \phi\left(x_{i}\right)= \begin{cases}\frac{n}{2}+i, & \text { for } 1 \leq i \leq \frac{n}{2} \\
\frac{3 n}{2}+1-i, & \text { for } \frac{n}{2}+1 \leq i \leq n\end{cases}
\end{aligned}
$$

$$
\text { Since, } w t\left(x_{i} y_{i}\right)=\phi\left(x_{i}\right)+\phi\left(x_{i} y_{i}\right)+\phi\left(y_{i}\right)
$$

$$
w t\left(x_{i} y_{i}\right)= \begin{cases}\frac{n}{2}+2+i, & \text { for } 1 \leq i \leq \frac{n}{2} \\ 2 n+3-i, & \text { for } \frac{n}{2}+1 \leq i \leq n\end{cases}
$$

$$
w t\left(y_{i} y_{i+m}\right)=\phi\left(y_{i}\right)+\phi\left(y_{i} y_{i+m}\right)+\phi\left(y_{i+m}\right)=i+2, \text { for } 1 \leq i \leq \frac{n}{2}
$$

For $n=4, w t\left(x_{1} x_{2}\right)=9, w t\left(x_{2} x_{3}\right)=12, w t\left(x_{3} x_{4}\right)=11, w t\left(x_{4} x_{1}\right)=10$.
For $n=6, w t\left(x_{1} x_{2}\right)=12, w t\left(x_{2} x_{3}\right)=13, w t\left(x_{3} x_{4}\right)=18, w t\left(x_{4} x_{5}\right)=17$, $w t\left(x_{5} x_{6}\right)=15, w t\left(x_{6} x_{1}\right)=14$.
For $n=8, w t\left(x_{1} x_{2}\right)=15, w t\left(x_{2} x_{3}\right)=16, w t\left(x_{3} x_{4}\right)=17, w t\left(x_{4} x_{5}\right)=24$, $w t\left(x_{5} x_{6}\right)=23, w t\left(x_{6} x_{7}\right)=21, w t\left(x_{7} x_{8}\right)=19, w t\left(x_{8} x_{1}\right)=18$.
$w t\left(y_{i}\right)=i+2$, for $1 \leq i \leq n$.
For $n=4, w t\left(x_{1}\right)=10, w t\left(x_{2}\right)=11, w t\left(x_{3}\right)=15, w t\left(x_{4}\right)=14$.
For $n=6, w t\left(x_{1}\right)=14, w t\left(x_{2}\right)=11, w t\left(x_{3}\right)=15, w t\left(x_{4}\right)=22, w t\left(x_{5}\right)=21$, $w t\left(x_{6}\right)=20$.
For $n=8, w t\left(x_{1}\right)=18, w t\left(x_{2}\right)=14, w t\left(x_{3}\right)=13, w t\left(x_{4}\right)=19, w t\left(x_{5}\right)=29$, $w t\left(x_{6}\right)=28, w t\left(x_{7}\right)=27, w t\left(x_{8}\right)=26$.
the weights of the edges and vertices of $P(n, m)$ under the labeling ϕ are distinct, the function ϕ is a map from $V(P(n, m)) \cup E(P(n, m))$ into $\{1,2, \ldots$, $\left.\left\lceil\frac{5 n+4}{6}\right\rceil\right\}$. It is easy to check that there are no two edges of the same weight and there are no two vertices of the same weight. So, ϕ is a totally irregular total k-labeling. We conclude that $\operatorname{ts}(P(n, m))=\left\lceil\frac{5 n+4}{6}\right\rceil$, for $n=4,6,8$ and $m=\frac{n}{2}$. Which completes the proof.

Theorem 2.2. Let $P\left(n, \frac{n}{2}\right)$ be a generalized Petersen graph with n even, $n \geq 10$. Then $\operatorname{ts}\left(P\left(n, \frac{n}{2}\right)\right)=\left\lceil\frac{5 n+4}{6}\right\rceil$.

Proof. For $m=\frac{n}{2}, P(n, m)$ has $2 n$ vertices and $\frac{5 n}{2}$ edges. From Theorem 1.1 and Theorem 1.2, we get $\operatorname{tes}(P(n, m)) \geq\left\lceil\frac{5 n+4}{6}\right\rceil$ and $\operatorname{tvs}(P(n, m)) \geq$ $\frac{n}{2}+1$. Therefore, from equation (1), we get $\operatorname{ts}(P(n, m)) \geq\left\lceil\frac{5 n+4}{6}\right\rceil$. Next, we will show that $t s(P(n, m))=\left\lceil\frac{5 n+4}{6}\right\rceil$. Let $k=\left\lceil\frac{5 n+4}{6}\right\rceil$.

Define a total labeling ϕ of $P(n, m)$ from $V(P(n, m)) \cup E(P(n, m))$ into $\left\{1,2, \ldots,\left\lceil\frac{5 n+4}{6}\right\rceil\right\}$ as follow:
For $1 \leq i \leq n, \phi\left(y_{i}\right)=1$ and for $1 \leq i \leq \frac{n}{2}, \phi\left(y_{i} y_{i+m}\right)=i$,
$\phi\left(x_{i}\right)= \begin{cases}k-\frac{n}{2}+i, & \text { for } 1 \leq i \leq \frac{n}{2} \\ k+\frac{n}{2}+1-i, & \text { for } \frac{n}{2}+1 \leq i \leq n\end{cases}$
$\phi\left(x_{i} y_{i}\right)= \begin{cases}n-k+1, & \text { for } 1 \leq i \leq \frac{n}{2} \\ \frac{3 n}{2}+1-k, & \text { for } \frac{n}{2}+1 \leq i \leq n\end{cases}$
$\phi\left(x_{i} x_{i+1}\right)= \begin{cases}\frac{5 n}{2}-2 k+1, & \text { for } 1 \leq i \leq \frac{n}{2}-1 \& i=n \\ \frac{5 n}{2}-2 k+2, & \text { for } \frac{n}{2} \leq i \leq n-1\end{cases}$
Since,
$w t\left(y_{i} y_{i+m}\right)=\phi\left(y_{i}\right)+\phi\left(y_{i} y_{i+m}\right)+\phi\left(y_{i+m}\right)=i+2$, for $1 \leq i \leq \frac{n}{2}$.
$w t\left(x_{i} y_{i}\right)=\phi\left(x_{i}\right)+\phi\left(x_{i} y_{i}\right)+\phi\left(y_{i}\right)$
$w t\left(x_{i} y_{i}\right)= \begin{cases}\frac{n}{2}+2+i, & \text { for } 1 \leq i \leq \frac{n}{2} \\ 2 n+3-i, & \text { for } \frac{n}{2}+1 \leq i \leq n\end{cases}$
$w t\left(x_{i} x_{i+1}\right)=\phi\left(x_{i}\right)+\phi\left(x_{i} x_{i+1}\right)+\phi\left(x_{i+1}\right)$ $\begin{aligned} & w t\left(x_{i} x_{i+1}\right)= \begin{cases}\frac{3 n}{2}+2(i+1), & \text { for } 1 \leq i \leq \frac{n}{2} \\ \frac{7 n}{2}+3-2 i, & \text { for } \frac{n}{2}+1 \leq i \leq n-1 \\ \frac{3 n}{2}+3, & \text { for } i=n\end{cases} \\ & w t\left(y_{i}\right)=1+n-k+1+i=n-k+2+i, \quad \text { for } 1 \leq i \leq n . \\ & w t\left(x_{i}\right)= \begin{cases}\frac{11 n}{2}-4 k+3+i, & \text { for } 1 \leq i \leq \frac{n}{2}-1 \\ 6 n-4 k+4, & \text { for } i=\frac{n}{2} \\ 7 n-4 k+6-i, & \text { for } \frac{n}{2}+1 \leq i \leq n-1 \\ 6 n-4 k+5, & \text { for } i=n\end{cases} \end{aligned}$
Clearly the weights of the edges and vertices of $P(n, m)$ under the labeling ϕ are distinct. It is easy to check that there are no two edges of the same weight and there are no two vertices of the same weight. So, ϕ is a totally irregular total k-labeling. We conclude that $\operatorname{ts}(P(n, m))=\left\lceil\frac{5 n+4}{6}\right\rceil$. Which completes the proof.

Acknowledgments. The authors are very grateful to the referees for their careful reading with corrections and useful comments, which improved this work very much.

REFERENCES

[1] A. Ahmad, M. Bača, M.K. Siddiqui, On edge irregular total labeling of categorical product of two cycles. Theory Comput. Syst. 54(2014), 1-12.
[2] A. Ahmad, M. Bača, Y. Bashir and M.K. Siddiqui, Total edge irregularity strength of strong product of two paths. Ars Combin. 106 (2012), 449-459.
[3] O. Al-Mushayt, A. Ahmad and M.K . Siddiqui, On the total edge irregularity strength of hexagonal grid graphs. Australas. J. Combin. 53 (2012), 263-271.
[4] A. Ahmad, O. Al Mushayt and M.K. Siddiqui, Total edge irregularity strength of strong product of cycles and paths. Politeh. Univ. Bucharest, Sci. Bull. Series A. 76(4) (2014), 147-156.
[5] A. Ahmad, M. K. Siddiqui and D. Afzal, On the total edge irregularity strength of zigzag graphs. Australas. J. Combin. 54 (2012), 141-149.
[6] M. Anholcer and C. Palmer, Irregular labelings of circulant graphs. Discrete Math. 312 (2012), 3461-3466.
[7] M. Bača, S. Jendroľ, M. Miller and J. Ryan, On irregular total labellings. Discrete Math. 307 (2007), 1378-1388.
[8] M. Bača and M.K. Siddiqui, Total edge irregularity strength of generalized prism. Appl. Math. Comput. 235 (2014), 168-173.
[9] T. Bohman and D. Kravitz, On the irregularity strength of trees. J. Graph Theory 45 (2004), 241-254.
[10] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks. Congr. Numer. 64 (1988), 187-192.
[11] T. Chunling, L. Xiaohui, Y. Yuansheng and W. Liping, Irregular total labellings of $C_{m} \square C_{n}$. Util. Math. 81 (2010), 3-13.
[12] T. Chunling, L. Xiaohui, Y. Yuansheng and W. Liping, Irregular Total Labellings of Some Families of Graphs. Indian J. Pure Appl. Math. 40(3) (2009), 155-181.
[13] J.H. Dimitz, D.K. Garnick and A. Gyárfás, On the irregularity strength of the $m \times n$ grid. J. Graph Theory. 16 (1992), 355-374.
[14] A. Frieze, R.J. Gould, M. Karonski, and F. Pfender, On graph irregularity strength. J. Graph Theory. 41 (2002), 120-137.
[15] J. Ivančo and S. Jendrol̆, Total edge irregularity strength of trees. Discuss. Math. Graph Theory 26 (2006), 449-456.
[16] S. Jendroľ, M. Tkáč and Z. Tuza, The irregularity strength and cost of the union of cliques. Discrete Math. 150 (1996), 179-186.
[17] S. Jendroľ, J. Miškuf and R. Soták, Total edge irregularity strength of complete and complete bipartite graphs. Electron. Notes Discrete Math. 28 (2007), 281-285.
[18] S. Jendrol, J. Miškuf and R. Soták, Total edge irregularity strength of complete graphs and complete bipartite graphs. Discrete Math. 310 (2010), 400-407.
[19] S. Jendrol and V. Žoldák, The irregularity strength of generalized Petersen graphs. Math. Slovaca 45(2) (1995), 107-113.
[20] C.C. Marzuki, A.N.M. Salman and M. Miller, On the total irregularity strength on cycles and paths. Far. East. J. Math. Sci. 82(1) (2013), 1-21.
[21] J. Miškuf and S. Jendrol, On total edge irregularity strength of the grids. Tatra Mt. Math. Publ. 36 (2007), 147-151.
[22] K.M. Mominul Haque, Irregular total labellings of generalized Petersen graphs. Theory Comput. Syst. 50 (2012), 537-544.
[23] T. Nierhoff, A tight bound on the irregularity strength of graphs. SIAM J. Discrete Math. 13 (2000), 313-323.
[24] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees. Discrete Math. 310 (2010), 3043-3048.
[25] R. Ramdani and A.N.M. Salman, On the total irregularity strength of some cartesian product graphs. AKCE Int. J. Graphs Comb. 10(2) (2013), 199-209.
[26] M.E. Watkins, A theorem on Tait colorings with an application to generalized Petersen graphs. J. Combin. Theory. 6 (1969), 152-164.

Received 28 May 2014

> Jazan Universty, Faculty of Computer Science and Information Systems, Jazan, KSA ahmadsms@gmail.com
> Bahauddin Zakariya University Multan,
> Center for Advanced Studies in Pure
> and Applied Mathematics, Pakistan
> mibtufail@gmail.com
> Comsats Institute of Information Technology,
> Department of Mathematics, Sahiwal, Pakistan
> kamransiddiqui75@gmail.com

