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Let P = Ca × Cb be a poset where Ci is the chain 1 < · · · < i. A chain blocker
of P is an inlcusionwise minimal subset B ⊆ P with the property that every
maximal chain in P contains at least one element of B. In [1] the chain blockers
of P are being expressed in term of the Catalan numbers and k fold convolution
of the Catalan numbers. In this paper we give a complete description of the chain
blockers of Ca × Cb, where a ≤ 4 and b ≥ 1. In the end algebraic consequences
of the chain blockers are also provided.
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1. INTRODUCTION

Let P = Ca × Cb be a poset where Ci is the chain 1 < · · · < i. A chain
blocker of P is defined as a subset B ⊆ P such that every maximal chain in
P contains at least one element of B and B is inclusionwise minimal with this
property. In [1] the chain blockers of P were studied for some special cases and
provided a new combinatorial interpretation of the convoluted Catalan num-
bers C(n, k) := k

2n−k
(
2n−k
n

)
and Catalan numbers C(n) = C(n, 1) introduced

by Catalan [2] in 1887.

In Section 2 the chain blockers of Ca × Cb are being discussed for a ≤ 3
and b ≥ 1. The main result of this section states that number of all chain
blockers of C3 × Cb is given by a polynomial in b (Theorem 2.1). In Section 3
a formula for calculating number of all chain blockers of C4 × Cb is derived
(Theorem 3.1).

Besides its combinatorial properties the chain blockers of P have its al-
gebraic consequences. Let R = k[x1, . . . , xn] be the polynomial ring over a
field k and in n variables. To each poset P of cardinality n we define an ideal
IP ⊂ R such that the generators of IP correspond to the maximal chains in P .
The chain blockers of P have one to one correspondence with the irreducible
primary components of IP (Proposition 4.1).
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2. INITIAL CASES

In this section, we give a description of the chain blockers of P = Ca×Cb

where a ≤ 3 and b ≥ 1. We start with giving a basic property of a chain blocker
of P .

Lemma 2.1. Let P = Ca×Cb be a poset. Let A = {(1, 1), (1, 2), . . . , (1, b),
(2, b), . . . , (a, b)} and B ⊆ P be a chain blocker. Then A ∩ B contains exactly
one element.

Proof. Since A is a maximal chain and B is a chain blocker therefore
A ∩ B 6= ∅. Now suppose |A ∩ B| 6= 1 and A ∩ B = {(i1, j1), . . . , (ir, jr)}
with r > 1. We ordered the elements of A ∩ B in the ascending order i.e.
(i1, j1) < · · · < (ir, jr). If A ∩ B ⊆ {(1, 1), (1, 2), . . . , (1, b)} then a maximal
chain blocked by any of (ik, jk) ∈ {(i1, j1) > · · · > (ir−1, jr−1)} is also blocked
by (i1, j1), hence by minimality of B we have A ∩ B = {(i1, j1)}. Similarly, if
{A ∩B} ⊂ {(2, b), . . . , (a, b)} then {A ∩B} = {(ir, jr)}.

Now if {A ∩B} ∩ {(2, b), . . . , (a, b)} 6= ∅ then it is enough to take i1 = 1.
Since B is a chain blocker so there exist two different maximal chains with one
containing {(i1, j1)} but not containing (ir, jr) and vice versa. These maximal
chains must intersect at some points say (ik, jk). Then if we combined these two
maximal chains to get another maximal chain in such a way that the part before
the point (ik, jk) consists of points of the maximal chain containing (ir, jr) and
the part after (ik, jk) consists of the points of the maximal chain containing
(i1, j1). Then this maximal chain is not blocked by B, a contradiction. �

We call the maximal chain A in the previous lemma as the left maximal
chain of P and denote it by L(P ). Similarly we call {(1, 1), (2, 1), . . . , (a, 1), (a, 2),
. . . , (a, b)} as the right maximal chain of P and denote it by R(P ). Hence, by
previous lemma and Lemma 2.2 [1], we have:

Corollary 2.1. Let B ⊆ Ca×Cb be a chain blocker with |B| > 1. Then
B contains exactly one element from R(Ca×Cb) and exactly one element from
L(Ca × Cb).

If a = 1 then C1 × Cb is given by the chain

(1, 1) < (1, 2) < · · · < (1, b),

which is the only its maximal chain. Thus, each element C1 × Cb is a chain
blocker. Hence, number of chain blockers in this case is equal to b. Following
lemma provides a complete description of the chain blockers of C2 × Cb.

Lemma 2.2. If B is a chain-blocker for C2 × Cb then either |B| = 1 or
B = {(1, j), (2, j′)}, where 1 ≤ j − 1 ≤ j′ ≤ b− 1.
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Proof. If |B| = 1 then B = {(1, 1)} or B = {(2, b)} are only the chain
blockers. Now let |B| > 1. By Corollary 2.1, B = {(1, j), (2, j′)} for j ∈
{2, . . . , b} and j′ ∈ {1, . . . , b − 1}. The condition j − 1 ≤ j′ then follows from
the fact that otherwise not all chains are blocked. �

By above lemma the number of chain blockers B of C2×Cb with |B| > 1
is given by

(b− 1) + (b− 2) + · · · 2 + 1 =
1

2
b(b− 1).

Next, we turn our attention to count number of all chain blockers of C3 × Cb.

Proposition 2.1. Let P = C3 × Cb be a poset. The number of chain
blockers of P containing (2, 1) equals the number of chain blockers of P con-
taining (3, 1). Moreover both numbers equal to b.

Proof. Here R(P ) = {(1, 1), (2, 1), (3, 1), . . . , (3, b)} and L(P ) = {(1, 1),
. . . , (1, b)(2, b), (3, b). By Corollary 2.1, a chain blocker B of P containing
(2, 1) does not contain any element from the set R(P ) \ (2, 1) and contains
exactly one element from L(P ) \ {(1, 1), (3, b)}, since if B contains (2, 1) we
must exclude the choices of minimum and maximum elements of P .

Now let (1, i) ∈ L(P ) ∩ B, where 2 ≤ i ≤ b. Then B must contains
the set {(2, 2), . . . , (2, i − 1)}. If not say (2, j) 6∈ B for some j ∈ {2, i − 1},
then {(1, 1) . . . , (1, j), (2, j), (3, j), . . . , (3, b)} is a maximal chain which is not
blocked by B. Moreover by the minimality of B, (2, j) 6∈ B for j ≥ i. Hence,

B = {(1, i), (2, i− 1), . . . , (2, 2), (2, 1)}

is only the chain blocker containing (1, i) and (2, 1). Running over all values
of i we have b− 1 such chain blockers. Similarly,

B = {(2, b), (2, b− 1), . . . , (2, 2), (2, 1)}

is only the chain blocker containing (2, 1) and (2, b). Hence, total number of
chain blockers containing (2, 1) is equal to b. Now since (2, 1) < (3, 1) and
(2, 1) < (2, 2) but (3, 1) and (2, 2) are incomparable so any chain blocker of P
containing (2, 1) remains a chain blocker if we replace (2, 1) with (3, 1). Hence,
we are done. �

For the case C3 × Cb following theorem provides an explicit formula to
calculate number of chain blockers of P .

Theorem 2.1. Let P = C3 × Cb+1 be a poset. The number of chain
blockers of P is given by

1

6
(b2 + 2)(b + 9).
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Proof. For a fixed element (i, j) ∈ R(P ), we run over all elements of L(P )
one by one to count number of chain blockers containing both elements. If
(i, j) = (1, 1) or (3, b + 1) then B = {(i, j)} is itself a chain blocker. Also
by Proposition 2.1 the number of chain blockers B containing (2, 1) or (3, 1)
equals to 2(b + 1). Now let B be a chain blocker containing (3, j) ∈ R(P ) and
(m,n) ∈ L(P ). We are left with the following cases:
Case I : 2 ≤ j ≤ b− 1, (m,n) = (1, 2):
Here B ∩ {(2, 2), . . . , (2, j + 1)} 6= ∅, because if the intersection is empty then
(1, 1) < (2, 1) < . . . < (2, j+1) < (3, j+1) < . . . < (3, b) is a maximal chain not
blocked B. Moreover by minimality of B, we have |B∩{(2, 2), . . . , (2, j+1)}| =
1 and B ∩ {(2, j + 2), . . . , (2, b)} = ∅. Thus, there are j such chain blockers.
Hence, number of chain blockers in this case is given by

b−1∑
j=2

j =
1

2
b2 − 1

2
b− 1.

Case II : 2 ≤ j ≤ b− 1, m = 1, 3 ≤ n ≤ b + 1:
If 3 ≤ n ≤ j + 1 then by the same arguments as in Case I, B ∩ {(2, n −
1), . . . , (2, j + 1)} 6= ∅ and for a fixed j and n number of chain blockers equals
to j−n+3 and Hence, total number for these choices equals to

∑b−1
j=2

∑j+1
n=3(j−

n + 3) = 1
6b

3 − 7
6b + 1. On the other hand if j + 2 ≤ n ≤ b + 1 then B =

{(1, n), (2, n − 1), . . . , (2, j + 1), (3, j)} is only chain blocker containing (1, n)
and (3, j). Thus, we have

∑b−1
j=2

∑b+1
n=j+2 1 = 1

2b
2− 3

2b+ 1. Hence, total number
of chain blockers for this case is given by

1

6
b3 +

1

2
b2 − 8

3
b + 2.

Case III : j = b, m = 1, 2 ≤ n ≤ b + 1:
Let B be a chain blocker containing (3, b− 1) and (m,n) ∈ L(P ). Since (2, b)
and (3, b− 1) are incomparable so if we replace (3, b− 1) by (3, b) then B will
remain a chain blocker. Thus, number of chain blockers in this case is given
by putting j = b− 1 in the previous Cases I and II. That is

b− 1 +
b∑

n=3

(b− n + 2) + 1 =
1

2
b2 +

1

2
b− 1.

Case IV : 2 ≤ j ≤ b, (m,n) = (2, b + 1):
If 2 ≤ j ≤ b− 1, then B = {(2, b+ 1), . . . , (2, j + 1), (3, j)} is the chain blocker.
If j = b, then B = {(2, b + 1), (3, b)}. Thus, number of chain blockers for this
case is b− 1.

Now summing over all above cases and 2(b+ 1) + 2 contribution from the
initial choices, we have the required formula after simplification. �
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3. THE CASE C4 × Cb

Let P = C4 × Cb be a poset. Then the right maximal chain R(P ) :=
(1, 1) < · · · < (4, 1) < · · · < (4, b) and left maximal chain L(P ) := (1, 1) <
· · · < (1, b) < · · · (4, b).

Proposition 3.1. Let P = C4 × Cb be a poset. The number of chain
blockers of P containing (2, 1) equals to

2b − b + 1.

Proof. Let B be a chain blocker of P containing (2, 1). Then by Proposi-
tion 2.1, B contains exactly one element (m,n) from L(P ). If (m,n) = (1, 2)
then B = {(1, 2), (2, 1)} is itself a chain blocker. If m = 1 and 3 ≤ n ≤ b
then either (2, i) ∈ B or (3, i) ∈ B for all i = 2, . . . , n− 2. If it is not true for
i ∈ {2, . . . , n−2} then (1, 1) < · · · < (1, i) < (2, i) < (3, i) < (4, i) < · · · < (4, b)
is a maximal chain not blocked by B. Number of these choices are given by
2n−3. Now it remain to block a chain containing (1, 1) < · · · < (1, n − 1) <
(2, n − 1). For this B must contains {(2, k), (3, k − 1), . . . , (3, n − 1)} where
k = n− 1, . . . , b− 1. Since these two cases are independent so number of chain
blockers are given by 2n−3(b− n + 1).

Now if 2 ≤ m ≤ 3 and n = b, then by the same argument as before B
must contains either (2, i) or (3, i) for all i = 2, . . . , b − 1 ⇒ it contributes
2 · 2b−2. Thus, total number of chain blockers are given by

1 +

b∑
n=3

2n−3(b− n + 1) + 2 · 2b−2,

on simplification we are done. �

Corollary 3.1. Let P = C4 × Cb be a poset, then number of chain
blockers of P containing (3, 1) is given by

2b − 2.

Proof. Let B be a chain blocker containing (3, 1) and an element (m,n) ∈
L(P ) \ {(1, 2)}. Since (1, 3), (2, 2) and (3, 1) are in comparable and (2, 1) <
(3, 1), so if we replace (3, 1) by (2, 1) then B will remain a chain blocker(see
Fig. 1). Thus, by Proposition 3.1, the number of chain blockers containing
(3, 1) and (m,n) ∈ L(P ) \ {(1, 2)} is given by 2b − b. Now if (m,n) = (1, 2)
then B = {(1, 2), (2, k), (3, k − 1), . . . , (3, 1)}, where k ∈ {2, . . . , b − 1}. There
are b − 2 such chain blockers. Hence, total number of chain blockers of P
containing (3, 1) equals to 2b − 2. �
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Fig. 1 – C4 × Cb.

Proposition 3.2. Let P = C4 × Cb be a poset. The number of chain
blockers of P containing (4, 1) is given by

2b−1 + b− 3.

Proof. Clearly, if B is a chain blocker containing (4, 1) ⇒ (3, 2) ∈ B.
Moreover, B must contain an element (m,n) ∈ L(P ). If (m,n) = (1, 2) or
(1, 3), then either B = {(m,n), (2, 2), (3, 2), (4, 1)} or B = {(m,n), (2, k), (3, k−
1), . . . , (3, 2), (4, 1)} where k = 3, . . . , b − 1. Similarly if (m,n) = (1, 4), then
B = {(1, 4), (2, k), (3, k − 1), . . . , (3, 2), (4, 1)} where k = 3, . . . , b − 1. Thus,
so far we have calculated 3b − 7 number of chain blockers for m = 1 and
n ∈ {2, 3, 4}.

Now if m = 1 and 5 ≤ n ≤ b then either (2, i) ∈ B or (3, i) ∈ B for all
i = 3, . . . , n − 2 ⇒ there are 2b−4 possibilities. Moreover to block a maximal
chain containing (1, 1) < · · · < (1, n− 1) < (2, n− 1) then either (2, n− 1) ∈ B
or {(2, k), (3, k−1), . . . , (3, n−1)} ⊂ B for k = n, . . . , b−1. There are b−n+1
such possibilities. Since these two choices are independent hence number of
chain blockers for this case is equal to 2n−4(b− n + 1).

Lastly, if 2 ≤ m ≤ 3 and n = b, then B must contains either (2, i) or
(3, i) for all 3 ≤ i ≤ b which contributes 2(2b−2). Thus, total number of chain
blockers of P containing (4, 1) is given by

3b− 7 +
b∑

n=5

2n−4(b− n + 1) + 2b−1 = 2b−1 + b− 3. �

Theorem 3.1. Let P = C4 × Cb be a poset, then number of all chain
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blockers of P is given by

1

24
b4 +

7

12
b3 − 37

24
b2 − 85

12
b + 4 + 2b+2.

Proof. As before we fix one element of R(P ) and run over all elements
of L(P ) to count number of chain blockers containing these two elements.
As there are two trivial chain blockers of cardinality 1. Let |B| ≥ 2 and
(i, 1) ∈ R(P ) for i ∈ {2, 3, 4}. Then number of chain blockers containing (i, 1)
is given by Proposition 3.1, Corollary 3.1 and Proposition 3.2. Thus, number
of chain blockers for these choices including chain blockers of cardinality 1 is
given by

5 · 2b−1 − 1.

Now let (4, j) ∈ R(P ) and (1, n) ∈ L(P ), where 2 ≤ j ≤ b− 1 and 2 ≤ n ≤ b.
We have following two main cases:
Case I (3 ≤ n ≤ j + 2): Obviously B must have at least one element (3, k)
where 2 ≤ k ≤ b− 1, otherwise the maximal chain (1, 1) < · · · < (3, 1) < · · · <
(3, b) < (3, 4) is not blocked by B. We have three choices for (3, k) ∈ B.

a: If k < n− 1, then B = {(1, n), (2, n− 1), . . . , (2, k − 1), (3, k), (4, j)} (see
Diagram 2(a)). Note that there exist n− 3 such chain blockers B.

b: If n− 1 ≤ k ≤ j + 1, then B = {(1, n), (2, i), (3, k), (4, j)} where n− 1 ≤
i ≤ k + 1 (see Diagram 2(b)). Note that there exist

∑j+1
k=n−1

∑k+1
i=n−1 1

such chain blockers B.

c: If j+2 ≤ k ≤ b−2, then B = {(1, n), (2, k+1), (3, k), . . . , (3, j+1), (4, j)}
(see Diagram 2(c)). We have b− j − 3 such chain blockers B

Fig. 2 – C4 × Cb.
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Hence, the number of chain blockers against cases a,b and c is given by:

b−2∑
j=2

j+2∑
n=3

{n− 3 +

j+1∑
k=n−1

k+1∑
i=n−1

1 + b− j − 3}.

Now if 2 ≤ j ≤ b − 2, the number of chain blockers of P containing (1, 3) is
the same as number of chain blockers containing (1, 2). So if we fix n = 3
in the above expression, then we obtain number of chain blockers containing
(1, 2) and (4, j) for j ∈ {2, . . . , b − 2}. Moreover if 2 ≤ n ≤ b, the number of
chain blockers containing (4, b − 2) is the same as number of chain blockers
containing (4, b− 1).

Hence, by a simple calculations number of chain blockers containing (1, n)
and (4, j) where 2 ≤ n ≤ j + 2 and 2 ≤ j ≤ b− 1 is given by:

1

24
b4 +

3

4
b3 − 37

24
b2 − 25

4
b + 4.

Case II (j + 2 < n ≤ b): Again B must have an element (3, k) for k ∈
{2, . . . , b− 1}. For this case we have three independent subcases, namely:

d: If k ≤ j+1, then {(3, k), (2, k+1), . . . , (2, j+1} ⊂ B (see Diagram 3(d)).
Note that there exist j such possibilities.

e: If j + 1 ≤ k ≤ n− 3, then (2, i) ∈ B or (3, i) ∈ B where j + 1 ≤ i ≤ n− 3
(see Diagram 3(e)). Note that there exist 2n−j−3 such possibilities.

f: If n − 2 ≤ k ≤ b − 2, then {(2, b − 1), (3, b − 2), . . . , (3, j + 2)} ⊂ B (see
Diagram 3(f)). We have b− n + 1 such possibilities.

Fig. 3 – C4 × Cb.



9 On the chain blockers of a poset 213

Hence, multiplying out above independent cases d, e and f, we get

b−3∑
j=3

b∑
n=j+3

j(b− n + 1)2n−j−3.

Now if (m,n) = (2, 3) or (2, 4) then by cases d and e above, the number
of chain blockers containing (m,n) is given by j2b−j−1. Lastly, by symmetry
the number of chain blockers containing {(4, b − 2), (2, b)}, {(4, b − 2), (3, b)}
or {(4, b − 1), (2, b)} are the same and given by b − 2. Also there is one chain
blockers B = {(4, b − 1), (3, b)}. Finally, summing up all above cases we have
the required formula. �

4. APPLICATIONS

In this section, we provide algebraic consequences associated to a chain
blocker B of P . A simplicial complex ∆ on the vertex set V = [n] is a col-
lection of subsets of 2[n] with the property that if A ∈ ∆ then ∆ contains all
subsets of A. The inclusionwise maximum elements of ∆ are called facets. Let
{Fi, . . . , Fr} be the set of facets of ∆. A minimal vertex cover of ∆ is a subset
A ⊆ V with the property that for every facet Fi of ∆ there exist a vertex v ∈ A
such that v ∈ Fi and A is minimal with this property.

Let ∆P be a simplicial complex associated to a poset P in such a way that
elements of ∆P are exactly the chains in P . The set of facets of ∆P are the
maximal chains of P and hence each chain blockers of P is a minimal vertex
cover of ∆P .

Now we are ready to relate a poset P to its algebraic counterpart. Let S =
k[x1, . . . , xn] be the polynomial ring over the field k and in n variables. Recall
that a monomial ideal in S is an ideal generated by monomials ui. A monomial
ideal is called a squarefree monomial ideal if it is generated by the square free
monomials. Let I = I1 ∩ · · · ∩ Ir be an irredundant primary decomposition of
I, where ideals I1, . . . , Ir are called irreducible primary components of I. For
more details about primary decomposition see [6].

To each square free monomial ideal I one can associate a simplicial com-
plex ∆. One way of this association is facet ideals and facet complex introduced
by Sara Faridi [4]. A facet ideals IF (∆) of ∆ is an ideal generated by square free
monomial xi1 · · ·xit where {xi1 , . . . , xit} is a facet of ∆. Let i =< u1, . . . , ur >
be a squarefre monomial ideal. A facet complex ∆F (I) of I is a simplicial
complex over the vertex set {v1, . . . , vn} and set of facets {F1, . . . , Fr}, where
Fi = {vj | xj\ui, 1 ≤ j ≤ n}.

It is well know that minimal vertex covers of ∆F (I) correspond to the
irreducible primary components of IF (∆). Let IP = IF (∆P ). Note that IP
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is also the path ideals of the directed graph of Hasse diagram of P . The path
ideal was intorduced by Conca and De Negri in [3]. Some results of IP were
also studied in [5]. Since the facets of ∆P are the maximal chains of P , hence
by definition of a chain blocker we have the following proposition.

Proposition 4.1. Let P = Ca × Cb be a poset and IP be the ideal as
defined above. Then there is a one to one correspondence between chain blockers
of P and irreducible primary components of IP

Following examples demonstrate the one to one correspondence given in
above proposition.

Example 4.1. Let P = C3×C4 be a poset as shown in Figure 4 (a). Then
IP = (x11x21x31x32x33x34, x11x21x22x32x33x34, x11x21x22 x23x33x34, x11x21x22
x23x24x34, x11x12x22x32x33x34, x11x12x22x23x33x34, x11x12x22x23x24x34, x11x12
x13x23x33x34, x11x12x13x23x24 x34, x11x12x13x14x24x34).

Since each irreducible primary components of IP correspond to a chain
blocker of P . Thus, by Theorem 2.1 number of irreducible primary components
of IP is given by 22. The same number is verified by the Computer Algebra
System CoCoA and Singular. In particular the irreducible decomposition of
IF (∆P ) is given by
IF (∆P ) = (x34) ∩ (x11) ∩ (x33x24) ∩ (x21x12) ∩ (x33x22x13) ∩ (x32x22x13) ∩
(x31x22x13)∩(x21x22x13)∩(x33x12x22)∩(x32x12x22)∩(x31x12x22)∩(x32x23x24)∩
(x33x23x14)∩(x32x23x14)∩(x33x13x23)∩(x32x13x23)∩(x32x12x23)∩(x33x12x23)∩
(x31x22x23x24) ∩ (x21x22x23x24) ∩ (x31x22x23x14) ∩ (x21x22x23x14).

Note that each irreducible component of IP correspond to the chain
blocker of P .

Fig. 4 – C4 × Cb.
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Example 4.2. Let P = C4 × C4 be poset as shown in Fig. 4 (b). Then

IP = (x11x21x31x41x42x43x44x45, . . . , x11x12x13x14x15x25x35x45).

Since each irreducible primary components of IP correspond to a chain blocker
of P , then by Theorem 3.1 number of its irreducible components is given by
157. The same number is verified by Computer Algebra System CoCoA and
Singular.
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