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In this paper, we shall attempt to propose a new multi-parametric family of
stationary distributions of standard Birth-Death processes with a special form
of coefficients, so-called Generalized Hypergeometric Distribution of the Second
Type (GHS). A subfamily of the GHS that varies regularly at infinity, exhibits
asymptotically constant slowly varying component, decreases, is log-downward
convex and unimodal are obtained for the needs of biomolecular systems. More-
over, as examples, we will examine such regularly varying frequency distribution
with three real data sets in bioinformatics.
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1. INTRODUCTION AND PRELIMINARIES

Based on data sets for various large-scale biomolecular systems some com-
mon statistical properties have been discovered. From the mathematical point
of view these are: skewness to the right, regular variation at infinity, unimodal-
ity, continuous dependence on the parameters (stability), convexity, etc. of
frequency distributions. Any distribution satisfying the statistical properties
above has a chance to be approved by biologists in order to be used, at least,
in one among great variety of evolutionary biomolecular systems (see [2, p. 1]).

The mechanism of the dynamic of large-scale biomolecular systems are
often modeled with the help of standard Birth-Death processes with various
types of coefficients. The stationary distributions of the process, which have
moderate growth and a skew to the right, may be applied as frequency distribu-
tions of different phenomena taking place in large-scale biomolecular systems
(see [1, 2]). On the basis of the standard Birth-Death models several frequency
distributions have been introduced. We refer the readers, for example, to the
works of Glanzel and Schubert [8], Bornholdt and Ebel [4], Kuznetsov [12, 13],
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Kuznetsov et al. [14], Astola and Danielian [1], Danielian and Astola [5, 6].
But, the great variety and diversity of such systems do not allow to suggest a
universal mathematical model which explains the mechanism of their dynamics
(see [2]). In this paper, we continue to discover new possibilities of standard
Birth-Death processes for biomolecular systems.

1.1. STANDARD BIRTH-DEATH PROCESS

We describe the standard Birth-Death process, say

(1) {ξ(t), t ≥ 0}

where t denotes the time. The transition probabilities (see [2, p. 149])

Pm,g = P
(
ξ(t+ h) = g | ξ(h) = m

)
= Pm,g(h, t)

of the process (1) for any numbers h, t ∈ R+ and for any integers m = 0, 1, 2, ...,
g = 0, 1, 2, ..., do not depend on h. Meanwhile, when t −→ 0, we assume

Pm,g(t) = o(t) for 1 < |m− g| <∞, Pm,m+1(t) = λmt+ o(t),

Pm+1,m(t) = µm+1t+ o(t).

The assumptions conclude Pm,m(t) = 1− (λm + µm)t+ o(t) when t −→ 0.

According to the assumptions, the state probabilities, say px(t) = P (ξ(t) =
x) with x = 0, 1, 2, ... at moment t ≥ 0, satisfy the following differential equa-
tions (see [2, p. 149])

(2)


dpn(t)
dt =−(λn + µn)pn(t)+λn−1 pn−1(t)+µn+1 pn+1(t), n = 1, 2, ...,

dp0(t)
dt =−λ0p0(t) + µ1 p1(t),

with arbitrary initial conditions pm(0) ≥ 0, m = 0, 1, 2, ...,
∑

m≥0 pm(0) = 1.
Without loss of generality, let us have p0(0) = 1 and px(0) = 0, x = 1, 2, ... .

Note 1. We notice that (1) ia a Markovian process with continuous time
and countable numbers of states (see [2, p. 150]).

Note 2. It is well-known that the necessary and sufficient condition for
the existence of the stationary solution of the system of differential equations
(2) is

(3)
∞∑
n=1

n∏
m=1

λm−1

µm
<∞,
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where {λm−1

µm
}∞1 presents a sequence of ratios of birth and death coefficients.

Also, pm = limt−→∞ pm(t), m = 0, 1, 2, ... . See Astola and Danielian [2] for
details.

If (3) holds, then the probabilities of the stationary states form a distri-
bution of type {pn} (see, for example, [5, p. 406]):

(4)


px = p0 ·

∏x
m=1

λm−1

µm
, x = 1, 2, ...,

p0 =
(

1 +
∑∞

n=1

∏n
m=1

λm−1

µm

)−1
.

Danielian and Astola [6], based on (1)–(4), built a three-parametric reg-
ular Generalized Hypergeometric Distribution. In this paper, again using (1)–
(4), we construct a new multi-parametric family of Generalized Hypergeometric
Distributions, say, of the Second Type, which presents a family of stationary
distributions of the Birth-Death processes with a special form of coefficients.
We call the Second Type, because this new family is created as a generalization
of the regular Generalized Hypergeometric Distribution proposed by Danielian
and Astola [6] as the First Type.

We extract from the introduced parametric family a subfamily of regularly
varying distributions for the needs of biomolecular applications. In summary,
the aim of this paper is:

1. to show that GHS is generated by the standard Birth-Death process;

2. to extract a subfamily of regularly varying GHS which we call Regular
GHS ;

3. to show that such regular subfamily satisfies in some important sta-
tistical properties such as unimodality, convexity, etc., in order to suggest as a
new frequency distribution for biomolecular applications;

4. to fit some real data sets arising in biomolecular systems with such
regular subfamily.

The remainder of the paper is organized as follows. The main results of
the paper are proposed in Sections 2, 3, 4, 5 and 6. Conclusion is given in
Section 7.

2. GHS

Consider the following series

T (θ)
def
= 1 +

∞∑
n=1

θn ·

(∏k
i=1 Γ(αi + nνi)

)
(∏r

j=1 Γ(βj + nωj)
) ,(5)
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where Γ(·) is Euler’s Gamma Function, i.e. Γ(z) =
∫∞

0 e−%%z−1d%.
Here: θ; α1, α2, ..., αk; ν1, ν2, ..., νk; β1, β2, ..., βr; ω1, ω2, ..., ωr are positive dis-
tinct parameters.

Lemma 1. We have:

1. The series (5) converges if
∑k

i=1 νi −
∑r

j=1 ωj < 0, and diverges if∑k
i=1 νi −

∑r
j=1 ωj > 0.

2. Let

k∑
i=1

νi −
r∑
j=1

ωj = 0,(6)

Then the series (5) converges if
∑k

i=1 νi ln νi −
∑r

j=1 ωj lnωj < ln θ, and di-

verges if
∑k

i=1 νi ln νi −
∑r

j=1 ωj lnωj > ln θ.

3. Let (6) holds and

k∑
i=1

νi ln νi −
r∑
j=1

ωj lnωj = ln θ,(7)

Then the series (5) converges if
∑k

i=1 αi −
∑r

j=1 βj <
k−r−2

2 .

The proof of Lemma 1 can be found in Appendix.

Now, let us consider the standard Birth-Death process with the following
coefficients (n = 0, 1, 2, ...,):

(8) λn = θ ·
∏k
i=1

Γ(αi)·Γ(αi+(n+1)νi)
Γ(αi+nνi)

, µn+1 =
∏r
j=1

Γ(βj)·Γ(βj+(n+1)ωj)
Γ(βj+nωj)

.

The well-known condition
∑∞

n=1

∏n
m=1

λm−1

µm
< +∞ of the existence of

stationary distribution of the standard Birth-Death process in our case takes
the form

+∞>
∑∞

n=1 θ
n ·
∏n
s=1 ·

k∏
i=1

Γ(αi)Γ(αi+sνi)

Γ(αi+(s−1)νi)

r∏
j=1

Γ(βj)Γ(βj+sωj)

Γ(βj+(s−1)ω)

=
∑∞

n=1 θ
n ·

k∏
i=1

Γ(αi)Γ(αi+νi)···Γ(αi+nνi)

Γ(αi)Γ(αi+νi)···Γ(αi+(n−1)νi)

r∏
j=1

Γ(βj)Γ(βj+ωj)···Γ(βj+nωj)

Γ(βj)Γ(βj+ωj)···Γ(βj+(n−1)ω)

=
∑∞

n=1 θ
n ·

k∏
i=1

Γ(αi+nνi)

r∏
j=1

Γ(βj+nωj)
,

which is equivalent to the condition T (θ) < +∞, where T (θ) is given by formula
(5). Then, in this case, the stationary distribution {pn} where

pn = pn(θ, αi, νi, βj , ωj), n = 0, 1, 2, ...,
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takes the form

(9)



px = p0 · θx ·

k∏
i=1

Γ(αi+xνi)

r∏
j=1

Γ(βj+xωj)
, x = 1, 2 . . . ,

p0 =
(

1 +
∞∑
n=1

θn ·

k∏
i=1

Γ(αi+nνi)

r∏
j=1

Γ(βj+nωj)

)−1
,

under the fulfilment of following conditions (see Lemma 1 ):

(a)
k∑
i=1

νi −
r∑
j=1

ωj < 0;

(b)

k∑
i=1

νi −
r∑
j=1

ωj = 0 and

k∑
i=1

νi ln νi −
r∑
j=1

ωj lnωj < ln θ;

(c)


k∑
i=1

νi −
r∑
j=1

ωj = 0,
k∑
i=1

νi ln νi −
r∑
j=1

ωj lnωj = ln θ,

k∑
i=1

αi −
r∑
j=1

βj <
k−r−2

2 .

(10)

Corollary 1. The family of GHS, i.e. (9), has been constructed by (4)
with coefficients of form (8).

3. EXTRACTING REGULARLY VARYING DISTRIBUTION

Now, we are able to extract regularly varying frequency distribution from
the family of type (9)–(10) as n→∞. Before that, let us remaind the following
definitions (see [2, p. 11]).

Definition 1. The frequency distribution {pn} varies regularly at infinity
with exponent (−ρ) if it may be presented in the form

pn = n−ρ · L(n)(1 + o(1)), n→ +∞,(11)

where L(n) > 0 for n = 1, 2, ..., and for s = 2, 3, ..., limn→∞
L(sn)
L(n) = s−ρ.

Definition 2. If for s = 2, 3, ..., the limit exists

lim
n→∞

L(sn)

L(n)
= 1,(12)

then we say that {pn} exhibits the asymptotically constant slowly varying
component if in representation (12) we have

lim
n→+∞

L(n) = L ∈ R+ = (0,+∞).
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Let us propose the following theorem.

Theorem 1. The GHS {pn} given by (9) varies regularly at infinity if
the condition (c) (i.e. (10)) holds. Then, the exponent of the regular variation
of {pn} equals to

−ρ =

 k∑
i=1

αi −
r∑
j=1

βj −
k − r

2

 < −1(13)

Moreover, {pn} exhibits the asymptotically constant slowly varying component

L = p0 ·

(2π)
k−r

2 ·

k∏
i=1

ν
αi−(1/2)
i

r∏
j=1

ω
βj−(1/2)
j

 ∈ R+.(14)

Proof. From (9) and (20), (21), (22) (in Appendix) it follows that only
under the condition (c) the ratio (pn/p0) has the asymptotic representation
(11)–(12). In other words, we have

(15)
pn = p0 ·

(2π)
k−r

2 ·

k∏
i=1

ν
αi−(1/2)
i

r∏
j=1

ω
βj−(1/2)

j

 · n k∑
i=1

αi−
r∑
j=1

βj− k−r2

(1 + o(1))

= L · n−ρ · (1 + o(1)), n→∞,

where −ρ and L are given by formulas (13) and (14) respectively. So, −ρ
is the exponent of {pn},s regular variation. At the same time, remaind that
the asymptotically constant slowly varying component (if exists) is defined by
a limit L = limn→+∞ L(n) ∈ R+ or L = limn→+∞ n

ρpn ∈ R+. Comparing
it with (15) we conclude that L given by (14) is an asymptotically constant
slowly varying component for {pn}. The proof of Theorem 1 is complete. �

4. ASYMPTOTIC EXPANSION WITH TWO TERMS

We give the following theorem.

Theorem 2. Let for the GHS (9) the condition (c), i.e. (10), holds.
Then it exhibits the asymptotic expansion

pn =
L

nρ
+

M

nρ+1
+ o

(
1

nρ+1

)
, n→ +∞,
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with ρ, L given by (13),(14) respectively, and

M =
L

2


k∑
i=1

1

νi

(
αi(αi − 1) +

1

6

)
−

r∑
j=1

1

ωj

(
βj(βj − 1) +

1

6

) .

See Appendix for the proof of Theorem 2.

5. UNIMODALITY AND CONVEXITY

Unimodality and convexity are features of interest for distributions arising
in bioinformatics. For more details see, for example, [2, 3]. In this section, we
would like to prove such features.

An interesting particular case arises when in (9) we put ν1 = ν2 = · · · =
νk = 1 and ω1 = ω2 = · · · = ωr = 1. Considering the regularly varying
distribution in this case we have to take condition (c) given by (10). The
condition (c) implies

k = r, θ = 1,
k∑
i=1

(αi − βi) < −1.(16)

From Theorem 2, we conclude (see, (13) and (14))

ρ = −

(
k∑
i=1

(αi − βi)

)
> 1, L = p0 ∈ R+,M =

p0

2

{
k∑
i=1

(α2
i − β2

i ) + ρ

}
.

From the model (9) we are able to extract a subfamily of regular varying
distribution {p̂n} where p̂n = p̂n(αi, βi), n = 0, 1, 2, ..., are of the form

(17)


p̂x = p̂0 ·

∏k
i=1

Γ(αi+x)
Γ(βi+x) , x = 1, 2, ...,

p̂0 =
(

1 +
∑∞

n=1

∏k
i=1

Γ(αi+n)
Γ(βi+n)

)−1
.

αi ∈ (0,∞) and βi ∈ (0,∞), i = 1, 2, ..., k, are the parameters of the model.
We are going to find conditions under which in our case {p̂n} decreases

and is log-downward convex. It means that p̂n > p̂n+1 and p̂n
p̂n+1

> p̂n+1

p̂n+2
for

all n.
Notice that the Gamma Function Γ(x) increases when its positive argu-

ment x increases. Because of the symmetry of multipliers under the product at
the right-hand side of formula for p̂n we may propose the following assertion.

Lemma 2. If there is a finite sequence of natural numbers i1, i2, ..., ik with
{i1, i2, ..., ik} = {1, 2, ..., k} such that

αi1 < β1, αi2 < β2, . . . , αik < βk,(18)
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then the frequency distribution (17) satisfying condition (16) decreases and is
log-downward convex.

Proof. Without loss of generality, we may assume that

α1 < β1, α2 < β2, . . . , αk < βk.(19)

From (17) and based on the identity Γ(x+1) = x ·Γ(x) for x ∈ R+ , it follows
that

p̂n+1

p̂n
=

k∏
i=1

Γ(αi + n+ 1)

Γ(αi + n)
· Γ(βi + n)

Γ(βi + n+ 1)
=

k∏
i=1

αi + n

βi + n
, n = 0, 1, 2, . . . .

It at once implies that if the condition (19) holds, then the proof of Lemma 2
is complete. �

Corollary 2. The subfamily of Regular GHS (17) satisfies some ob-
served statistical properties (mentioned in the section 1) and hence it can be
considered, under conditions, as a model for biomolecular needs.

6. FITTING OF THE REGULAR GHS

In this section, we shall examine the model introduced for three real data
sets. That is why, let ξ be a random variable with probability distribution (17).
In order to apply the probability function (17) to the data (compare to [14,
p. 399; 13, p. 378; 7, p. 215]) we consider the random variable ξ as doubly-
truncated. Namely, random variable ξ is restricted from 1 to the maximum
observed in each data set. In addition, some plots of the distribution (17) for
different values of the parameters are presented. In order to numerical studies,
in this section, let us assume k = r = 4, i.e. i = 1, 2, 3, 4.

Example 1. We consider the number of amino acids in the protein chain
(see [10]) as a real data set in the following Table:

Table 1

36 153 146 97 83 46 150 43
29 30 71 58 26 40 70 138

The p-value of the K-S Test is 0.6834, which does not reject the adequacy
of the Regular GHS (17) for the number of amino acids. Comparing to Farbod
and Gasparian [7], we plot the empirical cumulative distribution function (ecdf)
and fitted cumulative distribution function (cdf) for the number of amino acids
data in Fig. 1.

Example 2. Let us have the number of residues in globular proteins (see
[11]) as a real data set in the Table 2.
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Fig. 1 – Fitting of the doubly-truncated Regular GHS to the data of Table 1. The dashed

line is the ecdf of data and the solid line is the fitted cdf.

Table 2

85 103 103 112 134 82 54 98 138
54 125 99 36 29 51 71 26 62

Using K-S Test the p-value is 0.449, which does not reject the adequacy
of the Regular GHS (17) for the number of residues. Again, by comparing to
Farbod and Gasparian [7], we plot the ecdf and fitted cdf of the number of
residues data in Fig. 2.

Example 3. As a real data set, let us have the number of exons in human
genes (see [15]) in the Table 3:

Table 3

2 3 3 8 14 118 29 26 26 27 79

The p-value, with the help of K-S Test, is 0.8739 which does not reject
the adequacy of the Regular GHS (17) for the number of exons in human genes.
Fig. 3 indicates plot the ecdf and fitted cdf of the number of exons in human
genes.

6.1. FIGURES OF THE MODEL

We present some plots of the doubly-truncated Regular GHS (17) for
different values of the parameters in Fig. 4. It is readily seen that the Plots
have right skewness.
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Fig. 2 – Fitting of the doubly-truncated Regular GHS to the data of Table 2. The dashed

line is the ecdf of data and the solid line is the fitted cdf.

Fig. 3 – Fitting of the doubly-truncated Regular GHS to the data of Table 3. The dashed

line is the ecdf of data and the solid line is the fitted cdf.
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Fig. 4. – Illustrations of the doubly-truncated Regular GHS for different values of the

parameters αi and βi, when i = 1, 2, 3, 4.

7. CONCLUSION

In this study, a new multi-parametric family of stationary distribution
of standard Birth-Death process, say GHS, has been proposed. A subfamily
(Regular GHS ) of such distribution that varies regularly at infinity has been
extracted and the properties of this subfamily have been investigated from the
point of view of biomolecular systems. Meanwhile, as examples, three real data
sets on the number of amino acids in the protein chain, the number of residues
in globular protein and the number of exons in human genes have been fitted
with the Regular GHS (17). As we saw from the Examples 1–3, the p-values
are 0.6834, 0.449 and 0.8739, respectively. It indicates that the Regular GHS
(17) is a suitable candidate model to fit such discrete data.

8. APPENDIX

8.1. PROOF OF LEMMA 1

Using the asymptotic expansion (see [9])

Γ(z) = zz−(1/2) · e−z ·
√

2π ·
(

1 +O

(
1

z

))
, z →∞.

for the nth term at the right-hand-side of (5) we obtain
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θn ·

k∏
i=1

Γ(αi + nνi)

r∏
j=1

Γ(βj + nωj)

= θn · (2π)
k−r

2 · e
−
(

k∑
i=1

αi−
r∑
j=1

βj

)
· e
−n
(

r∑
i=1

νi−
r∑
j=1

ωj

)

·

k∏
i=1

(αi + nνi)
αi+nνi− 1

2

r∏
j=1

(βj + nωj)
βj+nωj− 1

2

×
(

1 +O

(
1

n

))
, n→ +∞.

Taking into account that
k∏
i=1

(αi+nνi)
αi+nνi−

1
2

k∏
j=1

(βj+nωj)
βj+nωj−

1
2

= n

k∑
i=1

αi−
r∑
j=1

βj− k−r2

· n
n

(
k∑
i=1

νi−
r∑
j=1

ωj

)
·

k∏
i=1

(
1+

αi
nνi

)nνi
r∏
j=1

(
1+

βj
nωj

)nωj

×

 k∏
i=1

ν
αi−

1
2

i

r∏
j=1

ω
βj−

1
2

j

 ·
 k∏

i=1
ν
νi
i

r∏
j=1

ω
ωj
j

n

·
(
1 +O

(
1
n

))
, n→ +∞,

we derive

(20)

θn·

k∏
i=1

Γ(αi + nνi)

r∏
j=1

Γ(βj + nωj)

=

(2π)
k−r

2 ·

k∏
i=1

ν
αi− 1

2
i

r∏
j=1

ω
βj− 1

2
j

·
θ ·

k∏
i=1

ννii

r∏
j=1

ω
ωj
j


n

·n
k∑
i=1

αi−
r∑
j=1

βj− k−r2

× n
n

(
k∑
i=1

νi−
r∑
j=1

ωj

)
· e
−n
(

k∑
i=1

νi−
r∑
j=1

ωj

)
·
(

1 +O

(
1

n

))
, n→ +∞.

Here, the following limit equalities were used

lim
n→+∞

k∏
i=1

(
1 +

αi
nνi

)nνi
= eα1+α2+···+αk ,

lim
n→+∞

r∏
j=1

(
1 +

βj
nωj

)nωj
= eβ1+β2+···+βr .

The main term in (20) equals to n
n

(
k∑
i=1

νi−
r∑
j=1

ωj

)
. That is why the tail of

the series (5), namely, ∑
n≥n0

θn ·
∏k
i=1 Γ(αi + nνi)∏r
j=1 Γ(βi + nωj)

(21)
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for n large enough converges if
k∑
i=1

νi −
r∑
j=1

ωj < 0, and diverges if
k∑
i=1

νi −
r∑
j=1

ωj > 0.

Now, let (6) holds. Due to (20), we have

(22)

θn·

k∏
i=1

Γ(αi + nνi)

r∏
j=1

Γ(βj + nωj)

=

(2π)
k−r

2 ·

k∏
i=1

ν
αi− 1

2
i

r∏
j=1

ω
βj− 1

2
j

·
θ ·

k∏
i=1

ννii

r∏
j=1

ω
ωj
j


n

·n
k∑
i=1

αi−
r∑
j=1

βj− k−r2

×
(

1 +O

(
1

n

))
, n→ +∞.

The main term at the right-hand-side of (22) equals to

θ · k∏
i=1

ν
νi
i

r∏
j=1

ω
ωj
j

n

.

That is why, in this case, the tail of the series (5) for n large enough converges
if θ ·

k∏
i=1

ννii

r∏
j=1

ω
ωj
j


n

< 1 or

k∑
i=1

νi ln νi −
r∑
j=1

ωj lnωj < ln θ,

and diverges ifθ ·
k∏
i=1

ννii

r∏
j=1

ω
ωj
j


n

> 1 or
k∑
i=1

νi ln νi −
r∑
j=1

ωj lnωj > ln θ.

Now, we assume that (6) and (7) hold. Due to (22), for n → +∞, we
have
(23)

θn·

k∏
i=1

Γ(αi + nνi)

r∏
j=1

Γ(βj + nωj)

=

(2π)
k−r

2 ·

k∏
i=1

ν
αi− 1

2
i

r∏
j=1

ω
βj− 1

2
j

·n
k∑
i=1

αi−
r∑
j=1

βj− k−r2

·
(

1 +O

(
1

n

))
.

The formula (23) states that the series (5) converges if
k∑
i=1

αi −
r∑
j=1

βj <
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k−r−2
2 , and diverges if

k∑
i=1

αi −
r∑
j=1

βj ≥ k−r−2
2 . The proof of Lemma 1 is

completed. �

8.2. PROOF OF THEOREM 2

Let us repeat the calculations of the nth term at the right-hand-side of
(5) now using the asymptotic expansion (see [9]) with two terms

Γ(z) = zz−1/2e−z
√

2π

(
1 +

1

12z
+O

(
1

z2

))
, z → +∞,

and also taking into account condition (c) (see, (10) and (13)). We have for
n→ +∞

θn ·

k∏
i=1

Γ(αi+nνi)

k∏
j=1

Γ(βj+nωj)

= θn · (2π)
k−r

2 eρ−
k−r

2(24)

·

k∏
i=1

{
(αi+nνi)

αi+nνi−
1
2 ·
(

1+ 1
12·(αi+nνi)

+O
(

1
n2

))}
r∏
j=1

{
(βj+nωj)

βj+nωj−
1
2 ·
(

1+ 1
12·(βj+nωj)

+O
(

1
n2

))}

= θn · (2π)
k−r

2 eρ−
k−r

2 ·

 k∏
i=1

(αi+nνi)
αi+nνi−

1
2

r∏
j=1

(βj+nωj)
βj+nωj−

1
2


×
(

1 + 1
12n

(∑k
i=1

1
νi
−
∑r

j=1
1
ωj

)
+O

(
1
n2

))
.

Here

θn ·

k∏
i=1

(αi + nνi)
αi+nνi− 1

2

r∏
j=1

(βj + nωj)
βj+nωj− 1

2

= n−ρ ·


k∏
i=1

(
1 + αi

nνi

)nνi
r∏
j=1

(
1 +

βj
nωj

)nωj
 ·


k∏
i=1

ν
αi− 1

2
i

r∏
j=1

ω
βj− 1

2
j



·


k∏
i=1

(
1 + αi

nνi

)αi−(1/2)

r∏
j=1

(
1 +

βj
nωj

)βj−(1/2)

 ,

or, according to the asymptotic expansion (1 + x)α = 1 + αx + O(x2), x →
0, α > 0, we get
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(25) θn ·

k∏
i=1

(αi + nνi)
αi+nνi− 1

2

r∏
j=1

(βj + nωj)
βj+nωj− 1

2

=n−ρ ·


k∏
i=1

(
1 + αi

nνi

)nνi
r∏
j=1

(
1 +

βj
nωj

)nωj
·


k∏
i=1

ν
αi− 1

2
i

r∏
j=1

ω
βj− 1

2
j


×

1 +
1

n

 k∑
i=1

αi(αi − 1
2)

νi
−

r∑
j=1

βj(βj − 1
2)

ωj

+O

(
1

n2

) , n→ +∞.

Let us consider the following expression’s behavior as x→ +∞(
1 +

c

x

)x
=exp

{
x · ln

(
1 +

c

x

)}
= exp

{
x

(
c

x
− c2

2x2
+O

(
1

x3

))}
=(exp c) exp

{
− c

2

2x
+O

(
1

x2

)}
=(exp c)

(
1− c

2

2x
+O

(
1

x2

))
, x→ +∞.

Applying the above asymptotic expansion, as n→ +∞, we obtain

(26)

k∏
i=1

(
1+

αi
nνi

)nνi
r∏
j=1

(
1+

βj
nωj

)nωj = e

k∑
i=1

αi−
r∑
j=1

βj
·

k∏
i=1

(
1− α2

i
2nνi

+O
(

1
n2

))
r∏
j=1

(
1−

β2
j

2nωj
+O
(

1
n2

))

= e−ρ+ k−r
2 ·
(

1− 1
2n ·

(∑k
i=1

α2
i
νi
−
∑r

j=1

β2
j

ωj

)
+O

(
1
n2

))
.

Substituting (26) into (25), and after that (25) into (24) we come to the
following asymptotic expansion

θn ·

k∏
i=1

Γ(αi + nνi)

r∏
j=1

Γ(βj + nωj)

= (2π)
k−r

2


k∏
i=1

ν
αi− 1

2
i

r∏
j=1

ω
βj− 1

2
j


×

1 +
1

2n

 k∑
i=1

(
αi(αi − 1)

νi
+

1

6νi

)
−

r∑
j=1

(
βj(βj − 1)

ωj
− 1

6ωj

)
+O

(
1

n2

).
Based on the last asymptotic expansion the proof is finished. �
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