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1. INTRODUCTION

Nominal sets represent an alternative set theory which allows a more
relaxed interpretation for the notion of finiteness. They offer an elegant for-
malism for describing λ-terms modulo α-conversion [15], or automata on data
words [12]. The theory of nominal sets has its origins in an approach devel-
oped initially by Fraenkel and Mostowski (FM) in the 1930s [14, 17], in order
to prove the independence of the axiom of choice and other axioms in classical
Zermelo-Fraenkel (ZF) set theory. In the last dozen years, the FM permutation
model of Zermelo-Fraenkel set theory with atoms (ZFA) was axiomatized and
presented as an independent set theory with atoms, named FM set theory [15].
The axioms of FM set theory are the ZFA axioms over an infinite set of atoms
[15], together with the special axiom of finite support which claims that for
each element x in an arbitrary set we can find a finite set supporting x. Rather
than using a non-standard set theory, one could alternatively work with nom-
inal sets [21], which are defined within ZF as usual sets endowed with some
group actions satisfying a finite support requirement. Informally, whenever we
consider the elements of a nominal set having a finite set of free names, the
action of a permutation on such an element actually represents the renaming of
these free names. The approach based on nominal sets provides a right balance
between rigorous formalism and informal reasoning. This is well explained in
[20] where the principles of structural recursion and induction are presented in
the framework of nominal sets. There exists also an alternative definition for
nominal sets in the FM framework (when the set of names is related to the
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set of atoms in FM). They can be defined as sets constructed according to the
FM axioms with the additional property of being empty supported (invariant
under all permutations). The two ways of considering nominal sets, namely
in the ZF framework and in FM framework, lead to similar properties. More
details are presented in Section 3.

Nominal groups [6] and nominal ordered sets [21] have already been stud-
ied in the literature. This paper is a continuation of the research effort de-
scribed in [6], and provides an algebraic study on the family of finitely sup-
ported subgroups of a nominal group. Because of the finite support require-
ment, in the universe of nominal sets only finitely supported objects are al-
lowed. Our goal is to present some order properties for nominal groups, in
terms of finitely supported objects. More precisely, we present some properties
of the family of all finitely supported subgroups of a nominal group in terms
of nominal lattices and nominal domains. Actually, in this paper we present
some properties of the family of all finitely (possibly non-empty) supported sub-
groups of a nominal group, whilst in [6] we studied only the empty-supported
subgroups of a nominal group. Thus, this paper generalizes the approach pre-
sented in [6].

2. PRELIMINARIES

Let (P,v) be a poset. A subset U of P is directed if it is non-empty
and each pair of elements in U has an upper bound in U . A poset (D,v)
in which every directed subset has a supremum is called a directed-complete
partial order, or dcpo for short. Let x and y be elements of a dcpo (D,v). We
say that x approximates y, and denote this by x� y, if for all directed subsets
U of (D,v) we have that y v sup(U) implies x v u for some u ∈ U . We say
that x is compact if it approximates itself; the set of all compact elements in a
dcpo D is denoted by K(D). We note that x v y whenever x� y, and x′ � y′

whenever x′ v x� y v y′. We say that a subset B of a dcpo (D,v) is a basis
for (D,v), if for every element x of (D,v) there exists a directed subset U of
elements in B approximating x, with sup(U) = x. The directness of U shows
that whenever B is a basis for (D,v), for each element x in D we can say that
the set of elements in B approximating x is directed, and x is the supremum
of the directed set of elements in B approximating it. Using the definition of
approximation and the previous result we conclude that for each dcpo (D,v)
with a basis B we have that K(D) ⊆ B. A dcpo is called a continuous domain
if it has a basis. It is called an algebraic domain if it has a basis of compact
elements. More details are in [2].

Let (G, ·) be a group. If H is a subgroup of G we denote this by H ≤ G.
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If S ⊆ G, we denote by [S] the subgroup of G generated by S, i.e. the smallest
subgroup of G which contains S. Every element of [S] can be expressed as a
finite product of elements of S and inverses of elements of S. If S ⊆ G is finite
and H = [S] we call H a finitely generated subgroup of G. The set L(G) of all
subgroups of G ordered by inclusion forms a complete lattice. If (Hi)i∈I is a
family of subgroups of G, the infimum of this family is ∩

i∈I
Hi and the supremum

is [ ∪
i∈I
Hi]. Moreover, according to [2] we have that (L(G),⊆) is an algebraic

domain and the compact elements in (L(G),⊆) are precisely those in F (L(G)),
where F (L(G)) is the set of all finitely generated subgroups of a group G.

3. NOMINAL SETS AND NOMINAL POSETS

Our goal is to rephrase the previous definitions and results (in the frame-
work of nominal sets) in terms of finitely supported objects. In order to reach
this goal, we follow [21] and recall the basics of nominal sets. A complete
presentation of such sets is given in Section 2 of [6].

Let A be a fixed infinite ZF-set. The following results make also sense if
A is considered to be the set of atoms in the ZFA framework (characterized
by the axiom “y ∈ x ⇒ x /∈ A”) and if ‘ZF’ is replaced by ‘ZFA’ in their
statement. Thus, we mention that the theory of nominal sets makes sense in
both ZF and ZFA.

A permutation of A is defined as a finitary bijection of A, i.e. a bijection
of A which interchanges only finitely many elements. Let (SA, ◦) be the group
of all permutations of A, and X a ZF-set.

Definition 3.1.

• An SA-action on X is a function · : SA ×X → X having the properties
that Id · x = x and π · (π′ · x) = (π ◦ π′) · x for all π, π′ ∈ SA and x ∈ X;

• An SA-set is a pair (X, ·) where X is a ZF-set, and · : SA ×X → X is
an SA-action on X; we simply use X whenever no confusion arises.

• Let (X, ·) be an SA-set. We say that S ⊂ A supports x whenever for each
π ∈ Fix(S) we have π · x = x, where Fix(S) = {π |π(a) = a,∀a ∈ S}.
• Let (X, ·) be an SA-set. We say that X is a nominal set if for each x ∈ X

there exists a finite set Sx ⊂ A which supports x.

Proposition 3.2. Let X be an SA-set, and for each x ∈ X let us consider
Fx = {S ⊂ A |S finite, S supports x}. If Fx is nonempty (particularly if X is
a nominal set), then it has a least element which also supports x; this element
is called the support of x, and it is denoted by supp(x).
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Definition 3.3. Let (X, ·) be a nominal set. An element x ∈ X is called
equivariant if it has an empty support, i.e. π · x = x for each π ∈ SA.

Proposition 3.4. Let (X, ·) be an SA-set, and π ∈ SA an arbitrary per-
mutation. Then for each x ∈ X which is finitely supported we have that π · x
is finitely supported, and supp(π · x) = π(supp(x)).

Example 3.5.

(1) The set A of atoms is an SA-set with the SA-action · : SA×A→ A defined
by π · a := π(a) for all π ∈ SA and a ∈ A. (A, ·) is a nominal set because
for each a ∈ A we have that {a} supports a. Moreover, supp(a) = {a}
for each a ∈ A.

(2) Any usual set X (even the set A of atoms) is an SA-set with the SA-
action · : SA ×X → X defined by π · x := x for all π ∈ SA and x ∈ X.
(X, ·) is a nominal set because ∅ supports x for each x ∈ X. Moreover,
supp(x) = ∅ for each x ∈ X.

(3) The set SA is an SA-set with the SA-action · : SA × SA → SA defined by
π · σ := π ◦ σ ◦ π−1 for all π, σ ∈ SA. (SA, ·) is a nominal set because for
each σ ∈ SA we have that the finite set {a ∈ A |σ(a) 6= a} supports σ.
Moreover, supp(σ) = {a ∈ A |σ(a) 6= a} for each σ ∈ SA.

(4) If (X, ·) is an SA-set, then ℘(X) = {Y |Y ⊆ X} is also an SA-set with the
SA-action ? : SA × ℘(X)→ ℘(X) defined by π ? Y := {π · y | y ∈ Y } for
all permutations π of A, and all subsets Y of X. Note that ℘(X) is not
necessarily a nominal set even if X is. For example, A is a nominal set,
but ℘(A) is not a nominal set because the subsets of A which are at the
same time infinite and coinfinite do not have the finite support property.
For each nominal set (X, ·) we denote by ℘fs(X) the set formed from
those subsets of X which are finitely supported according to the action
? . We have that (℘fs(X), ?|℘fs(X)) is a nominal set, where ?|℘fs(X) :
SA×℘fs(X)→ ℘fs(X) is defined by π ? |℘fs(X)Y := π ? Y for all π ∈ SA
and Y ∈ ℘fs(X); the codomain of the action ?|℘fs(X) (which is in fact
the action ? restricted to ℘fs(X)) is indeed included in ℘fs(X) according
to Proposition 3.4.

(5) Let (X, ·) and (Y, �) be SA-sets. The Cartesian product X × Y is also
an SA-set with the SA-action ? : SA × (X × Y ) → (X × Y ) defined by
π ? (x, y) = (π · x, π � y) for all π ∈ SA, x ∈ X and y ∈ Y . If (X, ·) and
(Y, �) are nominal sets, then (X × Y, ?) is also a nominal set.

Definition 3.6. Let (X, ·) be a nominal set. Using the notations of Exam-
ple 3.5(4), a subset Z of X is called finitely supported if and only if Z ∈ ℘fs(X).

Definition 3.6 is valid for functions between nominal sets just because
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functions are particular relations, i.e. particular subsets of the Cartesian prod-
uct of two nominal sets.

Nominal partially ordered sets have already been considered in order to
develop the domain theory over nominal sets. Nominal partially ordered sets
and lattices have been considered in [22] in order to solve the Scott recursive
domain equation D ∼= (D → D) in the framework of nominal sets, as well as in
[18] in order to analyze the Stone duality within the nominal sets theory, and
in [3] in order to present some fixpoint results for nominal event structures.

Definition 3.7. A nominal partially ordered set (nominal poset) is a nom-
inal set (P, ·) together with an equivariant partial order relation v on P . A
nominal poset is denoted by (P,v, ·) or simply by P .

A partial order relation v on P is a subset of the Cartesian product
P × P ; this relation is reflexive, anti-symmetric and transitive. According to
Definition 3.3, v is equivariant if it is finitely supported as a subset of the
Cartesian product P × P in the sense of Definition 3.6, and its support is
empty. This means that v is equivariant iff for each pair (e, e′) ∈v and each
π ∈ SA we have that π ? (e, e′) ∈v (where ? represents the action of SA on
the Cartesian product P × P constructed as in Example 3.5(5)). Denoting
“(e, e′) ∈v” by “e v e’ ”, the equivariance property of v can be expressed by

e v e′ implies π · e v π · e′, whenever π ∈ SA.

Definition 3.8. A nominal lattice is a nominal set (L, ·) together with an
equivariant lattice order relation v on L.

Definition 3.9. A nominal complete lattice is a nominal poset (L,v, ·)
such that every finitely supported subset X ⊆ L has a least upper bound with
respect to the order relation v. The least upper bound of X is denoted by
tX.

According to Theorem 3.1 of [3] rephrased in terms of nominal lattices,
for any nominal complete lattice (L,v, ·) we have that every finitely supported
subset X ⊆ L has a greatest lower bound with respect to the order relation v.
We can also reformulate other definitions of the usual ZF domain theory into
the framework of nominal sets, while noting that in the framework of nominal
sets only finitely supported objects are allowed.

Definition 3.10.

• A nominal poset (D,v, ·) in which every finitely supported directed sub-
set has a supremum is called a nominal directed-complete partial order,
or shortly nominal dcpo.

• Let x and y be elements of a nominal dcpo (D,v, ·). We say that x
nominally approximates y, and denote this by x�nom y, if for all finitely
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supported directed subsets U of (D,v, ·) we have that y v tU implies
x v u for some u ∈ U .

• x is nominal compact if it nominally approximates itself; the set of all
nominal compact elements in a nominal dcpo D is denoted by K(D)nom.

Definition 3.11. Let (D,v, ·) be a nominal dcpo.

• We say that a nominal set B ⊆ D is a nominal basis for (D,v, ·) if
for every element x of (D,v, ·) there exists a finitely supported directed
subset U of elements in B approximating x with tU = x.

• (D,v, ·) is called a nominal continuous domain if it has a nominal basis.

• (D,v, ·) is called a nominal algebraic domain if it has a nominal basis of
nominal compact elements.

4. THE SUBGROUPS LATTICE OF A NOMINAL GROUP

Nominal groups were introduced and studied in [6]. According to [6], a
nominal group is a nominal set equipped with an equivariant internal group
law.

Definition 4.1. A nominal group is a triple (G, ·, �) such that

• (G, ·) is a group;

• (G, �) is a non-trivial nominal set;

• for each π ∈ SA and each x, y ∈ G, we have π � (x · y) = (π � x) · (π � y).

Example 4.2.

(1) (SA, ◦, ·) is a nominal group, where ◦ is the usual composition of per-
mutations and · is the SA-action on SA defined as in Example 3.5(3).
Since the composition law on SA is associative, it is easily to verify that
π · (σ ◦ τ) = (π · σ) ◦ (π · τ) for all π, σ, τ ∈ SA.

(2) If (Σ, ·) is a nominal set, then (Zext(Σ),+, ?) is also a nominal group.
Here Zext(Σ) is the set of all extended generalized multisets over Σ de-
fined as in [5] (i.e. the set of all functions from Σ to Z which have a
finite algebraic support), “+” is the usual pointwise sum of extended
generalized multisets, and “?” is the usual SA-action on ZΣ defined as in
Example 3.5(4).

(3) According to Proposition 3.6 from [6], if (Σ, ·) is a nominal set, then the
free group over Σ is also a nominal group.

(4) If (X, ·) is a nominal set such that all its elements are supported by the
same finite set, then, according to Proposition 5.3 from [6], (SX , ◦, ?) is
also a nominal group, where SX = {f : X → X | f bijective}, ◦ is the
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usual composition of functions, and ? is the SA-action on XX defined as
in Example 3.5(4).

The following definition generalizes the nominal subgroup of a nominal
group introduced in [6].

Definition 4.3. Let (G, ·, �) be a nominal group. A finitely supported
subgroup of G is a subgroup of G which is finitely supported as an element of
℘(G).

According to Definition 3.8 in [6], any nominal subgroup of a nominal
group G is a finitely supported subgroup of G with empty support. Obviously,
there may exist finitely supported subgroups of G which are not nominal sub-
groups of G in the sense of Definition 3.8 from [6].

If (G, ·, �) is a nominal group, we denote by L(G)nom the family of all
finitely supported subgroups of G ordered by inclusion.

Lemma 4.4. Let (G, ·, �) be a nominal group, and F a finitely supported
subset of G. Then [F ] is a finitely supported subgroup of G.

Proof. We claim that [F ] is supported by supp(F ). Indeed, let us consider
π ∈ Fix(supp(F )), and xε11 · x

ε2
2 · . . . · xεnn , xi ∈ F , εi = ±1, i = 1, . . . , n an

arbitrary element of [F ]. Since π ∈ Fix(supp(F )), we have π � xi ∈ F for all
i ∈ {1, . . . , n}. Since the internal law on G is equivariant, we have π � (xε11 ·x

ε2
2 ·

. . .·xεnn ) = (π�xε11 )·(π�xε22 )·. . .·(π�xεnn ) = (π�x1)ε1 ·(π�x2)ε2 ·. . .·(π�xn)εn ∈ [F ].
Thus, π ? [F ] = [F ], where ? is the SA-action on ℘(G) defined as in Example
3.5(4), and so supp(F ) supports [F ]. �

Corollary 4.5. Let (G, ·, �) be a nominal group, and F a finite subset
of G. Then [F ] is a finitely supported subgroup of G.

Proof. Let F = {x1, . . . xn} be a finite subset of G. Then supp(x1)∪ . . .∪
supp(xn) supports F . Thus, F is finitely supported, and the result follows
from Lemma 4.4. �

Theorem 4.6. Let (G, ·, �) be a nominal group. Then (L(G)nom,⊆, ?) is
a nominal complete lattice, where ⊆ represents the usual inclusion relation on
℘(G), and ? is the SA-action on ℘(G) defined as in Example 3.5(4).

Proof. We know that ? is the SA-action on ℘(G) defined as in Exam-
ple 3.5(4). We claim that the restriction of ? to L(G)nom is an SA-action
on L(G)nom, that is the codomain of the restriction function ?|L(G)nom

is also
L(G)nom. We should prove that for any π ∈ SA we have that π ?H is a finitely
supported subgroup of G whenever H is a finitely supported subgroup of G.
Fix some π ∈ SA and H ≤ G, H finitely supported as a subset of G. Let
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π � h1 and π � h2, h1, h2 ∈ H be two arbitrary elements from π ? H. Since G
is a nominal group (and so, · is equivariant) and because H is a subgroup of
G we have (π � h1) · (π � h2)−1 = (π � h1) · (π � h−1

2 ) = π � (h1 · h−1
2 ) ∈ π ? H.

Since H is finitely supported as an element of the SA-set ℘(G), according to
Proposition 3.4 we have that π ? H is a finitely supported element in ℘(G).
Therefore, because π ? H is also a subgroup of G, we have that π ? H is a
finitely supported subgroup of G. Thus, (L(G)nom,⊆, ?) is a nominal set. The
order relation ⊆ on ℘(G) is obviously an equivariant lattice order according to
the definition of ?, and so (L(G)nom,⊆, ?) is a nominal lattice.

Let F = (Hi)i∈I be a finitely supported family of finitely supported sub-
groups of G. We know that ∪F = ∪

i∈I
Hi exists in G. We have to prove

that ∪
i∈I
Hi ∈ ℘fs(G). We claim that supp(F) supports ∪

i∈I
Hi. Let π ∈

Fix(supp(F)), and x ∈ ∪
i∈I
Hi. There exists j ∈ I such that x ∈ Hj . Since

π ∈ Fix(supp(F)), we have π ? Hj ∈ F , namely there exists k ∈ I such that
π ?Hj = Hk. Therefore, π � x ∈ π ?Hj = Hk, and so π � x ∈ ∪

i∈I
Hi. We obtain

π ? ∪
i∈I
Hi = ∪

i∈I
Hi, and so ∪

i∈I
Hi is finitely supported. According to Lemma 4.4,

we get that [ ∪
i∈I
Hi] (which is the least upper bound of F) is a finitely supported

subgroup of G.
We also know that ∩F = ∩

i∈I
Hi exists in G, and have to prove that ∩

i∈I
Hi ∈

℘fs(G). We claim that supp(F) supports ∩
i∈I
Hi. Let π ∈ Fix(supp(F)), and

x ∈ ∩
i∈I
Hi. Then x ∈ Hi for all i ∈ I. We have to prove that π � x ∈ Hi for

all i ∈ I. We consider an arbitrary j ∈ I. Since π ∈ Fix(supp(F)), there
exists k ∈ I such that Hj = π ? Hk. However, because k ∈ I, we have x ∈ Hk.
Therefore, π � x ∈ π ? Hk = Hj . Since j has been arbitrary chosen from I, we
obtain π�x ∈ Hi for all i ∈ I, and so π�x ∈ ∩

i∈I
Hi. We obtain π? ∩

i∈I
Hi = ∩

i∈I
Hi.

Thus, ∩
i∈I
Hi is finitely supported. �

Corollary 4.7. If (G, ·, �) is a nominal group, then (L(G)nom,⊆, ?) is
a nominal dcpo.

Considering Theorem 3.3 in [3] translated in terms of nominal lattices,
we obtain the following Tarski-type result.

Corollary 4.8. Let (G, ·, �) be a nominal group, and f : L(G)nom →
L(G)nom be an equivariant, order-preserving function over L(G)nom. Then the
set of all fixed points of the function f is a nominal complete lattice.

Lemma 4.9. If (Hi)i∈I is a finitely supported directed family of finitely
supported subgroups of G, then ∪

i∈I
Hi is a finitely supported subgroup of G, and
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so [ ∪
i∈I
Hi] = ∪

i∈I
Hi.

Proof. According to the proof of Theorem 4.6, because (Hi)i∈I is a finitely
supported family of finitely supported subgroups of G, we have that ∪

i∈I
Hi is

finitely supported in ℘(G). Now, let x, y ∈ ∪
i∈I
Hi . There are i, j ∈ I such that

x ∈ Hi and y ∈ Hj . Because of the directness of (Hi)i∈I , there exists k ∈ I such
that Hk is an upper bound both of Hi and Hj . This means that x, y ∈ Hk, and
so xy−1 ∈ Hk ⊆ ∪

i∈I
Hi. It follows that ∪

i∈I
Hi is a finitely supported subgroup

of G. �

Proposition 4.10. Let (G, ·, �) be a nominal group. Each finitely gener-
ated subgroup of G is nominal compact in (L(G)nom,⊆, ?).

Proof. Let H ≤ G be a finitely generated subgroup of G. Then H = [F ],
where F is a finite subset of G. According to Corollary 4.5, we have that H
is a finitely supported subgroup of G; this means H ∈ L(G)nom. Let (Hi)i∈I
be a finitely supported directed family of finitely supported subgroups of G
with H ⊆ [ ∪

i∈I
Hi]. According to Lemma 4.9, we have H ⊆ ∪

i∈I
Hi, and so

F ⊆ H ⊆ ∪
i∈I
Hi. However, if a finite set X is covered by a (finitely supported)

directed collection (Xi)i∈I of sets, then X is always contained in some Xi.
Therefore, there exists j ∈ I such that F ⊆ Hj . However, [F ] = ∩

H′≤G
F⊆H′

H ′, and

so [F ] ⊆ Hj . This means H �nom H. �

Lemma 4.11. Let (G, ·, �) be a nominal group, π ∈ SA and F a finite
subset of G. Then π ? [F ] = [π ? F ], where ? is the SA-action on ℘(G) defined
as in Example 3.5(4).

Proof. According to Corollary 4.5, [F ] is a finitely supported subgroup of
G, and so the statement of this lemma makes sense in the framework of nominal
sets. Let x ∈ [F ]. Then x = xε11 · x

ε2
2 · . . . · xεnn , xi ∈ F , εi = ±1, i = 1, . . . , n.

Since the internal law on G is equivariant, we get π�x = π�(xε11 ·x
ε2
2 ·. . .·xεnn ) =

(π �xε11 ) · (π �xε22 ) · . . . · (π �xεnn ) = (π �x1)ε1 · (π �x2)ε2 · . . . · (π �xn)εn ∈ [π ?F ].
Thus, π ? [F ] ⊆ [π ? F ]. The reverse inclusion follows analogously. Therefore,
π ? [F ] = [π ? F ]. �

Corollary 4.12. Let (G, ·, �) be a nominal group, and F (L(G)) be the
set of all finitely generated subgroups of a group G. Then F (L(G)) ⊆ L(G)nom,
and F (L(G)) is a nominal set.

Proof. According to Corollary 4.5, every finitely generated subgroup of G
is a finitely supported subgroup of G. Thus, F (L(G)) ⊆ L(G)nom. In order
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to prove that F (L(G)) is a nominal set, it remains to prove that π ? [F ] is
finitely generated whenever π ∈ SA and [F ] is a finitely generated subgroup of
G. According to Lemma 4.11, we have π ? [F ] = [π ?F ]. Since F is finite, then
π ? F is also finite, and so π ? [F ] is finitely generated. �

Proposition 4.13. Let (G, ·, �) be a nominal group, and H be a finitely
supported subgroup of G. Then the subgroups generated by the finite subsets of
H form a finitely supported directed family. Moreover, H is the union of the
subgroups generated by the finite subsets of H.

Proof. Let AH = { [F ] |F ⊆ H and F is finite}. We have to prove
that AH is a finitely supported directed family, and H = ∪

H′∈AH

H ′. First

we prove that AH is finitely supported by claiming that supp(H) supports
AH . Indeed, let us consider π ∈ Fix(supp(H)). Let F ′ be an arbitrary finite
subset of H; according to Lemma 4.11, we have π ? [F ′] = [π ? F ′] where ?
is the SA-action on ℘(G) defined as in Example 3.5(4). However, π ? H = H
because π ∈ Fix(supp(H)). Since F ′ ⊆ H, from the definition of ?, we get
π ? F ′ ⊆ π ? H = H. Obviously, π ? F ′ is finite, and so [π ? F ′] ∈ AH . Thus,
π ? [F ′] ∈ AH , namely supp(H) supports AH .

Let [F1] ∈ AH and [F2] ∈ AH . Then [F1 ∪F2] ∈ AH , and [F1] = ∩
H′≤G
F1⊆H′

H ′.

We know that F1 ⊆ [F1 ∪ F2], and so [F1] ⊆ [F1 ∪ F2]. In a similar way,
[F2] ⊆ [F1 ∪ F2]. Therefore, AH is directed.

Now let h ∈ H. Then h ∈ [{h}] and [{h}] ∈ AH . Therefore, H ⊆
∪

H′∈AH

H ′. For the reverse inclusion, let F be a finite subset of H. Since

[F ] = ∩
H′≤G
F⊆H′

H ′, we get [F ] ⊆ H and ∪
H′∈AH

H ′ ⊆ H �

Theorem 4.14. Let (G, ·, �) be a nominal group. Then (L(G)nom,⊆, ?) is
a nominal continuous domain, and a nominal basis in (L(G)nom,⊆, ?) is given
by F (L(G)).

Proof. By Corollary 4.12, we get that F (L(G)) is a nominal set. For every
finitely supported H of G, we consider AH = { [F ] |F ⊆ H and F is finite}.
Clearly AH ⊆ F (L(G)). According to Proposition 4.13, we know that AH is
finitely supported and directed, and H = ∪

H′∈AH

H ′. According to Proposition

4.10, we know that whenever [F ] ∈ AH we have [F ] �nom [F ] ⊆ H, and so
(after a trivial calculation) [F ] �nom H. Using the definition of a nominal
basis in a nominal dcpo (Definition 3.11), we get that F (L(G)) is a nominal
basis in (L(G)nom,⊆, ?). �



11 Finitely supported subgroups of a nominal group 243

Theorem 4.15. Let (G, ·, �) be a nominal group. Then (L(G)nom,⊆, ?)
is a nominal algebraic domain. Moreover, the family of all nominal compact
elements in (L(G)nom,⊆, ?) is precisely F (L(G)).

Proof. Let H be a nominal compact element in (L(G)nom,⊆, ?). Then
H �nom H. The set AH defined as in the proof of Proposition 4.13 is finitely
supported and directed, and H = ∪

K∈AH

K. Since H �nom H, there exists

H ′ ∈ AH such that H ⊆ H ′. However, because H ′ ∈ AH , there exists a finite
set F ⊆ H such that H ′ = [F ]. Since F ⊆ H, we have [F ] ⊆ H. Therefore,
H ′ ⊆ H, and so H ′ = H. We obtain that H ∈ F (L(G)).

Conversely, by Proposition 4.10, any finitely generated subgroup of G is
nominal compact. Thus, a finitely supported subgroup of G is nominal compact
if and only if it is finitely generated.

Finally, according to Theorem 4.14, we get that F (L(G)) is a nominal
basis in (L(G)nom,⊆, ?). Thus. (L(G)nom,⊆, ?) is a nominal algebraic do-
main. �

5. CONCLUSION

The theory of nominal sets represents the mathematical framework for
modelling renaming binding or fresh names. Atoms have the same properties
as variables and names. The precise nature of names is unimportant because
we focus only on their ability to identify and on their distinctness. The finite
support requirement is motivated by the fact that syntax can only ever involve
finitely many names. The applications of this theory have roots in various areas
of computer science as semantics [4], database theory [9], programming [13, 11,
22], proof theory [24], game theory [1], algebra [6, 18], logic [19], topology [18],
and automata theory [12].

Nominal algebraic structures (which are algebraic structures defined in
the framework of nominal sets) have already been considered and studied in
computer science. In [9], the monoids defined in the category of nominal sets
(also called nominal monoids) are used in the study of languages over infi-
nite alphabets. The theory of syntactic monoids for languages of data words
represents the same theory as the theory of finite monoids in the category of
nominal sets, and under certain conditions, a language of data words is de-
finable in first-order logic if and only if its syntactic monoid is aperiodic [10].
A nominal theory for partially ordered sets and domains was first developed
in [22] in order to describe a denotational semantics for a functional program-
ming language incorporating facilities for manipulating syntax involving names
and binding operations. Nominal partially ordered sets have also been used
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in [23] in order to develop the original path-based domain theory for concur-
rency within nominal set theory, in [18] in order to present a duality theory in
the nominal settings, and in [3] in order to study the event structures in the
framework of nominal sets.

Nominal groups were defined in [6], and used in [5] to define and study
generalized multisets over possible infinite alphabets. However, in [6] we stud-
ied only the equivariant (empty supported) subgroups of a nominal group. In
this paper we consider the finitely supported subgroups of a nominal group
which have a possibly non-empty support. We present some algebraic prop-
erties of such subgroups, and prove some results stating that the family of
all finitely supported subgroups of a nominal group forms a nominal complete
lattice and nominal algebraic domain.

The subgroups lattice of a group has been studied in the ZF framework
in [2], and in an alternative set theory with atoms named Extended Fraenkel-
Mostowski (EFM) set theory in [7]. However, we cannot conclude that any
property from the ZF framework or the EFM framework can be directly refor-
mulated in terms of nominal sets. This is because we cannot prove an result
in the theory of nominal sets only involving a ZF (or an EFM) result without
an additional proof made in terms of finitely supported objects. If we work in
the nominal settings, then all of the proofs have to be rephrased in order to be
consistent with the finite support requirement; all of our proofs are presented
only by using finitely supported objects in order to be sure that we remain in
the framework of nominal sets. Translating a classical algebraic structure into
the framework of nominal sets is not trivial, because we cannot always obtain
a nominal result corresponding to a ZF result only by replacing ‘structure’
with ‘finitely supported structure’. This is because, given a nominal set X,
there could exist some subsets of X (and also some relations or functions in-
volving subsets of X) which fail to be finitely supported (see Example 3.5(4)).
Some related examples are the nominal embedding theorems for groups pre-
sented in [6] and proved only for a particular class of nominal groups, as well
as the Tarski-like theorem for nominal complete lattices [3] which is valid only
for a particular class of finitely supported monotone functions over a nominal
complete lattice. Another example of a mathematical result which fails in the
framework of nominal sets is the Stone representation theorem for Boolean
lattices (claiming that every Boolean lattice is isomorphic to the dual algebra
of its associated Stone space). According [18], Stone duality fails in the frame-
work of nominal sets because its proof would require a choice principle, namely
the ultrafilter theorem, and this theorem is false in the framework of nominal
sets (Proposition 5.2.2 from [18]) even it is a valid result in some models of
ZF set theory without choice like Howard-Rubin’s first model (N38 in [16])
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or Cohen’s first model (M1 in [16]). Moreover, we conjecture that all the ZF
choice principles (weaker forms of the axiom of choice) fail in the framework
of nominal sets; this will be the topic of a future work. Other results which
fail in the nominal settings, such as determinization of finite automata and
equivalence of two-way and one-way finite automata, are presented in [12]. For
a complete list of such examples we recommend [8].

The results in this paper generalize the classical results in the ZF frame-
work. Indeed, since every ZF-set can be represented as a nominal set with the
discrete group action described in Example 3.5(2), the results of this paper can
be particularized in order to obtain the classical properties of the subgroups
lattice of a group presented in [2].
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