
COMPLETE CONTROLLABILITY
OF SEMILINEAR STOCHASTIC SYSTEMS WITH DELAY

IN BOTH STATE AND CONTROL

ANURAG SHUKLA, N. SUKAVANAM and D.N. PANDEY

Communicated by Lucian Beznea

This paper deals with the complete controllability of semilinear stochastic sys-
tems with delay in both state and control under the assumption that the cor-
responding linear system is completely controllable. The control function for
this system is suitably constructed by using the controllability operator. With
this control function, the sufficient conditions for the complete controllability
of the proposed problem in finite dimensional are established. The results are
obtained by using Banach fixed point theorem. Finally, one example is provided
to illustrate the application of the obtained results.
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1. INTRODUCTION

Controllability concepts play a vital role in deterministic control theory.
It is well known that controllability of deterministic equation is widely used in
many fields of science and technology. But in many practical problems such
as fluctuating stock prices or physical system subject to thermal fluctuations,
Population dynamics etc, some randomness appear, so the system should be
medelled in a stochastic form.

In setting of deterministic systems: Kalman [22] introduced the concept
of controllability for finite dimensional deterministic linear control systems.
The basic concepts of control theory in finite dimensional spaces has been in-
troduced in [23]. In [10] Naito established sufficient conditions for approximate
controllability of deterministic semilinear control system dominated by the lin-
ear part using Schuder’s fixed point theorem. Balachandran and J.P. Dauer
[9] obtained results for controllability of nonlinear systems in Banach spaces.
In [12, 13] L. Wang extended the results of [9] and established sufficient condi-
tions for delayed deterministic semilinear systems using Schauder’s fixed point
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theorem and concept of fundamental solution. In [18, 19] Sukavanam et. al ob-
tained the results for approximate controllability of a delayed semilinear control
system with growing nonlinear term using Schauder’s fixed point theorem.

In setting of stochastic systems: A.E. Bashirov and K.R. Kerimov [1] in-
troduced controllability concepts for stochastic systems. In [14–17] N.I. Mah-
mudov, S. Zorlu and N. Semi established sufficient conditions for controlla-
bility of linear and nonlinear stochastic systems using fixed point theorems.
J. Klamka in [7, 8] obtained some results for controllablity of linear systems
with delay in control as well as delay in state in finite dimensional using Rank
theorem. L. Shen et. al [11] extended the results of [8] in infinite dimensional
using technique of [14] and obtained sufficient conditions for Relative controlla-
bility of stochastic nonlinear systems with delay in control. A. Shukla et. al in
[4] extended the results of [11] and obtained complete controllability of semilin-
ear stochastic systems with multiple delays in control using Banach fixed point
theorem. P. Muthukumar and P. Balasubramaniam [20] obtained the results
for approximate controllability of mixed stochastic Volterra-Fredholm type in-
tegrodifferential systems in Hilbert space using Banach fixed point theorem.
Recently A. Shukla, Urvashi Arora and N. Sukavanam established some suffi-
cient conditions for Approximate controllability of retarded semilinear stochas-
tic system with non local conditions in infinite dimensional space using Banach
fixed point theorem. However in best of our knowledge, there is no result
on simultaneously delays in both state and control terms for deterministic or
stochastic system. So it is interesting to see for which control the system will
be completely controllable and for what conditions fixed point theorem will
work. The present paper is devoted to study of complete controllability of
semilinear stochastic systems with delay in both state and control terms.

In this paper, we adopt the following notations:

(i) (Ω,z, P ): The triple (Ω,z, P ) is probability space of the n-dimensional
Wiener process ω.

(ii) {zt|t ∈ [0, T ]}: The filtration generated by {ω(s) : 0 ≤ s ≤ t}, here ω is
Wiener Process.

(iii) L2(Ω,zT ,Rn): The Hilbert space of all zT -measurable square integrable
random variables with values in Rn.

(iv) Lz
2 ([0, T ],Rn): The Hilbert space of all square-integrable and zt-measurable

processes with values in Rn

(v) H2: The Banach space of all square integrable and zt-adapted processes
ϕ(t) with norm

||ϕ||2 = sup
t∈[0,T ]

E||ϕ(t)||2, where E is the expected value.
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(vi) L(X,Y ): The space of all linear bounded operators from a Banach space
X into a Banach space Y .

(vii) Uad = Lz
2 ([0, T ],Rm): The set of admissible controls.

The problem of controllability of linear stochastic system with state delay.

dx(t) = [A0x(t) +A1x(t− h) +B0u(t)]dt+ σdω(t)(1.1)

given the initial condition as a random function

x0 ∈ LF2 ([−h, 0], L2(Ω, FT ,Rn))

has been studied by many authors (see J. Klamka [7] and the references
therein).

The problem of controllability of linear stochastic system with control
delay

dx(t) = [A0x(t) +B0u(t) +B1u(t− h)]dt+ σdω(t)(1.2)

given the initial condition as a random function

x(0) = x0 ∈ L2(Ω,zT ,Rn) and u(t) = 0 for t ∈ [−h, 0]

has been studied by various authors (see J.Klamka [8] and the references
therein).

In this paper we examine the controllability of the following semi-linear
stochastic system with delay in both state and control term:

(1.3) dx(t) = [A0x(t) +A1x(t− h) +B0u(t) +B1u(t− h) + f(t, x(t))]dt

+ σ(t, x(t))dω(t)

with initial conditions

(1.4) x(t) = ψ(t), x(0) = ψ(0) = x0 (say) and u(t) = 0 for t ∈ [−h, 0]

where the state x(t) ∈ L2(Ω,zt,Rn) = X and the control u(t) ∈ Rm = U , A0

and A1 are an n×n constant matrices, B0, B1 are an n×m constant matrices.
σ : [0, T ] × Rn → Rn×n, f : [0, T ] × Rn → Rn, ω is a n-dimensional Wiener
process and h > 0 is a constant point delay.

2. PRELIMINARIES

It is well known [14, 15] that for a given initial condition (1.4) and any
admissible control u ∈ Uad and suitable nonlinear functions f(t, x(t)) and
σ(t, x(t)) for t ∈ [0, T ] (satisfies Lipschitz continuity condition) there exists
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a unique solution x(t;x0, u) ∈ L2(Ω,zT ,Rn) of the semi-linear stochastic dif-
ferential state equation (1.3) which can be represented in every time interval
t ∈ [kh, (k + 1)h), k = 0, 1, 2, ... by the following integral equation:

(2.1) x(t;x0, u) = x(kh;x0, u) +

∫ t

kh
(A0x(s;x0, u) +A1x(s− h;x0, u))ds

+

∫ t

kh
(B0u(s) +B1u(s− h) +f(s, x(s)))ds+

∫ t

kh
σ(s, x(s))dω(s)

taking into account the above integral formula and using the well-known method
of steps x(t;x0, 0) is given as for t ∈ [0, T ]:

x(t;x0, 0) = exp(A0t)x0 +

∫ 0

−h
F (t− s− h)A1x0(s)ds

or, equivalently

x(t;x0, 0) = exp(A0t)x0 +

∫ h

0
F (t− s)A1x0(s− h)ds(2.2)

where F (t) is the n×n dimensional matrix for the delayed state equation (1.3),
which satisfies the matrix integral equation.

F (t) = I +

∫ t

0
F (s)A0ds+

∫ t−h

0
F (s)A1ds(2.3)

for t > 0, with the initial conditions

F (0) = I, F (t) = exp(A0t) for t ∈ [0, h), F (t) = 0 for t < 0

Using above concepts, we obtain the implicit solution of the delayed system
(1.3) as

(2.4)

x(t;x0, u)=


x(t;x0, 0)+

∫ t

0
F (t−s)(B0u(s)+B1u(s−h)+f(s, x(s)))ds

+

∫ t

0
F (t− s)σ(s, x(s))dω(s) for t > 0

ψ(t) for t ∈ [−h, 0]

Now we recall some definitions, lemmas and evaluate some results which will
used in further sections:

Lemma 2.1. Gronwall’s inequality: Let a ∈ L1[t0, τ ], a(t) ≥ 0 and b be
an absolutely continuous function on [t0, τ ]. If x ∈ L∞[t0, τ ] satisfies

x(t) ≤ b(t) +

∫ t

t0

a(s)x(s)ds
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then

x(t) ≤ b(t0)exp

(∫ t

t0

a(s)ds

)
+

∫ t

t0

b′(s)exp

(∫ t

s
a(η)dη

)
ds

Lemma 2.2. Let G : [0, T ]×Rn → Rn×n be a strongly measurable mapping

such that
∫ T
0 E||G(t)||pdt <∞. Then

E

∣∣∣∣∣∣∣∣ ∫ t

0
G(s)dω(s)

∣∣∣∣∣∣∣∣p ≤ LG ∫ t

0
E||G(s)||pds,(2.5)

for all t ∈ [0, T ] and p ≥ 2, where LG is the constant involving p and T .

Definition. A control system is said to be completely controllable in the
interval I = [0, T ] if for every initial state x0 and desired final state x1, there
exists a control u(t) such that the solution x(t) of the system corresponding to
this control u satisfies x(T ) = x1.

From equation (2.3) we have

(2.6) ||F (t)|| = ||I +

∫ t

0
F (s)A0ds+

∫ t−h

0
F (s)A1ds||

≤ 1 +

∫ t

0
(||A0||+ ||A1||)||F (s)||ds

≤ exp(t(||A0||+ ||A1||)) (using Gronwall’s inequlity)

let l1 = max(||F (t)||2) in t ∈ [0, T ]
From equation (2.2) we have

(2.7) E||x(t;x0, 0)||2 = E||exp(A0t)x0 +

∫ h

0
F (t− s)A1x0(s− h)ds||2

≤ 2

(
E||exp(A0t)x0||2 + E||

∫ h

0
F (t− s)A1x0(s− h)ds||2

)
≤ 2

(
l1||x0||2+E

(∫ h

0
||F (t− s)||2||A1||2||x0(s− h)||2ds

))
≤ 2(l1||x0||2 + ||A1||2||ψ(t)||2l1).

3. MAIN RESULTS

Now, for a given final time T > h, taking into account the form of the
integral solution x(t;x0, u), let us introduce the following operators and sets.

Define the bounded linear operator LT :L2([0, T ],Rm)→L2(Ω,zT ,Rn) by
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LTu =

∫ h

0
exp(A0(T − s))B0u(s)ds+

∫ T

h
F (T − s)B0u(s)ds

+

∫ T−h

0
F (T − s− h)B1u(s)ds

Its adjoint bounded linear operator L∗T : L2(Ω,zT ,Rn)→ L2([0, T ],Rm)
has the following form:

L∗T z(t) =


(B∗0 exp(A∗0(T − t)) +B∗0F

∗(T − t) +B∗1F
∗(T − t− h))E{z|zt}

for t ∈ [h, T ]
B∗0 exp(A∗0(T − t))E{z|zT } for t ∈ [0, h)

Define the set of all the states reachable in the final time T from a given
initial state x0 ∈ L2([−h, 0],Rn), using a set of admissible controls, as follows

RT (Uad) = {x(T ;x0, u) ∈ L2(Ω,zT ,Rn) : u ∈ Uad}
Now, we introduce the linear controllability operator

ΠT
0 ∈ L(L2(Ω,zT ,Rn), L2(Ω,zT ,Rn)),

which is strongly associated with the control operator LT and is given the
following equality:

ΠT
0 {.} = LTL

∗
T {.}

=



∫ T

0
exp(A0(T − t))B0B

∗
0exp(A∗0(T − t))E{.|zt}dt for T ≤ h∫ h

0
exp(A0(T − t))B0B

∗
0exp(A∗0(T − t))E{.|zt}dt

+

∫ T

h
(F (T − t)B0B

∗
0F
∗(T − t))E{.|zt}dt

+

∫ T−h

0
(F (T − t− h)B1B

∗
1F
∗(T − t− h))E{.|zt}dt for T > h

Let us recall that the n× n deterministic controllability matrix is given by

ΓTs = LT (s)L∗T (s)

=



∫ T

s
exp(A0(T − t))B0B

∗
0exp(A∗0(T − t))dt for T ≤ h∫ h

s
exp(A0(T − t))B0B

∗
0exp(A∗0(T − t))dt

+

∫ T

h
F (T − t)B0B

∗
0F
∗(T − t)dt

+

∫ T−h

s
F (T − t− h)B1B

∗
1F
∗(T − t− h)dt for T > h
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Lemma 3.1. Assume that the operator (ΠT
0 ) is invertible. Then for ar-

bitrary xT ∈ L2(Ω,zT ,Rn), f(·) ∈ L2([0, T ],Rn),σ(·) ∈ L2([0, T ],Rn×n, the
control defined as:

(3.1) u(t) =

(B∗0F
∗(T − t) +B∗1F

∗(T − t− h))× E
{

(ΠT
0 )−1

(
xT − x(T ;x0, 0)

−
∫ T

h
F (T − s)(f(s, x(s))ds+ σ(s, x(s))dω(s)

)
|zt

}
for t ∈ [h, T ]

B∗0exp(A∗0(T − t))× E
{

(ΠT
0 )−1

(
xT − x(T ;x0, 0)

−
∫ h

0
exp(A(T − s))(f(s, x(s))ds+ σ(s, x(s))dω(s))

)
|zt

}
for t ∈ [0, h)

transfers the system (2.4) from x0 ∈ Rn to xT at time T and

(3.2) x(t;x0, u) = x(t;x0, 0) + Πt
0

[
F ∗(T − t)(ΠT

0 )−1
(
xT − x(T ;x0, 0)

−
∫ T

0
F (T − s)f(s, x(s))ds−

∫ T

0
F (T − s)σ(s, x(s))dω(s)

)]
+

∫ t

0
F (t− s)f(s, x(s))ds+

∫ t

0
F (t− s)σ(s, x(s))dω(s)

provided the solution of (3.2) exists.

Proof. By substituting (3.1) in (2.4),we can easily obtain the following
(see [7, 14])

For T < h

x(t;x0, u) = x(t;x0, 0) +

∫ t

0
exp(A0(t− s))B0B

∗
0exp(A∗0(t− s))×

E

{
(ΠT

0 )−1
(
xT − x(T ;x0, 0)−

∫ T−h

0
F (T − s)(f(s, x(s))ds

+ σ(s, x(s))dω(s))

)
|zs

}
ds+

∫ t

0
F (t− s)f(s, x(s))ds

+

∫ t

0
F (t− s)σ(s, x(s))dω(s).

In the same manner for T ≥ h

x(t;x0, u) = x(t;x0, 0) +

∫ h

0
(exp(A0(t− s))B0B

∗
0exp(A∗0(T − s))
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× E
{

(ΠT
0 )−1

(
xT − x(T ;x0, 0)−

∫ h

0
F (T − s)(f(s, x(s))ds

+ σ(s)dω(s, x(s)))

)
|zs

}
ds+

(∫ t

h
F (t− s)B0B

∗
0F
∗(T − s)

+

∫ t−h

0
F (t− s− h)B1B

∗
1F (T − s− h)

)
× E

{(
ΠT

0 )−1(xT − x(T ;x0, 0)

−
∫ T

h
(F (T − s)(f(s, x(s))ds+ σ(s, x(s))dω(s))

)
|zs

}
ds

+

∫ t

0
F (t− s)f(s, x(s))ds+

∫ t

0
F (t− s)σ(s, x(s))dω(s)

Thus,taking into account of the form of the operator ΠT
0 we have

x(t;x0, u) = x(t;x0, 0) + Πt
0

[
F ∗(T − t)(ΠT

0 )−1
(
xT − x(T ;x0, 0)

−
∫ T

0
F (T − s)(f(s, x(s))ds+ σ(s, x(s)))dω(s)

)]
+

∫ t

0
F (t− s)f(s, x(s))ds+

∫ t

0
F (t− s)σ(s, x(s))dω(s)

Put t = T in above equation we get

x(T ;x0, u) = x(T ;x0, 0) + ΠT
0

[
F ∗(T − T )(ΠT

0 )−1
(
xT − x(T ;x0, 0)

−
∫ T

0
F (T − s)(f(s, x(s))ds+ σ(s, x(s)))dω(s)

)]
+

∫ T

0
F (T − s)f(s, x(s))ds+

∫ T

0
F (T − s)σ(s, x(s))dω(s)

x(T ;x0, u) = xT �

Remark. In THEOREM 3.3 sufficient condition are given for the existence
and uniqueness of solution of (3.2).

Lemma 3.2 (see [21]). For every z ∈ L2(Ω,zT , R
n), there exists a process

ϕ(.) ∈ L2([0, T ], Rn×n) such that

z = Ez +

∫ T

0
ϕ(s)dω(s)

ΠT
0 z = ΓT0 Ez +

∫ T

0
ΓTs ϕ(s)dω(s)
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Moreover

E||ΠT
0 z||2 ≤ ME||E{z|zT }||2

≤ ME||z||2, z ∈ L2(Ω,zT , R
n)

Note that if the assumption (A3) holds, then for some γ > 0

E〈ΠT
0 z, z〉 ≥ γE||z||2, for all z ∈ L2(Ω,zT , R

n)

consequently

E||(ΠT
0 )−1||2 ≤ 1

γ
= l4.

Now let us assume the following conditions

(A1) (f, σ) satisfies the Lipschitz condition with respect to x i.e.,

||f(t, x1)− f(t, x2)||2 ≤ L1||x1 − x2||2, ||σ(t, x1)− σ(t, x2)||2 ≤ L2||x1 − x2||2

(A2) (f, σ) is continuous on [0, T ]×Rn and satisfies

||f(t, x)||2 ≤ L3(||x||2 + 1), ||σ(t, x)||2 ≤ L4(||x||2 + 1)

(A3) The linear systems (1.1) and (1.2) are completely controllable.

To apply the Banach fixed point theorem, define the operator S for (2.4) for
t ∈ [−h, T ] as follows

S(x)(t) =



ψ(t) for t ∈ [−h, 0]
x(t;x0, 0) + Πt

0[F
∗(T − t)((ΠT

0 )−1(xT − x(T ;x0, 0)

−
∫ T

0
F (T − r)f(r, x(r))dr −

∫ T

0
F (T − r)σ(r, x(r))dω(r))]

+

∫ t

0
F (t−s)f(s, x(s))ds+

∫ t

0
F (t−s)σ(s, x(s))dω(s) for t∈(0, T ]

From LEMMA 3.1, the control u(t) transfer the system (2.4) from the initial
state x0 to the final state xT provided that the operator S has a fixed point.
So, if the operator S has a fixed point then the system (1.3) is completely
controllable.

Now for convenience, let us introduce the notation

l1 = max||F (t)||2 : t ∈ [0, T ], l2 = max(||B0||2, ||B1||2)
l3 = E||xT ||2, M = max||ΓTs ||2 : s ∈ [0, T ]

Theorem 3.3. Assume that the conditions (A1),(A2) and (A3) hold.In
addition if the inequality

4l1(Ml1l4 + 1)(L1T + L2Lσ)T < 1(3.3)

holds, then the system (1.3) is completely controllable.
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Proof. As mentioned above, to prove the complete controllability it is
enough to show that S has a fixed point in H2. To do this, we use the con-
traction mapping principle. To apply the contraction mapping principle, first
we show that S maps H2 into itself. Now by LEMMA 3.1 and equations (2.6)
and (2.7) we have

E||(Sx)(t)||2 = E

∣∣∣∣∣∣∣∣ψ(t)+x(t;x0, 0)+Πt
0[F
∗(T − t)× (ΠT

0 )−1(xT −x(T ;x0, 0)

−
∫ T

0
F (T − r)f(r, x(r))dr −

∫ T

0
F (T − r)σ(r, x(r))dω(r))]

+

∫ t

0
F (t− s)f(s, x(s))ds+

∫ t

0
F (t− s)σ(s, x(s))dω(s)

∣∣∣∣∣∣∣∣2
≤ 5||ψ||2 + 5(2(l1||x0||2 + ||A1||2||ψ(t)||2l1)

+ 5E

∣∣∣∣∣∣∣∣Πt
0[F
∗(T − t)× (ΠT

0 )−1(xT − x(T ;x0, 0)

−
∫ T

0
F (T − r)f(r, x(r))dr −

∫ T

0
F (T − r)σ(r, x(r))dω(r))]

∣∣∣∣∣∣∣∣2
+ 5t

∫ t

0
||F (t− r)||2E||f(r, x(r)||2dr + 5

∫ t

0
||F (t− r)||2E||σ(r, x(r))||2dr

≤ 5||ψ||2 + 10l1||x0||2 + 5(||A1||2||φ(t)||2l1)
+ 20Ml1l4(l3 + 2(l1||x0||2 + ||A1||2||ψ(t)||2l1)

+ T l1

∫ T

0
E||f(r, x(r))||2dr + l1Lσ

∫ T

0
E||σ(r, x(r))||2dr)

+ 5l1

∫ t

0
(TE||f(r, x(r))||2 + LσE||σ(r, x(r))||2)dr

≤ B1 +B2(

∫ t

0
(TE||f(r, x(r))||2 + LσE||σ(r, x(r))||2)dr)

where B1 > 0 and B2 > 0 are suitable constants. It follows from the above
and the condition (A2) that there exists C1 > 0 such that

E||(Sx)(t)||2 ≤ C1(1 +

∫ T

0
E||x(r)||2dr)

sup
t∈[0,T ]

E||(Sx)(t)||2 ≤ C1(1 + T sup
0≤r≤T

E||x(r)||2)

for all t ∈ [−h, T ]. As sup
t∈[−h,T ]

E||(Sx)(t)||2 < ∞, therefore S maps H2 into

itself.
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Secondly, we show that S is a contraction mapping. Indeed

E

∣∣∣∣∣∣∣∣(Sx1)(t)− (Sx2)(t)

∣∣∣∣∣∣∣∣2
= E

∣∣∣∣∣∣∣∣Πt
0[F
∗(T − t)(ΠT

0 )−1(

∫ T

0
F (T − s)(f(s, x2(s))− f(s, x1(s)))ds

+

∫ T

0
F (T − s)(σ(s, x2(s))− σ(s, x1(s)))dω(s))]

+

∫ t

0
F (t− s)(f(s, x1(s))− f(s, x2(s)))ds

+

∫ t

0
F (t− s)(σ(s, x2(s))− σ(s, x1(s)))dω(s)

∣∣∣∣∣∣∣∣2
≤ 4Ml21l4

(
T

∫ T

0
E

∣∣∣∣∣∣∣∣f(s, x1(s))− f(s, x2(s))

∣∣∣∣∣∣∣∣2ds
+ Lσ

∫ T

0
E

∣∣∣∣∣∣∣∣σ(s, x1(s))− σ(s, x2(s))

∣∣∣∣∣∣∣∣2ds)
+ 4l1(T

∫ t

0
E

∣∣∣∣∣∣∣∣f(s, x1(s))− f(s, x2(s))

∣∣∣∣∣∣∣∣2ds
+ Lσ

∫ t

0
E

∣∣∣∣∣∣∣∣σ(s, x1(s))− σ(s, x2(s))

∣∣∣∣∣∣∣∣2ds)
= 4Ml21l4(L1T + L2Lσ)

∫ T

0
E

∣∣∣∣∣∣∣∣x1(s)− x2(s)∣∣∣∣∣∣∣∣2ds
+ 4l1(L1T + L2Lσ)

∫ t

0
E

∣∣∣∣∣∣∣∣x1(s)− x2(s)∣∣∣∣∣∣∣∣2ds
≤ 4l1(Ml1l4 + 1)(L1T + L2Lσ)

∫ T

0
E

∣∣∣∣∣∣∣∣x1(s)− x2(s)∣∣∣∣∣∣∣∣2ds
It results that

sup
t∈[−h,T ]

E

∣∣∣∣∣∣∣∣(Sx1)(t)− (Sx2)(t)

∣∣∣∣∣∣∣∣2
≤ 4l1(Ml1l4 + 1)(L1T + L2Lσ)T sup

t∈[−h,T ]
E||x1(t)− x2(t)||2

Therefore S is a contraction mapping if the inequality (3.3) holds. Then the
mapping S has a unique fixed point x(·) in H2 which is the solution of the
system (1.3). Thus, the system (1.3) is completely controllable. The theorem
is proved. �
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4. EXAMPLE

Consider a two-dimensional semi-linear stochastic system with delay in
state and control terms

(4.1) dx(t) = [A0x(t) +A1x(t− h) +B0u(t) +B1u(t− h) + f(t, x(t))]dt

+ σ(t, x(t))dω(t); t ∈ [0, T ]

with initial condition (1.4)
where ω(t) is a one dimensional Wiener process and

A0 =

[
−1 1
−1 −1

]
, A1 =

[
−1 1

1 0

]
, B0 =

[
1 0
0 1

]
, B1 =

[
0 −1
1 0

]
f(t, x(t)) =

1

a

[
sinx(t)

x(t)

]
, σ(t, x(t)) =

1

b

[
x(t) 0

0 cosx(t)

]
If we take Euclidean norm then∣∣∣∣∣∣∣∣f(t, x1(t)− f(t, x2(t))

∣∣∣∣∣∣∣∣2 ≤ 2

a2
||x1(t)− x2(t)||2 and∣∣∣∣∣∣∣∣σ(t, x1(t)− σ(t, x2(t))

∣∣∣∣∣∣∣∣2 ≤ 2

b2
||x1(t)− x2(t)||2 so,

where L1 =
2

a2
, L2 =

2

b2
(4.2)

||A0|| = 2, ||A1|| =
√

3, ||B0|| =
√

2, ||B1|| =
√

2

We can see that conditions of THEOREM 3.3 with the help of equation (3.1),
definition ofM and LEMMA 2.2 for sufficiently small L1, L2, Lσ (using equation
(4.2)) for any time T are satisfied. So system (4.1) is completely controllable.
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