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In an infinite network X, the extremal elements for a base of the cone of positive
superharmonic functions in X are determined and an integral representation
for this cone of functions is given by using the Choquet integral representation
theorem. Later, a similar representation is given to the class of non-negative
separately superharmonic functions in a product network X × Y , but without
proving the uniqueness of the representing measures. However if we restrict to
a subclass of non-negative separately superharmonic functions, called here the
balanced functions, then the representing measure is unique.

AMS 2010 Subject Classification: 31C20, 31C10, 32U05.

Key words: product networks, separately superharmonic functions, mean-value
property, balanced separately superharmonic functions, integral rep-
resentations.

1. INTRODUCTION

In an infinite tree T , defining the Martin boundary, Cartier [8] obtains an
integral representation for positive harmonic functions in T . In this note,
we consider first the integral representation for positive superharmonic func-
tions in a single infinite network X by using the Choquet theorem on inte-
gral representations. Then we consider the integral representation of posi-
tive separately superharmonic functions in a product X × Y of two infinite
networks X and Y. In this general case, each non-negative separately super-
harmonic function can be expressed as an integral with respect to a Radon
measure supported by extremal elements. However, the uniqueness of this
measure cannot be guaranteed. We introduce a subclass B of separately su-
perharmonic functions in X×Y called balanced functions which have a certain
mean-value property. This is analogous to the case of functions in a network
X with a mean-value property which we call harmonic functions in X. We
prove that every element u(x, y) in B+, consisting of non-negative elements of
B, is the unique sum of three functions, one separately harmonic in X × Y ,
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one harmonic in the first variable and a potential in the second variable and
one potential in the first variable and harmonic in the second variable. Finally,
we prove if we restrict to this subclass B+ then the representing measure is
unique.

2. PRELIMINARIES

X is an infinite graph with countably infinite vertices and countably infi-
nite edges. We say that x and y are neighbours, and write x ∼ y, if and only if
there is an edge joining x and y. Assume X is locally finite (that is, every ver-
tex in X has only a finite number of neighbours), connected (that is, any two
vertices x and y can be joined by a path {x = x0, x1, . . . , xn = y}) and there
are no self loops (that is, there is no edge from one vertex to itself). We refer
to such a graph X as an infinite network if there is a transition index t(x, y)
associated with each pair of vertices x and y in X satisfying the conditions:
t(x, y) is a non-negative real number, t(x, y) > 0 if and only if x ∼ y, t(x, y)
and t(y, x) need not be the same. Then for any vertex x in X, t(x) =

∑
x∼y

t(x, y)

is always a positive real number.

Let u be a real-valued function on X. Then the Laplacian of u is defined
by

∆u(x) =
∑
x∼y

t(x, y)[u(y)− u(x)].

The function u is said to be superharmonic on X if t(x)u(x) ≥
∑
x∼y

t(x, y)u(y))

for every x ∈ X; harmonic and subharmonic functions are defined accordingly.
A superharmonic function p ≥ 0 on X is said to be a potential if u subharmonic
on X and u ≤ p imply u ≤ 0. If there exists a positive potential on X, then X
is called a hyperbolic network; otherwise X is called a parabolic network.

Discretising the notion of doubly subharmonic functions considered by
Avanissian [6] in the context of several complex variables, we consider now
doubly superharmonic functions in product networks.

Let {X, t1} and {Y, t2} be two infinite networks with Laplacians ∆1 and
∆2, respectively. Define their product as {X × Y, t} such that the neighbours
of (x, y) are (xi, y) and (x, yj) where x ∼ xi in X and y ∼ yj in Y. Take
t{(x, y), (xi, y)} = t1(x, xi) and t{(x, y), (x, yj)} = t2(y, yj). Then X × Y with
transition index t becomes an infinite network. If f(x, y) is defined on X × Y,
then for (x, y) ∈ X × Y define

∆f(x, y) =
∑

(a,b)∼(x,y)

t{(x, y), (a, b)}[f(a, b)− f(x, y)].
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Let us denote by fy(x) the function f(x, y) when y is fixed and by fx(y) the
function f(x, y) when x is fixed. Then,

∆f(x, y) =
∑

(xi,y)∼(x,y)

t{(x, y), (xi, y)}[f(xi, y)− f(x, y)] +

∑
(x,yj)∼(x,y)

t{(x, y), (x, yj)}[f(x, yj)− f(x, y)]

=
∑
xi∼x

t1(x, xi)[fy(xi)− fy(x)] +
∑
yj∼y

t2(y, yj)[f
x(yj)− fx(y)]

= ∆1fy(x) + ∆2f
x(y).

We say that f(x, y) is superharmonic (respectively harmonic) in X × Y if and
only if ∆f(x, y) ≤ 0 (respectively ∆f(x, y) = 0) for every (x, y) ∈ X × Y. A
function f(x, y) is said to be separately superharmonic in X×Y, if for any fixed
y, fy(x) = f(x, y) is superharmonic in X and for any fixed x, fx(y) = f(x, y)
is superharmonic in Y.

Properties of separately superharmonic functions:

(1) A separately superharmonic (respectively separately harmonic) function
in X × Y is ∆−superharmonic (respectively ∆−harmonic) in X × Y .

Proof. If (x, y) ∈ X × Y , then by using the definition of separately su-
perharmonic functions in X × Y , we see that ∆f (x, y) = ∆1fy (x) +
∆2f

x (y) ≤ 0. Similarly for separately harmonic functions. �

The converse need not be valid: for example, let X and Y be trees
without terminal vertices. Then we can choose [2, Theorem 5.1.4.] u(x)
in X and v(y) in Y such that ∆1u(x) = 1 and ∆2v(y) = 3. Let s(x, y) =
u(x)−v(y) in X×Y. Then s(x, y) is ∆− superharmonic but not separately
superharmonic. Similarly, a harmonic function need not be separately
harmonic. However, if a harmonic function is separately superharmonic,
then it is separately harmonic.

(2) If u, v are separately superharmonic in X×Y, then for non-negative num-
bers α, β we see that αu+βv and inf(u, v) are separately superharmonic
in X × Y .

(3) If {un} is a sequence of separately superharmonic functions in X × Y
such that u(x, y) = lim

n→∞
un(x, y) is finite for each (x, y) in X × Y , then

u(x, y) is separately superharmonic in X × Y.

Proof. For any fixed x ∈ X, uxn(y) is superharmonic in Y. We know
that the limit of superharmonic functions is superharmonic if the limit
is finite [2, p.46]. Hence, the fact that uxn (y) → ux (y) in Y, for every



302 Premalatha and N. Nathiya 4

fixed x ∈ X, implies that ux(y) is superharmonic in Y. Similarly, uy(x)
is superharmonic in X. Hence, u (x, y) is separately superharmonic in
X × Y. �

(4) If u ≥ 0 is ∆1−superharmonic in X, and v ≥ 0 is ∆2−superharmonic
in Y, then s (x, y) = u (x) v(y) is a separately superharmonic function in
X × Y.

Let E denote a finite set in X and E̊ the interior of E. Then, for each
αi ∈ ∂E = E \ E̊, there exists a unique function (Poisson Kernel [1, Theorem
11]) PE(x, αi) defined on E such that ∆1PE(x, αi) = 0 for each x ∈ E̊ and
PE(αk, αi) = δ(αk, αi). Note that if φ(x) is a function defined on the set ∂E =
{αi}, then h(x) =

∑
i
φ(αi)PE(x, αi) is defined on E such that h(αi) = φ(αi)

for each αi and ∆1h(x) = 0 for x ∈ E̊. Similarly define PF (y, βj) on a finite
subset F in Y for which ∂F = {βj}. Note that if h(x) is harmonic in E then
h(x) =

∑
i
h(αi)PE(x, αi).

3. INTEGRAL REPRESENTATION
OF A POSITIVE SUPERHARMONIC FUNCTION

Using the Choquet integral representation theorem [9] an integral rep-
resentation theorem for positive harmonic functions in X is given in [2, The-
orem 3.2.15]. In this section, we obtain an integral representation for any
positive superharmonic function in X, by using the Choquet integral represen-
tation theorem.

Let S+ be the set of non-negative superharmonic functions in X. S+ is
a convex cone. A function s ∈ S+ is said to be extremal if s = u + v with
u, v ∈ S+, implies the existence of some λ, 0 ≤ λ ≤ 1, such that u = λs and
v = (1 − λ)s. Suppose s ∈ S+ is extremal. By Riesz representation theorem,
s = p + h where p is a potential and h is harmonic. This implies that s is
a potential or a harmonic function. From [2, Theorem 3.3.1] p is a potential
if and only if p(x) =

∑
y∈X

(−∆)p(y)Gy(x) where Gy(x) is the unique potential

in X such that ∆Gy(x) = −δy(x). This implies that the extremal potential
p(x) has to be proportional to some Gy(x). On the other hand if the extremal
function s ∈ S+ is harmonic, then s has to be minimal. Thus, if we denote by
Ξ the extremal elements s ∈ S+ such that s(x0) = 1, then Ξ = Λ1 ∪ (Ξ \ Λ1)
where Λ1 consists of all minimal harmonic functions u in X such that u(x0) = 1

and Ξ \ Λ1 = {py(x), y ∈ X, py(x) =
Gy(x)
Gy(x0)}.

Let S = S+ − S+. For each x ∈ X, define the semi-norm ‖.‖x on S as
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follows: ‖s1 − s2‖x = |s1(x) − s2(x)|. Provide S with the topology defined
by the semi-norms ‖.‖x, x ∈ X. Since X has a countable number of vertices,
these countable semi-norms define on S a locally convex metrisable topology.
For a fixed x0 ∈ X, let B = {s ∈ S+ : s(xo) = 1}. Then B is a compact
metrisable base for the convex cone S+. To show that B is compact, take a
sequence {sn} ∈ S+, sn(x0) = 1. Then for any a ∈ X, there exists a constant α
such that sn(a) ≤ αsn(x0) for every n (Harnack property [2, Page 47]). Since
{sn(a)} is bounded we can extract a subsequence {s′n(x)} from {sn(x)} such
that {s′n(a)} is convergent. Let b be another vertex in X. Then as before,
we can extract a subsequence {s′′n(x)} from {s′n(x)} which is convergent at
x = b. Since X has a countable number of vertices this process produces a
subsequence {s∗n(x)} of {sn(x)} such that lim

n→∞
s∗n(x) = s(x) exists and is finite

for each x ∈ X. Since the limit of a sequence of superharmonic functions (if
the limit is finite at every vertex x ∈ X) is superharmonic, we conclude that
s(x) is non-negative superharmonic in X such that s(x0) = 1. Consequently,
B is a compact set.

Theorem 3.1. Let s ≥ 0 be a positive superharmonic function. Then
there exists a unique measure ν ≥ 0 with support in Ξ such that s(x) =∫
Ξ

u(x)dν(u).

Proof. By Riesz representation theorem, a positive superharmonic func-
tion s can be uniquely written as s = p + h where p is a positive potential
and h is a positive harmonic function. Since p(x) is a potential and h is
non-negative harmonic, we have p(x) =

∑
y∈X

(−∆)p(y)Gy(x), and by [2, Corol-

lary 3.2.16] there exists a unique measure µ ≥ 0 with support in Λ1 such that
h(x) =

∫
Λ1

v(x)dµ(v). Now to each Gy(x), y ∈ X, which is an extremal element,

corresponds a unique element q ∈ Ξ \ Λ1. Hence, if a measure λ is defined on
Ξ \ Λ1 such that λ(q) = (−∆)p(y) then λ ≥ 0 is a uniquely determined mea-
sure on Ξ \ Λ1 such that

∑
y∈X

(−∆)p(y)Gy(x) =
∫

Ξ\Λ1

q(x)dλ(q). Consequently

s(x) =
∫
Ξ

u(x)dν(u), where ν = µ+ λ.

To prove the uniqueness, let s(x) =
∫
Ξ

u(x)dν1(u) be another represen-

tation, where u(x) is either a minimal harmonic function or u(x) = Gz(x)
for some z ∈ X. Write µ1 = ν1 restricted to Λ1 and λ1 = ν1 restricted to
Ξ \ Λ1. Then s(x) =

∫
Ξ

u(x)dν1(u) =
∫

Ξ\Λ1

q(x)dλ1(q) +
∫

Λ1

u(x)dµ1(u). Here∫
Λ1

u(x)dµ1(u) is a harmonic function in X and
∫

Ξ\Λ1

q(x)dλ1(q) is a potential in
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X. Then the superharmonic function s has two representations, hence by the
uniqueness of the Riesz representation

∫
Ξ\Λ1

q(x)dλ(q) =
∫

Ξ\Λ1

q(x)dλ1(q) and∫
Λ1

u(x)dµ(u) =
∫

Λ1

u(x)dµ1(u). Now, again by the uniqueness of the Choquet

representing measures, for harmonic function µ = µ1. If q(x) corresponds to
Gy(x) then λ(q) and λ1(q) are equal to the same value (−∆)p(y) hence λ = λ1

on Ξ \ Λ1. Hence, ν = ν1. �

4. INTEGRAL REPRESENTATION OF POSITIVE SEPARATELY
HARMONIC AND POSITIVE SEPARATELY SUPERHARMONIC

FUNCTIONS IN A PRODUCT NETWORK

A representation for separately harmonic functions in the context of the
Brelot axiomatic potential theory has been given by Gowrisankaran [11]. Simi-
larly in [3] Anandam shows that if h(x, y) is a non-negative separately harmonic
function in the product network X×Y, then there exists a unique measure µ on
Λ1×Λ2 such that h(x, y) =

∫
Λ1×Λ2

h1(x)h2(y)dµ(h1, h2). This result is proved by

using the Choquet integral representation theorem for the cone of non-negative
separately harmonic functions in X × Y. By this method, we have to find ex-
pressions for minimal separately harmonic functions u(x, y) in X × Y . The
effort needed to prove that each such u(x, y) is of the form h1(x)h2(y) where
h1(x) is minimal harmonic in H+(X)(the set of non-negative harmonic func-
tions in X) and h2(y) is minimal harmonic in H+(Y )(the set of non-negative
harmonic functions in Y ) is explained in [3]. Here in Theorem 4.1 we want
to avoid this calculation by considering the cones of non-negative harmonic
functions in X and Y successively.

Theorem 4.1. Let h(x, y) be positive separately harmonic. Then there
exists a unique measure µ with support in Λ1 × Λ2 such that h(x, y) =∫
Λ1×Λ2

h1(x)h2(y)dµ(h1, h2).

Proof. For fixed y, hy(x) is positive harmonic in X. Hence, h(x, y) =
hy(x) =

∫
Λ1

h1(x)dλy(h1), where the representing measure λy is uniquely fixed

on Λ1. Now, for fixed x, h(x, y) is harmonic in Y and for any y ∈ Y , letB denote
V (y) which is the set consisting of y and all its neighbours. Then h(x, y) =∑
β∈∂B

h(x, β)PB(y, β). Consequently
∫

Λ1

h1(x)dλy(h1) =
∑
β∈∂B

[
∫

Λ1

h1(x)dλβ(h1)]

PB(y, β) =
∫

Λ1

h1(x)d[
∑
β∈∂B

λβ(h1)PB(y, β)]. Since the representing measure

is uniquely fixed, we have λy(h1) =
∑
β∈∂B

λβ(h1)PB(y, β). That is, for fixed
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h1, λy(h1) is harmonic in y ∈ Y. Hence, by the uniqueness of representation
of positive harmonic functions, λy(h1) =

∫
Λ2

h2(y)dµh1(h2) for a uniquely deter-

mined measure µh1 on Λ2. Hence, h(x, y) =
∫

Λ1

h1(x)dλy(h1) =
∫

Λ1×Λ2

h1(x)h2(y)

dµ(h1, h2) for any (x, y) ∈ X × Y .

To prove the uniqueness of the representing measure µ, suppose that
for another measure ν(h1, h2) we have h(x, y) =

∫
Λ1×Λ2

h1(x)h2(y)dν(h1, h2).

Then
∫

Λ1×Λ2

h1(x)h2(y)dν(h1, h2) = h(x, y) =
∫

Λ1

h1(x)dλy(h1). Hence, by the

uniqueness of the representing measures for non-negative harmonic functions
on X,dλy(h1) = h2(y)dνh1(h2) and hence λy(h1) =

∫
Λ2

h2(y)dνh1(h2). But

λy(h1) =
∫

Λ2

h2(y)dµh1(h2). Hence, ν = µ. �

A representation for non-negative separately superharmonic functions is
also possible up to the integral representation, but the uniqueness of the rep-
resenting measure seems doubtful. In [10] Drinkwater has given an integral
representation for multiply superharmonic functions in the product of Brelot
spaces. But she did not prove the uniqueness.

Lemma 4.2. (Harnack property for non-negative separately superharmonic
functions) Let (a, b) and (c, d) be two vertices in X × Y . Then there exist two
constants α > 0 and β > 0 such that for any non-negative separately superhar-
monic function s, αs(c, d) ≤ s(a, b) ≤ βs(c, d).

Proof. Since X × Y is a connected infinite network, there exists a path
connecting (a, b) and (c, d). Suppose the path is of the form {(a, b) = (a0, b0),
(a1,b0), (a1, b1), (a2, b1), (a2, b2), ..., (an, bn−1), (an, bn) = (c, d)} connecting (a, b)
and (c, d). Take any non-negative separately superharmonic function s in
X × Y . Then by fixing the vertex b ∈ Y , s is superharmonic at a ∈ X implies
t1(a)s(a, b) ≥ t1(a, a1)s(a1, b). Now fix a1 ∈ X; then s is superharmonic at b ∈
Y . Hence, t1(a)s(a, b) ≥ t1(a, a1)s(a1, b) ≥ t1(a, a1) t2(b,b1)

t2(b) s(a1, b1). Proceeding

further we arrive at the inequality s(a, b) ≥ t1(a,a1)
t1(a) s(a1, b) ≥ t1(a,a1)

t1(a) ×
t2(b,b1)
t2(b) ×

...× t1(an−1,an)
t1(an−1) ×

t2(bn−1,bn )
t2(bn−1) s(an, bn), which is of the form s(a, b) ≥ αs(c, d). The

other inequality s(a, b) ≤ βs(c, d) is proved similarly. Note that α, β do not
depend on the choice of the superharmonic function s. �

Theorem 4.3. Let F+ be the cone of non-negative separately superhar-
monic functions in X × Y. Then given any u ∈ F+, there exists a measure
µ with support in the extremal set Π of elements of a base on F+ such that
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u(x, y) =
∫
Π

s(x, y)dµ(s) for any (x, y) ∈ X × Y.

Proof. Let F = F+ − F+. For each (x, y) ∈ X × Y, define the semi-
norm ‖.‖(x,y) on F as follows: ‖s1 − s2‖(x,y) = |s1(x, y) − s2(x, y)|. Provide F
with the topology defined by the semi-norms ‖.‖(x,y), (x, y) ∈ X × Y. Since
X × Y has a countable number of vertices, these countable semi-norms define
on F a locally convex metrisable topology. For a fixed (x0, y0) ∈ X × Y, let
B = {s ∈ F+ : s(x0, y0) = 1}. Then B is a compact metrisable base for the
convex cone F+. To show that B is compact, take a sequence {sn(x, y)} ∈
F+, sn(x0, y0) = 1. Then by Harnack property for separately superharmonic
functions (Lemma 4.2), for any (a, b) ∈ X × Y, there exists a constant α such
that sn(a, b) ≤ αsn(x0, y0) for every n. Since {sn(a, b)} is bounded, we can
extract a subsequence {s′n(x, y)} from {sn(x, y)} which is convergent at (x, y) =
(a, b). Let (c, d) be another vertex in X × Y . Then from {s′n(x, y)} we can
extract a subsequence {s′′n(x, y)} which is convergent at (x, y) = (c, d). Since
X×Y has a countable number of vertices this process produces a subsequence
{s∗n(x, y)} of {sn(x, y)} such that lim

n→∞
s∗n(x, y) = s(x, y) exists and is finite for

each (x, y) ∈ X × Y . By property (3) of separately superharmonic functions,
we conclude that s(x, y) is non-negative separately superharmonic on X ×
Y such that s(x0, y0) = 1. Consequently, B is a compact set. Hence, by
the Choquet integral representation theorem there exists a measure ν with
support in the extremal set Π of elements of the base B such that u(x,y)

u(x0,y0) =∫
Π

s(x, y)dν(s) for any (x, y) ∈ X × Y. Write dµ(s) = u(x0, y0)dν(s). Then

u(x, y) =
∫
Π

s(x, y)dµ(s) for any (x, y) ∈ X ×Y. However, whether the cone F+

is a lattice for its own order has not been proved, so that the uniqueness of the
representing measure µ is not asserted in the statement of the theorem. �

To obtain the uniqueness of the representing measure, Cairoli [7] consid-
ered representations for a subclass of non-negative separately superharmonic
functions in the context of two standard processes in probability theory, and
Gowrisankaran [12] in the context of the product of two Brelot harmonic spaces.
Here the uniqueness of the representing measure µ can be established for a sub-
class of functions B+ which consists of non-negative separately superharmonic
functions having certain mean-value property. This is proved in Section 6.

5. BALANCED FUNCTIONS

For any x in X, let A denote V (x) which is the set consisting of x and
all its neighbours in X. Similarly for y ∈ Y, B is the set V (y) in Y .
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The simplest form of a separately superharmonic function in X × Y is
f(x)g(y) where f(x) is non-negative superharmonic in X and g(y) is non-
negative superharmonic in Y . For such a separately superharmonic function
u(x, y) = f(x)g(y) we have

[f(x)−
∑
α∈∂A

f(α)PA(x, α)][g(y)−
∑
β∈∂B

g(β)PB(y, β)] ≥ 0

so that
u(x, y) +

∑
α∈∂A,β∈∂B

u(α, β)PA(x, α)PB(y, β) ≥
∑
α∈∂A

u(α, y)PA(x, α)

+
∑
β∈∂B

u(x, β)PB(y, β).

In this note, we are interested in the class of functions in X×Y for which
the above inequality can be replaced by equality.

Definition 5.1. A real valued function f(x, y) on X × Y is said to be
balanced if and only if for any (x, y) in X × Y ,

f(x, y) +
∑

α∈∂A,β∈∂B
f(α, β)PA(x, α)PB(y, β) =

∑
α∈∂A

f(α, y)PA(x, α)

+
∑
β∈∂B

f(x, β)PB(y, β)

Example. If f(x, y) is a real valued function that is harmonic in one
variable (say x) when the other is fixed, then f(x, y) is balanced.

Proof. If f(x, y) is harmonic in X for fixed y, then

f(x, y) =
∑
α∈∂A

f(α, y)PA(x, α) for any x.∑
α∈∂A,β∈∂B

f(α, β)PA(x, α)PB(y, β) =
∑
β∈∂B

[
∑
α∈∂A

f(α, β)PA(x, α)]PB(y, β)

=
∑
β∈∂B

f(x, β)PB(y, β). This implies

f(x, y) +
∑

α∈∂A,β∈∂B
f(α, β)PA(x, α)PB(y, β) =

∑
α∈∂A

f(α, y)PA(x, α)

+
∑
β∈∂B

f(x, β)PB(y, β).

Hence, f(x, y) is balanced. �

Properties of balanced functions:

(1) If f, g are balanced on X×Y, then for non-negative numbers a, b, af+bg
is balanced.
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(2) If fn is a sequence of balanced functions and if f(x, y) = lim
n→∞

fn(x, y)

exists and is finite for every (x, y) in X × Y, then f is balanced.

Proof. Since each fn is balanced we have

fn(x, y) +
∑

α∈∂A,β∈∂B
fn(α, β)PA(x, α)PB(y, β)=

∑
α∈∂A

fn(α, y)PA(x, α)

+
∑
β∈∂B

fn(x, β)PB(y, β).

Taking limits on both sides

lim
n→∞

fn(x, y) + lim
n→∞

∑
α∈∂A,β∈∂B

fn(α, β)PA(x, α)PB(y, β) =

lim
n→∞

∑
α∈∂A

fn(α, y)PA(x, α) + lim
n→∞

∑
β∈∂B

fn(x, β)PB(y, β).

Since the sums are finite we can take the limits inside the sums

f(x, y) +
∑

α∈∂A,β∈∂B
f(α, β)PA(x, α)PB(y, β) =

∑
α∈∂A

f(α, y)PA(x, α)

+
∑
β∈∂B

f(x, β)PB(y, β).

Hence, f is balanced. �

Proposition 5.2. For a real valued function f(x, y) the following are
equivalent:

(1) f(x, y) is balanced.

(2) f(x, y) −
∑
α∈∂A

f(α, y)PA(x, α) = ϕ(y) is a harmonic function in Y for

fixed x.

(3) f(x, y) −
∑
β∈∂B

f(x, β)PB(y, β) = ψ(x) is a harmonic function in X for

fixed y.

Proof. Let f(x, y) be a balanced function in X × Y . Let us show that
ϕ(y) is a harmonic function in Y for fixed x.∑
β∈∂B

ϕ(β)PB(y, β) =
∑
β∈∂B

[f(x, β)−
∑
α∈∂A

f(α, β)PA(x, α)]PB(y, β)

=
∑
β∈∂B

f(x, β)PB(y, β)−
∑

α∈∂A,β∈∂B
f(α, β)PA(x, α)PB(y, β)

= f(x, y)−
∑
α∈∂A

f(α, y)PA(x, α) since f(x, y) is balanced

= ϕ(y).
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Hence, ϕ(y) is harmonic in Y for fixed x. On the other hand, let ϕ(y) be
harmonic in Y for fixed x. Then

f(x, y)−
∑
α∈∂A

f(α, y)PA(x, α) = ϕ(y) =
∑
β∈∂B

ϕ(β)PB(y, β)

=
∑
β∈∂B

[f(x, β)−
∑
α∈∂A

f(α, β)PA(x, α)]PB(y, β)

=
∑
β∈∂B

f(x, β)PB(y, β)−
∑

α∈∂A,β∈∂B
f(α, β)PA(x, α)PB(y, β)

Hence, f(x, y) is balanced. Similarly we can prove the other equivalent condi-
tion. �

6. BALANCED SEPARATELY SUPERHARMONIC FUNCTIONS

Definition 6.1. A real valued function u(x, y) on X × Y is said to be
balanced separately superharmonic if and only if for any (x, y) in X × Y ,
u(x, y) is separately superharmonic and

u(x, y) +
∑

α∈∂A,β∈∂B
u(α, β)PA(x, α)PB(y, β) =

∑
α∈∂A

u(α, y)PA(x, α)

+
∑
β∈∂B

u(x, β)PB(y, β)

Let B be the class of balanced separately superharmonic functions in
X ×Y and let B+ denote the class of non-negative balanced separately super-
harmonic functions in X × Y . Then

(1) If f, g ∈ B, then for non-negative numbers a, b the function af + bg ∈ B.

(2) If vn ∈ B and if v(x, y) = lim
n→∞

vn(x, y) exists and is finite for every (x, y)

in X × Y, then v ∈ B.

(3) If u(x, y) ∈ B+ and if u(x0, y0) = 0 for some (x0, y0) in X × Y , then
u = 0.

(4) There are some non-negative separately superharmonic functions in X ×
Y that are not balanced.
Example. Let ξn be the set of vertices in a hyperbolic network. LetGξn(x)
be the Green potential in X with harmonic singularity at ξn( [1, Theorem

9]). Since Gξn(x) ≤ Gξn(ξn), the function p(x) =
∞∑
n=1

1
2n

Gξn (x)
Gξn (ξn) as a

convergent sum of potentials is a potential in X that is not harmonic at
any vertex in X. Hence, [p(x) −

∑
α∈∂A

p(α)PA(x, α)] > 0 for any x ∈ X.

Similarly, let q(y) be a potential in Y which is not harmonic at any
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vertex in Y . Let u(x, y) = p(x)q(y) which is a separately superharmonic
function in X × Y .
Now,

[p(x)−
∑
α∈∂A

p(α)PA(x, α)][q(y)−
∑
β∈∂B

q(β)PB(y, β)] > 0

so that

u(x, y) +
∑

α∈∂A,β∈∂B
u(α, β)PA(x, α)PB(y, β) >

∑
α∈∂A

u(α, y)PA(x, α)

+
∑
β∈∂B

u(x, β)PB(y, β).

Hence, u(x, y) is not a balanced function, that is u /∈ B+.

Lemma 6.2. Let u(x, y) be a non-negative balanced separately superhar-
monic function in X×Y . Then the non-negative function ψ(x, y) =

∑
α∈∂A

u(α, y)

PA(x, α) is superharmonic in Y for fixed x and harmonic in X for fixed y.

Proof. When y is fixed, uy(x) is superharmonic in X and
∑
α∈∂A

u(α, y)

PA(x, α) is the Poisson modification of uy(x) at the vertex x so that
∑
α∈∂A

u(α, y)

PA(x, α) is harmonic at x. On the other hand, for fixed x, and α ∼ x, uα(y) =
u(α, y) is superharmonic in Y and PA(x, α) is a positive number. Hence,
u(α, y)PA(x, α) is superharmonic in Y for fixed x and so is

∑
α∈∂A

u(α, y)PA(x, α).

The lemma is proved. �

Lemma 6.3. Let u(x, y) be a non-negative balanced separately superhar-
monic function in X × Y . Let ϕ(x, y) = u(x, y)−

∑
α∈∂A

u(α, y)PA(x, α). Then

ϕ(x, y) is non-negative superharmonic in X for fixed y and harmonic in Y for
fixed x.

Proof. By Proposition 5.2 ϕ(x, y) is harmonic in Y for fixed x. When y
is fixed uy(x) is superharmonic in X and by Lemma 6.2

∑
α∈∂A

u(α, y)PA(x, α)

is harmonic at x. This implies ϕ(x, y) is superharmonic at x for fixed y. Since
u(x, y) is superharmonic at x for fixed y,

∑
α∈∂A

u(α, y)PA(x, α) ≤ u(x, y) so that

ϕ(x, y) ≥ 0. �

Lemma 6.4. Let u(x, y) be a non-negative balanced separately superhar-
monic function in X×Y and let ϕ(x, y) = u(x, y)−

∑
α∈∂A

u(α, y)PA(x, α). Then

ϕ(x, y) = h(x, y) + p(x, y) where h(x, y) is separately harmonic in X × Y ; and
p(x, y) is harmonic in Y for fixed x and a potential in X for fixed y.
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Proof. Since ϕ(x, y) is a non-negative separately superharmonic function
in X ×Y , by ( [3, Theorem 3.3]) there exists a unique non-negative separately
harmonic function h(x, y) in X × Y such that h(x, y) ≤ ϕ(x, y); moreover,
h(x, y) is the greatest harmonic minorant of ϕ(x, y) for fixed y. Thus, if we
write ϕ(x, y) = h(x, y) + p(x, y), then p(x, y) ≥ 0. Since for fixed y, h(x, y) is
the greatest harmonic minorant of ϕ(x, y), p(x, y) is a potential in X for fixed
y; further for fixed x, ϕ(x, y) and h(x, y) are harmonic in Y , so that p(x, y) is
harmonic in Y for fixed x. �

Let F1 be the family of non-negative separately harmonic functions in
X × Y , F2 be the family of non-negative separately superharmonic functions
that are harmonic in X for fixed y and potentials in Y for fixed x. Similarly
let F3 be the family of non-negative separately superharmonic functions that
are potentials in X for fixed y and harmonic in Y for fixed x.

Theorem 6.5. B+ = F1 ⊕ F2 ⊕ F3.

Proof. Let u ∈ B+. Then by Lemma 6.3 ϕ(x, y) = u(x, y)−
∑
α∈∂A

u(α, y)

PA(x, α) is harmonic in Y for fixed x. Now by Lemma 6.4 u(x, y) = h(x, y) +
p(x, y) +

∑
α∈∂A

u(α, y)PA(x, α) where h(x, y) is separately harmonic in X × Y ;

and p(x, y) is harmonic in Y for fixed x and a potential in X for fixed y. Then
by Lemma 6.2 the non-negative function

∑
α∈∂A

u(α, y)PA(x, α) is superharmonic

in Y for fixed x and harmonic in X for fixed y. As in Lemma 6.4 we have∑
α∈∂A

u(α, y)PA(x, α) = h1(x, y) + q(x, y) where h1(x, y) is separately harmonic

in X×Y ; and q(x, y) is harmonic in X for fixed y and a potential in Y for fixed
x. Hence, u(x, y) = H(x, y)+q(x, y)+p(x, y) whereH(x, y) = h(x, y)+h1(x, y).
The families F1, F2, F3 are mutually exclusive. For, suppose v(x, y) ∈ F1 ∪ F2

then v(x, y) is non-negative separately harmonic in X × Y and potential in Y
for fixed x. This cannot happen which implies F1 ∩ F2 = φ. Similarly we can
prove F2 ∩ F3 = φ and F1 ∩ F3 = φ. Hence, the uniqueness. �

Let Λ1 and Λ2 be the minimal boundaries of X and Y respectively.

Lemma 6.6. For any u ∈ F2 there exists a unique measure µη on Λ1 for
each η ∈ Y such that

u(x, y) =
∑
η∈Y

[

∫
Λ1

h(x)dµη(h)]G′η(y)

for any (x, y) ∈ X × Y.

Proof. Let u ∈ F2. Then for fixed x, u(x, y) is a positive potential in Y .
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Hence, by ( [2, Theorem 3.3.1]) u(x, y) =
∑
η∈Y

λx(η)G′η(y), where λx(η) ≥ 0 is

a constant for each η. Write

(1) u(x, y) =
∑
η∈Y

λ(x, η)G′η(y).

For any fixed vertex in Y , u(x, y) is harmonic in X; hence

u(x, y) =
∑
α∈∂A

u(α, y)PA(x, α)

=
∑
α∈∂A

[
∑
η∈Y

λ(α, η)G′η(y)]PA(x, α)

=
∑
η∈Y

[
∑
α∈∂A

λ(α, η)PA(x, α)]G′η(y)(2)

Now for any η ∈ Y , λ(α, η) = λα(η) is a non-negative constant. Hence,∑
α∈∂A

λ(α, η)PA(x, α) is a non-negative constant for fixed x. Thus, for fixed

x, the potential ux(y) has two series expansions ((1) and (2)). But the expan-
sion for a potential to be unique implies λ(x, η) =

∑
α∈∂A

λ(α, η)PA(x, α). That

is, for any η ∈ Y, λ(x, η) is harmonic in X and λ(x, η) ≥ 0. By ( [2, Corollary
3.2.16]) there exists a unique measure µη on Λ1 for each η ∈ Y such that

u(x, y) =
∑
η∈Y

[

∫
Λ1

h(x)dµη(h)]G′η(y). �

Remark. For any v ∈ F3 there exists a unique Radon measure νξ on Λ2

for each ξ ∈ X such that

v(x, y) =
∑
ξ∈X

[

∫
Λ2

h′(y)dνξ(h
′)]Gξ(x)

for any (x, y) ∈ X × Y.

Theorem 6.7. For every function in B+, there exist a unique measure λ
on Λ1×Λ2 and two families of uniquely determined associated measures: {µη}
on Λ1 for each η ∈ Y and {νξ} on Λ2 for each ξ ∈ X such that

u(x, y) =
∫

Λ1×Λ2

h(x)h′(y)dλ(h, h′) +
∑
η∈Y

[
∫

Λ1

h(x)dµη(h)]G′η(y)

+
∑
ξ∈X

[

∫
Λ2

h′(y)dνξ(h
′)]Gξ(x).
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Proof. If u ∈ B+, then by Theorem 6.5 u can be uniquely written as
u(x, y) = h(x, y) + p(x, y) + q(x, y) where h, p and q belong to F1, F2, and F3,
respectively. Then by ( [3, Theorem 5.6]), Lemma 6.6 and the above Remark
there exist a unique measure λ on Λ1 × Λ2 and two families of associated
measures uniquely determined: {µη} on Λ1 for each η ∈ Y and {νξ} on Λ2 for
each ξ ∈ X such that

u(x, y) =

∫
Λ1×Λ2

h(x)h′(y)dλ(h, h′) +
∑
η∈Y

[

∫
Λ1

h(x)dµη(h)]G′η(y)

+
∑
ξ∈X

[

∫
Λ2

h′(y)dνξ(h
′)]Gξ(x). �
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