UNIQUE INTEGRAL REPRESENTATION FOR THE CLASS
OF BALANCED SEPARATELY SUPERHARMONIC FUNCTIONS
IN A PRODUCT NETWORK

PREMALATHA and N. NATHIYA

Communicated by Lucian Beznea

In an infinite network X, the extremal elements for a base of the cone of positive
superharmonic functions in X are determined and an integral representation
for this cone of functions is given by using the Choquet integral representation
theorem. Later, a similar representation is given to the class of non-negative
separately superharmonic functions in a product network X x Y, but without
proving the uniqueness of the representing measures. However if we restrict to
a subclass of non-negative separately superharmonic functions, called here the
balanced functions, then the representing measure is unique.
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1. INTRODUCTION

In an infinite tree T, defining the Martin boundary, Cartier [8] obtains an
integral representation for positive harmonic functions in 7. In this note,
we consider first the integral representation for positive superharmonic func-
tions in a single infinite network X by using the Choquet theorem on inte-
gral representations. Then we consider the integral representation of posi-
tive separately superharmonic functions in a product X x Y of two infinite
networks X and Y. In this general case, each non-negative separately super-
harmonic function can be expressed as an integral with respect to a Radon
measure supported by extremal elements. However, the uniqueness of this
measure cannot be guaranteed. We introduce a subclass 95 of separately su-
perharmonic functions in X x Y called balanced functions which have a certain
mean-value property. This is analogous to the case of functions in a network
X with a mean-value property which we call harmonic functions in X. We
prove that every element u(z,y) in B, consisting of non-negative elements of
B, is the unique sum of three functions, one separately harmonic in X x Y,
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one harmonic in the first variable and a potential in the second variable and
one potential in the first variable and harmonic in the second variable. Finally,
we prove if we restrict to this subclass 81 then the representing measure is
unique.

2. PRELIMINARIES

X is an infinite graph with countably infinite vertices and countably infi-
nite edges. We say that « and y are neighbours, and write x ~ vy, if and only if
there is an edge joining x and y. Assume X is locally finite (that is, every ver-
tex in X has only a finite number of neighbours), connected (that is, any two
vertices x and y can be joined by a path {z = zg,z1,...,2, = y}) and there
are no self loops (that is, there is no edge from one vertex to itself). We refer
to such a graph X as an infinite network if there is a transition indexr t(z,y)
associated with each pair of vertices z and y in X satisfying the conditions:
t(z,y) is a non-negative real number, t(z,y) > 0 if and only if x ~ y, t(z,y)
and t(y, x) need not be the same. Then for any vertex  in X, t(x) = > t(z,y)

r~y
is always a positive real number.

Let u be a real-valued function on X. Then the Laplacian of u is defined

by
Au(z) = 3t y)luly) — u(z))
a~y
The function u is said to be superharmonic on X if t(x)u(z) > > t(z,y)u(y))

oy
for every x € X; harmonic and subharmonic functions are deﬁnedyaccordingly.
A superharmonic function p > 0 on X is said to be a potential if u subharmonic
on X and u < p imply u < 0. If there exists a positive potential on X, then X
is called a hyperbolic network; otherwise X is called a parabolic network.

Discretising the notion of doubly subharmonic functions considered by
Avanissian [6] in the context of several complex variables, we consider now
doubly superharmonic functions in product networks.

Let {X,t;1} and {Y,t2} be two infinite networks with Laplacians A; and
Ay, respectively. Define their product as {X x Y,t} such that the neighbours
of (z,y) are (z;,y) and (x,y;) where z ~ x; in X and y ~ y; in Y. Take
t{(z,y), (xi,y)} = ti(x, x;) and t{(x,y), (x,y;)} = t2(y,y;). Then X x Y with
transition index ¢ becomes an infinite network. If f(x,y) is defined on X x Y,
then for (z,y) € X x Y define

Af(zy)= Y Hzy), (a,0)}f(ab) = f(z,y)].

(avb)N(xﬂy)
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Let us denote by f,(z) the function f(x,y) when y is fixed and by f*(y) the
function f(z,y) when z is fixed. Then,

Af(x,y) = Z t{(x,y),(xz,y)}[f(xl,y)ff(x,y)]Jr

(zi,y)~(z,y)
Z t{(‘r?y)?(x?yj)}[f(xvyj)_f(xay)]

("Evyj)w(mvy)

= >t z)fyla) = fy(@)] + Y t2(y, y) [ (y5) — 7 ()]

Ti~T Yyi~y

= Aufy(@) + A2 f*(y).

We say that f(z,y) is superharmonic (respectively harmonic) in X x Y if and
only if Af(z,y) < 0 (respectively Af(x,y) = 0) for every (z,y) € X xY. A
function f(z,y) is said to be separately superharmonic in X x Y if for any fixed
y, fy(x) = f(z,y) is superharmonic in X and for any fixed z, f*(y) = f(z,y)
is superharmonic in Y.

(1)

Properties of separately superharmonic functions:
A separately superharmonic (respectively separately harmonic) function
in X x Y is A—superharmonic (respectively A—harmonic) in X x Y.

Proof. If (z,y) € X x Y, then by using the definition of separately su-
perharmonic functions in X x Y, we see that Af (z,y) = Af, (z) +
Ao f* (y) < 0. Similarly for separately harmonic functions. [

The converse need not be valid: for example, let X and Y be trees
without terminal vertices. Then we can choose [2, Theorem 5.1.4.] u(z)
in X and v(y) in Y such that Aju(z) =1 and Agv(y) = 3. Let s(z,y) =
u(x)—v(y) in X xY. Then s(z,y) is A— superharmonic but not separately
superharmonic. Similarly, a harmonic function need not be separately
harmonic. However, if a harmonic function is separately superharmonic,
then it is separately harmonic.

If u, v are separately superharmonic in X x Y, then for non-negative num-
bers a, 8 we see that au+ fv and inf(u, v) are separately superharmonic
in X xY.

If {u,} is a sequence of separately superharmonic functions in X x Y
such that u(z,y) = nh_}ngo un(x,y) is finite for each (z,y) in X x Y, then

u(x,y) is separately superharmonic in X x Y.
Proof. For any fixed z € X, u}(y) is superharmonic in Y. We know

that the limit of superharmonic functions is superharmonic if the limit
is finite [2, p.46]. Hence, the fact that v’ (y) — u® (y) in Y, for every
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fixed z € X, implies that u”(y) is superharmonic in Y. Similarly, u,(x)
is superharmonic in X. Hence, u (z,y) is separately superharmonic in
XxY. O

(4) If uw > 0 is Aj—superharmonic in X, and v > 0 is Ag—superharmonic
in Y, then s (z,y) = u(x)v(y) is a separately superharmonic function in
X xY.

Let E denote a finite set in X and E the interior of E. Then, for each

o; € OE = E \ E, there exists a unique function (Poisson Kernel [1, Theorem

11]) Pg(z,a;) defined on E such that Ay Pg(z,a;) = 0 for each z € E and

Pr (o, ;) = §(ag, ). Note that if ¢(x) is a function defined on the set OF =

{a;}, then h(z) = > ¢(a;)Pe(z, «;) is defined on E such that h(o;) = ¢(a;)
(2

for each oy and Ajh(x) = 0 for € E. Similarly define Pr(y, ;) on a finite
subset F'in Y for which 0F = {3;}. Note that if h(x) is harmonic in E then

h(z) = Z h(a;)Pg(z, ;).

3. INTEGRAL REPRESENTATION
OF A POSITIVE SUPERHARMONIC FUNCTION

Using the Choquet integral representation theorem [9] an integral rep-
resentation theorem for positive harmonic functions in X is given in [2, The-
orem 3.2.15]. In this section, we obtain an integral representation for any
positive superharmonic function in X, by using the Choquet integral represen-
tation theorem.

Let ST be the set of non-negative superharmonic functions in X. ST is
a convex cone. A function s € ST is said to be extremal if s = u + v with
u,v € ST, implies the existence of some \,0 < X\ < 1, such that v = \s and
v = (1 — X)s. Suppose s € ST is extremal. By Riesz representation theorem,
s = p + h where p is a potential and h is harmonic. This implies that s is
a potential or a harmonic function. From [2, Theorem 3.3.1] p is a potential
if and only if p(xz) = > (—A)p(y)Gy(x) where Gy(x) is the unique potential

yeX
in X such that AGy(x) = —6éy(x). This implies that the extremal potential
p(x) has to be proportional to some Gy(x). On the other hand if the extremal
function s € ST is harmonic, then s has to be minimal. Thus, if we denote by
= the extremal elements s € St such that s(zg) = 1, then Z = A U (2 \ Ay)
where Ay consists of all minimal harmonic functions v in X such that u(zg) = 1

and 2\ A1 = {py(2),y € X, py(2) = $42}.

Let S = ST — S*. For each z € X, define the semi-norm ||.||, on S as
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follows: |[[s1 — s2|lz = [s1(x) — s2(x)|. Provide S with the topology defined
by the semi-norms ||.||z,z € X. Since X has a countable number of vertices,
these countable semi-norms define on S a locally convex metrisable topology.
For a fixed g € X, let B = {s € ST : s(x,) = 1}. Then B is a compact
metrisable base for the convex cone S*. To show that B is compact, take a
sequence {s,} € ST, s,(xg) = 1. Then for any a € X, there exists a constant «
such that s,(a) < as,(zg) for every n (Harnack property [2, Page 47]). Since
{sn(a)} is bounded we can extract a subsequence {s/ (z)} from {s,(z)} such
that {s),(a)} is convergent. Let b be another vertex in X. Then as before,
we can extract a subsequence {s!(z)} from {s/,(x)} which is convergent at
x = b. Since X has a countable number of vertices this process produces a
subsequence {s}(x)} of {s,(z)} such that nh_}ngo sk (x) = s(x) exists and is finite
for each € X. Since the limit of a sequence of superharmonic functions (if
the limit is finite at every vertex x € X) is superharmonic, we conclude that
s(x) is non-negative superharmonic in X such that s(xgp) = 1. Consequently,
B is a compact set.

THEOREM 3.1. Let s > 0 be a positive superharmonic function. Then
there exists a unique measure v > 0 with support in Z such that s(z) =

Ju(z)dv(u).

Proof. By Riesz representation theorem, a positive superharmonic func-
tion s can be uniquely written as s = p + h where p is a positive potential
and h is a positive harmonic function. Since p(z) is a potential and h is

non-negative harmonic, we have p(z) = Y (—=A)p(y)Gy(x), and by [2, Corol-
yeX
lary 3.2.16] there exists a unique measure g > 0 with support in A; such that
h(z) = [ v(z)dp(v). Now to each Gy(z),y € X, which is an extremal element,
Ay
corresponds a unique element ¢ € =\ Aj. Hence, if a measure A is defined on
=\ A; such that A(q) = (—A)p(y) then A > 0 is a uniquely determined mea-

sure on =\ A; such that Y (=A)p(y)Gy(z) = [ g¢(z)d\(g). Consequently

yeX E\A1
= [u( , where v = p + .

To prove the uniqueness, let s(z) = [w(z)dr;(u) be another represen-
tation, where u(x) is either a minimal harmonic function or u(z) = G.(z)
for some z € X. Write 1 = 14 restricted to Ay and A =1 restricted to
E\ Ay Then s(z) = [u(z)dvi(u) = [ q(z)d\i(g f x)dpy(u). Here

=2 _\Al

[ w(x)dpi (u) is a harmonic function in X and [ ¢(z )d>\1( ) is a potential in
Ay E\Aq
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X. Then the superharmonic function s has two representations, hence by the

uniqueness of the Riesz representation [ ¢(x)d\(¢) = [ q(x)dAi(¢) and
E\Al -—‘\Al

[ u(z)dp(u) = [ u(x)dp(u). Now, again by the uniqueness of the Choquet

A1 Al

representing measures, for harmonic function g = py. If ¢(x) corresponds to

Gy(z) then A(q) and Ai(q) are equal to the same value (—A)p(y) hence A = A\

on =\ A;. Hence, v =v;. O

4. INTEGRAL REPRESENTATION OF POSITIVE SEPARATELY
HARMONIC AND POSITIVE SEPARATELY SUPERHARMONIC
FUNCTIONS IN A PRODUCT NETWORK

A representation for separately harmonic functions in the context of the
Brelot axiomatic potential theory has been given by Gowrisankaran [11]. Simi-
larly in [3] Anandam shows that if h(z, y) is a non-negative separately harmonic
function in the product network X x Y, then there exists a unique measure p on

A1 xAgsuch that h(z,y) = [ hi(z)ha(y)dp(hy, he). This result is proved by
A1 X A2
using the Choquet integral representation theorem for the cone of non-negative

separately harmonic functions in X x Y. By this method, we have to find ex-
pressions for minimal separately harmonic functions u(z,y) in X x Y. The
effort needed to prove that each such wu(z,y) is of the form hj(z)ha(y) where
hi(z) is minimal harmonic in H*(X)(the set of non-negative harmonic func-
tions in X) and hg(y) is minimal harmonic in H*(Y)(the set of non-negative
harmonic functions in Y') is explained in [3]. Here in Theorem 4.1 we want
to avoid this calculation by considering the cones of non-negative harmonic
functions in X and Y successively.

THEOREM 4.1. Let h(x,y) be positive separately harmonic. Then there
exists a unique measure p with support in A1 X Ag such that h(z,y) =

[ ha(@)ha(y)du(hy, ha).
A1 XA

Proof. For fixed y, hy(z) is positive harmonic in X. Hence, h(z,y) =
z) = [ hi(z)d\y(h1), where the representing measure ), is uniquely fixed

1
on A;. Now, for fixed z, h(z,y) is harmonic in Y and for any y € Y, let B denote
V(y) which is the set consisting of y and all its neighbours Then h(z,y) =

Z h(z,B)Pg(y, ). Consequently fhl YdAy(h1) = fhl z)dAg(h1)]
BedB
PB y,pB) = f hi(z)d] > Ag(hl)PB(y,,B)]. Since the representlng measure
BedB

is uniquely ﬁxed, we have A\y(h1) = > Ag(h1)Ps(y, ). That is, for fixed
BeodB
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hi,Ay(h1) is harmonic in y € Y. Hence by the uniqueness of representation

of positive harmonic functions, Ay ( f ho(y)dpn, (he) for a uniquely deter-
mined measure pp, on Ag. Hence, h(z,y) f hi(z)d\y(h1) = [  hi(z)ha(y)
A1 ><A2

dp(hy, he) for any (z,y) € X x Y.
To prove the uniqueness of the representing measure p, suppose that

for another measure v(hi,hs) we have h(z,y) = [ hi(z)he(y)dv(hi, ho).
A1 ><A2
Then [ hi(z)he(y)dv(hy, he) = h(z,y) f hi(x hi). Hence, by the
A1 ><A2
uniqueness of the representing measures for non negatlve harmonic functions

on X, d)\y(hl) = ha(y)dvp, (he) and hence Ay ( = f ha(y)dvp, (he). But
f ha(y)dup, (he). Hence, v =p. O

A representation for non-negative separately superharmonic functions is
also possible up to the integral representation, but the uniqueness of the rep-
resenting measure seems doubtful. In [10] Drinkwater has given an integral
representation for multiply superharmonic functions in the product of Brelot
spaces. But she did not prove the uniqueness.

LEMMA 4.2. (Harnack property for non-negative separately superharmonic
functions) Let (a,b) and (c,d) be two vertices in X x Y. Then there exist two
constants a > 0 and 8 > 0 such that for any non-negative separately superhar-
monic function s, as(c,d) < s(a,b) < Bs(c,d).

Proof. Since X x Y is a connected infinite network, there exists a path
connecting (a,b) and (¢, d). Suppose the path is of the form {(a,b) = (ao, bo),
(a1,bo), (a1,b1), (a2,b1), (az,b2), ..., (an, bn—1), (an, br) = (¢,d)} connecting (a, b)
and (¢,d). Take any non-negative separately superharmonic function s in
X x Y. Then by fixing the vertex b € Y, s is superharmonic at a € X implies
ti(a)s(a,b) > ti(a,a1)s(ar,b). Now fix a; € X; then s is superharmonic at b €
Y. Hence, t1(a)s(a,b) > ti(a,a1)s(a1,b) > ti(a, al)t2t(2b’bl)s(a1,bl). Proceeding

)
further we arrive at the inequality s(a,b) > %s(al, b) > tlt(la(,;z;) X tQt(Qb(’g)l)
"X tlt(f(*;;i’f;]) X tQt(Qb(’;;i’f?)s(an, b,), which is of the form s(a,b) > as(c,d). The
other inequality s(a,b) < fBs(c,d) is proved similarly. Note that o, do not

depend on the choice of the superharmonic function s. 0O

X

THEOREM 4.3. Let T be the cone of non-negative separately superhar-
monic functions in X x Y. Then given any u € §, there exists a measure
w with support in the extremal set 11 of elements of a base on F such that
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u(z,y) = [ s(z,y)du(s) for any (v,y) € X x Y.
I

Proof. Let § = § — §+. For each (z,y) € X x Y, define the semi-
norm ||z, on § as follows: ||s1 — s2[[(zy) = [s1(z,y) — s2(z,y)|. Provide §
with the topology defined by the semi-norms ||.|[(z4), (z,y) € X x Y. Since
X x Y has a countable number of vertices, these countable semi-norms define
on § a locally convex metrisable topology. For a fixed (xo,y0) € X X Y, let
B ={s € F":s(xo,y0) = 1}. Then B is a compact metrisable base for the
convex cone §. To show that B is compact, take a sequence {s,(z,y)} €
§*, sn(w0,y0) = 1. Then by Harnack property for separately superharmonic
functions (Lemma 4.2), for any (a,b) € X X Y, there exists a constant « such
that sp(a,b) < asp(zo,yo) for every n. Since {sp(a,b)} is bounded, we can
extract a subsequence {s}, (z,y)} from {s,(z,y)} which is convergent at (z,y) =
(a,b). Let (¢,d) be another vertex in X x Y. Then from {s/,(z,y)} we can
extract a subsequence {s!'(x,y)} which is convergent at (z,y) = (¢,d). Since
X xY has a countable number of vertices this process produces a subsequence
{s¥(z,y)} of {sn(x,y)} such that nh_)rr;o s¥(z,y) = s(x,y) exists and is finite for
each (z,y) € X x Y. By property (3) of separately superharmonic functions,
we conclude that s(z,y) is non-negative separately superharmonic on X X
Y such that s(zg,y9) = 1. Consequently, B is a compact set. Hence, by
the Choquet integral representation theorem there exists a measure v with

support in the extremal set II of elements of the base B such that ul(ﬁ):z())) =

[ s(z,y)dv(s) for any (z,y) € X x Y. Write du(s) = u(xo,yo)dv(s). Then

I

u(z,y) = [ s(z,y)du(s) for any (z,y) € X x Y. However, whether the cone F*
I

is a lattice for its own order has not been proved, so that the uniqueness of the
representing measure u is not asserted in the statement of the theorem. [

To obtain the uniqueness of the representing measure, Cairoli [7] consid-
ered representations for a subclass of non-negative separately superharmonic
functions in the context of two standard processes in probability theory, and
Gowrisankaran [12] in the context of the product of two Brelot harmonic spaces.
Here the uniqueness of the representing measure p can be established for a sub-
class of functions B which consists of non-negative separately superharmonic
functions having certain mean-value property. This is proved in Section 6.

5. BALANCED FUNCTIONS

For any x in X, let A denote V' (z) which is the set consisting of x and
all its neighbours in X. Similarly for y € Y, B is the set V(y) in Y.
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The simplest form of a separately superharmonic function in X x Y is
f(x)g(y) where f(x) is non-negative superharmonic in X and g¢(y) is non-
negative superharmonic in Y. For such a separately superharmonic function
u(r,y) = f(w)g(y) we have

— 3" f@)Pa(z, )lgly) — S 9(8)Pa(y, B)] = 0

€A BeoB
so that

w@,y)+ Y w(e,B)Pa(z,0)Ps(y,B) > Y ula,y)Pa(z,q)

a€0A,fe0B acdA

+ j{: ulx 6 Fﬁ?yaﬁ)
Be€0B
In this note, we are interested in the class of functions in X x Y for which

the above inequality can be replaced by equality.

Definition 5.1. A real valued function f(x,y) on X x Y is said to be
balanced if and only if for any (z,y) in X x Y,

fa)+ S f@B)Pale.a)Pa(y.B) = 3 Flawy)Pal,a)

a€HA,BEDB acdA

+ > f(z,8)Ps(y, B)
BedB
Ezample. If f(x,y) is a real valued function that is harmonic in one
variable (say z) when the other is fixed, then f(x,y) is balanced.

Proof. If f(z,y) is harmonic in X for fixed y, then

z,y)= Y _ fla,y)Pa(z,a)  for any x.

acdA
> fla,B)Palw, )Py, 8) = > [ Y fla,B)Pa(x,a)|Ps(y,B)
a€OA,B€OB BEOB acdA
= Z f(z,8)Pp(y,B). This implies
BEOB
fy)+ > fleB)Palx,a)Pp(y,8) = Y fla,y)Pa(w,a)
a€dA,fedB a€dA

+ > f(x,B)P5(y, B).
BE€0B
Hence, f(z,y) is balanced. [
Properties of balanced functions:

(1) If f, g are balanced on X x Y, then for non-negative numbers a, b, af +bg
is balanced.
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(2) If f, is a sequence of balanced functions and if f(x,y) = li_}rn fulz,y)

exists and is finite for every (x,y) in X x Y, then f is balanced.

Proof. Since each f, is balanced we have

fn($vy)+ Z fn( ﬂ)PA(x a)PB Y, B Z fn o,y PA(:E a)

a€0A,BeOB aclA

BeoB
Taking limits on both sides

Tim fo(z,y)+ lim Y fula, f)Pa(e,a)Ps(y, ) =

a€dA,BEOB

hm Z fnla,y)Pa(z, ) nll_)Holo Z In(z, B)PB(y, B).

> acoA BEOB

Since the sums are finite we can take the limits inside the sums

fley)+ Y. fle,B)Pa(z,a)Ps(y,8) = Y fla,y)Pa(x,a)
acdA,BEOB acdA
+ > f(x,B)P5(y, B).

Hence, f is balanced. [ peob

PROPOSITION 5.2. For a real valued function f(x,y) the following are
equivalent:
(1) f(x,y) is balanced.
(2) f(z,y) — > fla,y)Pa(z,a) = @(y) is a harmonic function in'Y for

fixed x. el
(3) f(z,y)— >. f(x,8)Pp(y,B) = ¥(x) is a harmonic function in X for
OB
fized y. e

Proof. Let f(z,y) be a balanced function in X x Y. Let us show that
©(y) is a harmonic function in Y for fixed z.

> eBPs(y,8) = Y [f(=B8) = > fla,B)Palw,a)Ps(y,B)
BedB BeoB aclA
= > f@B)Psy,8)— > fla,B)Palx,a)Pp(y,p)
BeoB a€dA,pe0B
= f(z,y) —Z fla,y)Pa(z, ) since f(x,y) is balanced
acdA

= »(y).
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Hence, ¢(y) is harmonic in Y for fixed . On the other hand, let ¢(y) be
harmonic in Y for fixed #. Then

— Y fleyy)Pam,a) = o(y) = D @(B)Pr(y,B)

acdA BEOB
= > [f@B) = > fla,B)Palz,a)Ps(y, B)
BeOB acdA
= > f@B)Ps(,8)— > fla,B)Pa(x,)Pp(y,B)
BEOB a€0A,BEIB

Hence, f(x,y) is balanced. Similarly we can prove the other equivalent condi-
tion. O

6. BALANCED SEPARATELY SUPERHARMONIC FUNCTIONS

Definition 6.1. A real valued function u(z,y) on X x Y is said to be
balanced separately superharmonic if and only if for any (z,y) in X x Y,
u(x,y) is separately superharmonic and

u(:v,y)—i— Z U(O‘?B)PA(xv a)PB(yHB) = Z u(a,y)PA(x,a)
«€OA,BEOB acdA
+ > u(z, 8)Ps(y, B)
BedB
Let B be the class of balanced separately superharmonic functions in
X x Y and let B denote the class of non-negative balanced separately super-
harmonic functions in X x Y. Then
(1) If f,g € B, then for non-negative numbers a, b the function af 4 bg € B.
(2) If v, € B and if v(x,y) = nh_)rrolo vn(x,y) exists and is finite for every (x,y)
in X x Y, then v € B.
(3) If u(z,y) € Bt and if u(xg,yo) = 0 for some (zg,yp) in X x Y, then
u = 0.
(4) There are some non-negative separately superharmonic functions in X x
Y that are not balanced.
Example. Let &, be the set of vertices in a hyperbolic network. Let G¢, (z)
be the Green potential in X with harmonic singularity at &, ( [1, Theorem

9]). Since Ge,(x) < Gg, (&), the function p(xz) = > 2%(%”((;:)) as a
n=1 s AST

convergent sum of potentials is a potential in X that is not harmonic at
any vertex in X. Hence, [p(z) — > p(a)Pa(z,a)] > 0 for any z € X.
a€0A

Similarly, let ¢(y) be a potential in Y which is not harmonic at any
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vertex in Y. Let u(x,y) = p(x)q(y) which is a separately superharmonic
function in X x Y.

Now,
[p(x) = Y pla)Palz, a)llg(y) = D> a(B)Ps(y,B)] >0
a€dA B€OB
so that
w(z,y)+ > u(e,B)Palz,a)Pp(y, 8) > X ula,y)Pa(z,a)
a€0A,BEIB acdA
+ ji: ulx 6 kayaﬁ)

BEOB
Hence, u(zr,y) is not a balanced function, that is u ¢ B™T.

LEMMA 6.2. Let u(x,y) be a non-negative balanced separately superhar-

monic function in X XY . Then the non-negative function (x,y) = >, u(a,y)
acdA
Py(z,«) is superharmonic in'Y for fized x and harmonic in X for fized y.

Proof. When y is fixed, u,(z) is superharmonic in X and ) u(«,y)
a€dA
Py (z, @) is the Poisson modification of u, () at the vertex x so that > u(a,y)
a€dA
Py(x,«) is harmonic at 2. On the other hand, for fixed z, and o ~ z, u(y) =
u(a,y) is superharmonic in Y and Pa(z,«) is a positive number. Hence,
u(a, y)Pa(z, ) is superharmonic in Y for fixed z and sois Y wu(a,y)Pa(z, a).
acdA
The lemma is proved. [

LEMMA 6.3. Let u(x,y) be a non-negative balanced separately superhar-

monic function in X x Y. Let o(x,y) =u(z,y) — > u(a,y)Pa(z,a). Then
a€0A
o(x,y) is non-negative superharmonic in X for fivred y and harmonic in'Y for

fized x.

Proof. By Proposition 5.2 ¢(z,y) is harmonic in Y for fixed . When y

is fixed u,(z) is superharmonic in X and by Lemma 6.2 ) u(a,y)Pa(z, ®)
a€lA

is harmonic at z. This implies ¢(z,y) is superharmonic at z for fixed y. Since

u(z,y) is superharmonic at z for fixed y, > wu(a,y)Pa(z, ) < u(z,y) so that

acdA
p(z,y) 20. 0O

LEMMA 6.4. Let u(z,y) be a non-negative balanced separately superhar-

monic function in X XY and let p(x,y) = u(z,y)— > u(a,y)Pa(x,a). Then
acdA
o(z,y) = h(x,y) + p(x,y) where h(x,y) is separately harmonic in X X Y; and

p(x,y) is harmonic in'Y for fired x and a potential in X for fized y.
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Proof. Since p(z,y) is a non-negative separately superharmonic function
in X x Y, by ([3, Theorem 3.3]) there exists a unique non-negative separately
harmonic function h(z,y) in X x Y such that h(x,y) < ¢(z,y); moreover,
h(z,y) is the greatest harmonic minorant of ¢(x,y) for fixed y. Thus, if we
write p(z,y) = h(x,y) + p(x,y), then p(x,y) > 0. Since for fixed y, h(x,y) is
the greatest harmonic minorant of p(z,y), p(z,y) is a potential in X for fixed
y; further for fixed z, ¢(x,y) and h(z,y) are harmonic in Y, so that p(x,y) is
harmonic in Y for fixed z. [

Let §1 be the family of non-negative separately harmonic functions in
X XY, §2 be the family of non-negative separately superharmonic functions
that are harmonic in X for fixed y and potentials in Y for fixed . Similarly
let §3 be the family of non-negative separately superharmonic functions that
are potentials in X for fixed y and harmonic in Y for fixed z.

THEOREM 6.5. BT =%, ® 32D 3.

Proof. Let u € BF. Then by Lemma 6.3 ¢(z,y) = u(z,y) — >, u(a,y)
a€dA
Py(z, ) is harmonic in Y for fixed z. Now by Lemma 6.4 u(x,y) = h(x,y) +

p(z,y) + > u(a,y)Pa(x, ) where h(x,y) is separately harmonic in X X Y;
acdA
and p(z,y) is harmonic in Y for fixed x and a potential in X for fixed y. Then

by Lemma 6.2 the non-negative function Y. wu(«,y)Pa(z,«) is superharmonic
acdA
in Y for fixed £ and harmonic in X for fixed y. As in Lemma 6.4 we have

> u(a,y)Pa(z, ) = hi(x,y) + q(z,y) where hi(x,y) is separately harmonic
a€dA
in X xY’; and ¢(x,y) is harmonic in X for fixed y and a potential in Y for fixed

z. Hence, u(z,y) = H(z,y)+q(z,y)+p(z,y) where H(z,y) = h(z,y)+hi(z,y).
The families §1, §2, §3 are mutually exclusive. For, suppose v(z,y) € §1 U F2
then v(z,y) is non-negative separately harmonic in X x Y and potential in Y
for fixed x. This cannot happen which implies §1 N F2 = ¢. Similarly we can
prove §2 NJ§3 = ¢ and §1 N Fz = ¢. Hence, the uniqueness. [

Let Ay and As be the minimal boundaries of X and Y respectively.

LEMMA 6.6. For any u € §2 there exists a unique measure i, on Ay for
each n €Y such that

u(e.9) = S [ hw)d (WG, )
nEYAl
for any (z,y) € X x Y.
Proof. Let u € §3. Then for fixed z, u(x,y) is a positive potential in Y.
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Hence, by ( [2, Theorem 3.3.1]) u(z,y) = > A ()G}, (y), where A*(n) > 0 is
ney
a constant for each n. Write

(1) u(z,y) = > Mz, n)G(y)
ney

For any fixed vertex in Y, u(x,y) is harmonic in X; hence

u(ey) = Y ula,y)Palz,a)

acdA
= Z Z Ma,n)G, (y)]Pa(x, «)
a€0A ney
(2) = Y [> Me,n)Pa(z, )]G (y)
ney acdA
Now for any n € Y, AMa,n) = A¥(n) is a non-negative constant. Hence,

> Mayn)Pa(z, ) is a non-negative constant for fixed x. Thus, for fixed
a€0A
x, the potential u”(y) has two series expansions ((1) and (2)). But the expan-

sion for a potential to be unique implies A(z,7n) = Z Ma,n)Pa(z, ). That
a€cd
is, for any n € Y, A(z,n) is harmonic in X and A(z,n) Z 0. By ( [2, Corollary

3.2.16]) there exists a unique measure p, on A; for each n € Y such that
u(e.s) = S [ By (WG (). ©
ney Ay

Remark. For any v € §3 there exists a unique Radon measure v¢ on A
for each £ € X such that

vy = 3| / W (y)dve ()]G ()
eex i
for any (x,y) € X x Y.

THEOREM 6.7. For every function in B, there exist a unique measure \
on A1 x Ay and two families of uniquely determined associated measures: {fu,}
on Ay for eachn €Y and {ve¢} on Ay for each & € X such that

uz,y) = [ W)W (y)dA(h, 1) + 32 [ [ h(@)dug ()]G (y)

Ay xAs neY Ay
+Z/ y)dve (h))Ge ().

€eX i,
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Proof. If u € BT, then by Theorem 6.5 u can be uniquely written as

u(z,y) = h(z,y) + p(x,y) + q(z,y) where h,p and ¢ belong to 1, §2, and Fs,
respectively. Then by ( [3, Theorem 5.6]), Lemma 6.6 and the above Remark
there exist a unique measure A on A; X Ay and two families of associated
measures uniquely determined: {yu,} on Ay for each n € Y and {r¢} on Ay for
each £ € X such that

u(z,y) = / B ()N ) + 3 / )dpiy ()]G (1)

A1 ><A2 UEYAl

+> / y)dve(W)])Ge(z). O

EEXA2
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