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Communicated by Vasile Br̂ınzănescu

We give an algorithm for the computation of the basic algebra Morita equivalent
to a skew group algebra of a path algebra by obtaining formulas for the number
of vertices and arrows of the new quiver Qb. We apply this algorithm to compute
the basic algebra corresponding to all simple quaternion actions.
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1. INTRODUCTION

Let Q = (Q0, Q1) be a finite and connected quiver, with Q0 denoting the
set of vertices and Q1 the set of arrows between them. Fix an algebraically
closed field k. Let kQ be the path algebra of the quiver Q and let G be a finite
group whose order is invertible in k.

Assume that the group G acts on kQ by permuting the set of primitive
idempotents {e ∈ Q0} and permuting the set of arrows Q1.

Consider the skew group algebra (kQ)G, that is an associative k-algebra
whose underlying k-vector space is spanned by elements of the form αg, with
α ∈ kQ and g ∈ G. The multiplication being defined by

αg · βh = αg(β)gh,

for all α, β ∈ kQ and g, h ∈ G. There is a significant amount of literature on
the study of skew group algebras, on the relationship between (kQ)G and kQ,
on structure and representation types of skew group algebras (see Funes [3])
and on which properties of kQ are inherited by (kQ)G (see for instance [1, 2]
and [4]).

In this article, we aim to describe the quiver Qb = ((Qb)0, (Qb)1) of the
basic algebra Morita equivalent to (kQ)G, under some assumptions on the
quiver Q.

A description of the basic algebra of a skew group algebra was first given
by Reiten and Riedtmann in [4] for the case of cyclic groups. The existence
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of an appropriate quiver Qb and a construction of it, in the general case, was
given by Demonet in 2010 (see [2]). Although, in principle, the question is
solved in [2], the article does not include a wider class of examples. The result
presented in this paper is algorithmic, hence gives a construction which is
easier to compute. We will apply this algorithm to compute the basic algebra
corresponding to all simple quaternion actions.

The drawback of our method is that it works under the following assump-
tion on the quiver Q:

Assume that one can choose a set of representatives of vertex orbits,
denoted by O, such that

(1) Q =
⋃

e,f∈O

⋃
α:e→f

Orb( e
α // f ).

From this point on, we assume that every quiver Q satisfies this condition.

The input of the algorithm we present is the skew group algebra (kQ)G
and the output is the quiver Qb = ((Qb)0, (Qb)1), where the basic algebra of
(kQ)G is the path algebra of the quiver Qb. Suppose Q satisfies condition 1,
then the algorithm is as follows.

ALGORITHM 1(Construction of the quiver Qb)
Step 1: According to condition 1, decompose

Q =
⋃

e,f∈O

⋃
α:e→f

Orb( e
α // f )

Step 2: Set Ge = StabG(e), to be the stabilizer subgroup of e ∈ O.
Step 3: Calculate Irr(Ge) a set of primitive orthogonal idempotents of the
group algebra kGe, for each e ∈ O.
Step 4:{

For: each e ∈ O and for each ρ ∈ Irr(Ge)
Do: add a vertex to (Qb)0 labeled by eρ.

Step 5:

For: each pair (not necessarily distinct) e, f ∈ O

Do:


For: each orbit of arrows (in Q) Orb( e

α // f )

Do: add as many arrows (in Qb) from eρ to fσ as the
dimension of

〈eρα′fσ| α′ ∈ OrbGe∩Gf
( e

α // f )〉k.

If in addition to condition 1 we assume that stabilizing the source and
target of an arrow, also stabilizes the arrow, or in other words, one can choose



3 Algorithm to construct the basic algebra 405

a set of representatives of vertex orbits, denoted by O, such that

(2) Q =
⋃

e,f∈O
Orb( e

α // f ),

the above algorithm can be distilled to the following theorem.

Theorem 1.1. Suppose Q satisfies condition 2, then the basic algebra of
(kQ)G is the path algebra of the quiver Qb, where the set of vertices (Qb)0 can
be labeled by the elements of ⋃

e∈O

⋃
ρ∈Irr(Ge)

eρ.

Moreover for a pair eρ ∈ Irr(Ge) and fσ ∈ Irr(Gf ) and for every orbit of arrows

Orb( e
α // f ), there is an arrow in Qb between the vertices labeled by eρ and

fσ if and only if

iG(IndGGe
(eρ(kGe)), IndGGf

(fσ(kGf ))) 6= 0.

Here IndGGe
stands for the induction functor from modules over kGe to

modules over kG and iG stands for the intertwining number of the two kG-
modules. We recall that if V and W are two modules of the group algebra kG
the intertwining number of them (considered as kG-modules) is defined by

iG(V,W ) = dimkHomkG(V,W ).

Remark 1.2. We would like to mention, that the formula defining the
number of arrows in the above theorem although it seems complicated at the
first glance, it is easy to calculate with, since we have that (see the proof of
Theorem 1.1)

iG(IndGGe
(eρ(kGe)), IndGGf

(fσ(kGf ))) 6= 0,

if and only if eρ · fσ is non-zero in the group algebra kG.

This paper is organized as follows. In Section 2, we give the proofs of
Algorithm 1 and Theorem 1.1. In Section 3, we deal with some examples
that exist in the literature (see [4]), and we will see that conditions 1 and 2
are not so restrictive as they seem, but rather allow a wide range of useful
examples. Finally, in Section 4, we apply our method to compute the basic
algebra corresponding to all simple quaternion actions.

Our notation is standard, and for general notions and results we refer the
reader to [1].
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2. PROOF OF ALGORITHM 1 AND THEOREM 1.1

Let kQ0 be the subalgebra of kQ generated by the primitive idempotents,
and let kQ1 ⊂ kQ be the linear subspace spanned by the arrows, regarded as
a kQ0-bimodule. Consider the tensor algebra

T (kQ0, kQ1) =
⊕
i≥0

Ti,

endowed with the canonical product, where T0 = kQ0, and for every n ∈ N,
Tn = Tn−1 ⊗kQ0 kQ1. It is well known that kQ is canonically isomorphic to
T (kQ0, kQ1), on which the action of G is graded. By [2] we have that

(kQ)G ∼= T (kQ0, kQ1)G ∼= T ((kQ0)G, (kQ1)G).

This isomorphism allows us to compute the basic algebra of (kQ0)G and
(kQ1)G separately.

We will start by determining the basic algebra of (kQ0)G. Take two

representatives e, f ∈ O of vertex orbits and an orbit of arrows Orb( e
α // f )

between them. The following construction must be done for each pair (not
necessarily distinct) of vertex orbits (e, f ∈ O) and each orbit of arrows between
them.

By [4, Prop. 1.6] we have that (kOrb(e))G is Morita equivalent to kGe.
It follows that the quiver corresponding to the basic algebra of (kOrb(e))G has
as many vertices as the quiver of the basic algebra of the group algebra kGe,
which we know in general that is equal to the number of conjugacy classes of
Ge, or in other words the number of irreducible representations of Ge, namely
|Irr(Ge)|. Therefore, the vertices of Qb can be labeled by

(Qb)0 =
⋃
e∈O

⋃
ρ∈Irr(Ge)

eρ.

We continue by determining the basic algebra of (kQ1)G. For this, we
have to calculate the number of arrows from the vertices {eρ, ρ ∈ Irr(Ge)} to
{fσ, σ ∈ Irr(Gf )}.

Let

{ge,ρ ∈ kGe, ρ ∈ Irr(Ge)}
and

{gf,σ ∈ kGf , σ ∈ Irr(Gf )}

be complete sets of primitive orthogonal idempotents of the group algebras
kGe and kGf . Then we have that

{ege,ρ ∈ (kOrb(e))G, ρ ∈ Irr(Ge)}
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and
{fgf,σ ∈ (kOrb(f))G, σ ∈ Irr(Gf )}

will be the corresponding sets of primitive idempotents of (kOrb(e))G and
(kOrb(f))G.

In a similar fashion as in [2, 3.1] or [4, Prop 1.6], in order to determine

the basic algebra corresponding to (kOrb( e
α // f ))G, we have to determine

i(kOrb(α))i, where

i =
∑

ρ∈Irr(Ge)

ege,ρ +
∑

σ∈Irr(Gf )

fgf,σ.

Expanding the above expression we get

i(kOrb(α))i = 〈ege,ρg(α)fgf,σ, g ∈ G, ρ ∈ Irr(Ge), σ ∈ Irr(Gf )〉k.

Suppose that a generator ege,ρg(α)fgf,σ, of the space above, is non zero,
then we must have that

g(α) : g(e)→ f,

so g(f) = f , which means that g ∈ Gf and moreover, we get that (ge,ρg)(e) = e.
One should remember that ge,ρ ∈ kGe, so it follows that g(e) = e. We can
conclude that

g ∈ Ge ∩Gf .

Putting all these together, we get that

i(kOrb(α))i = 〈ge,ρα′gf,σ, α′ ∈ OrbGe∩Gf
(α), ρ ∈ Irr(Ge), σ ∈ Irr(Gf )〉k.

Thus for every orbit Orb( e
α // f ), the number of arrows in Qb from

the vertex labeled by eρ to the vertex labeled by fσ is equal to the dimension
of the space

〈ge,ρα′gf,σ 6= 0, α′ ∈ OrbGe∩Gf
(α)〉k.

This completes the proof of Algorithm 1.

We now assume that Q satisfies condition 2 and we proceed with the
proof of Theorem 1.1.

We step back to the conclusion that g ∈ Ge ∩ Gf . Then by condition 2,
we have that g(α) must be equal to α and that ge,ρ(α) 6= 0 for any ρ ∈ Irr(Ge).
So we get that

i(kOrb(α))i = 〈ge,ρ(α) · (ge,ρgf,σ), ρ ∈ Irr(Ge), σ ∈ Irr(Gf )〉k.

This means that there is exactly one arrow between the vertex labeled by
eρ to the vertex labeled by fσ if and only if

ge,ρgf,σ 6= 0.
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So our problem reduces to determining whether the product of two idem-
potents is zero or not. This is equivalent to the question whether the cor-
responding induced kG-modules IndGGe

(ge,ρkGe) and IndGGf
(gf,σkGf ) have or

do not have common direct summands, since if they have a common direct
summand (as kG-modules), then there exists a nonzero element

w ∈ IndGGe
(ge,ρkGe) ∩ IndGGf

(gf,σkGf ),

such that

ge,ρ · v1 = w = gf,σ · v2,

for some nonzero v1 ∈ IndGGe
(ge,ρkGe) and v2 ∈ IndGGf

(gf,σkGf ). Then by
multiplying from the left by ge,ρ, we get

0 6= v1 = ge,ρ · w = (ge,ρgf,σ)v2,

so the product is nonzero.

To test whether two kG-modules share direct summands, one should con-
sider the intertwining number of them iG, that is the k-dimension of the space
of kG-homomorphisms between them. Now if we assume that ge,ρ · gf,ρ = 0,
then the two induced modules share no common summands, so we have that

iG

(
IndGGe

ge,ρkGe, IndGGf
gf,σkGf

)
= 0.

Otherwise, if their product is nonzero, then by the Frobenius reciprocity, we
get that

iG

(
IndGGe

ge,ρkGe, IndGGf
gf,σkGf

)
= iG

(
ge,ρkGe,ResGGe

IndGGf
gf,σkGf

)
= 1,

since each term is considered as kGe-modules and ge,ρkGe is an irreducible
kGe-module. Putting all together we have the following formula:

iG

(
IndGGe

ge,ρkGe, IndGGf
gf,σkGf

)
=

{
0, if ge,ρ · gf,σ = 0;
1, if ge,ρ · gf,σ 6= 0

And this completes the proof of Theorem 1.1.

3. EXAMPLES OF THE BASIC ALGEBRA CONSTRUCTION

In this section, we will present examples of the basic algebra construction
given by Algorithm 1 and Theorem 1.1. First we reconsider an existing example
of determining the basic algebra of a path algebra, to compare the classical
results with the ones presented in this paper. This example corresponds to the
one treated by Reiten and Riedtmann in [4, 2.6]. One can observe that the
two results agree.
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Example 3.1. Suppose k is an algebraically closed field and let Q be the
following quiver

f2 f1

e

RR
ll 22

LL

rr
�� ��

,,f3 f4

and let D8 = 〈r, t | r4 = t2 = 1, rtr = t〉 be the dihedral group of order 8 acting
on the quiver in a natural way, i.e. r being the anticlockwise rotation by π/2
and t the reflection fixing f1. One can easily check that Q satisfies condition 2.

We have two orbits of vertices Orb(e) = {e} and Orb(f1) = {f1, f2, f3, f4}
and two orbits of arrows. For Orb(e) we have that the stabilizing subgroup is
the hole group Ge = D8. Consider the following set of five primitive orthogonal
idempotents of the group algebra kD8:

ε1 = (1 + r + r2 + r3)(1− t)/8,
ε2 = (1 + r + r2 + r3)(1 + t)/8,
ε3 = (1− r + r2 − r3)(1 + t)/8,
ε4 = (1− r + r2 − r3 − t+ rt− r2t+ r3t)/8,
ε5 = (1− r2)/8.

For Orb(f1) the stabilizer is Gf1 = {1, t}. The corresponding group
algebra has the following set of two primitive orthogonal idempotents:{

η1 = (1 + t)/2,
η2 = (1− t)/2.

Now counting all the nonzero products of the form εi · ηj , we get the arrows
from the εi-s to the ηj-s. A total of 6 arrows for each orbit of edges, that is a
total of 12 arrows in Qb. Putting all together we get that the quiver Qb of the
basic algebra Morita equivalent to (kQ)D8 is the following

ε1

##,,

ε2

��''

ε5

��''ww��

ε3

ww��

ε4

rr{{η1 η2

We want to remark here that the above construction easily generalizes to
any dihedral group Dn and corresponding quiver Q and we get the same result
as in [4, 2.6] for the general case.
The next example shows how our construction works in the case of a trivial
action.
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Remark 3.2. If G acts trivially, then any quiver Q satisfies condition 2.

Example 3.3. Suppose k is an algebraically closed field and let Q be the
following quiver

eα
$$

β
zz

Let G be a finite group acting on Q trivially, whose order is invertible in k.
Then we have one orbit of vertices Orb(e) = {e} and two orbits of arrows
Orb(α) = {α} and Orb(β) = {β}. The hole group G stabilizes e. Suppose that

Irr(G) = {ε1, ..., εn},

where n is the number of conjugacy classes of G. We also have that

iG(eεi(kG), eεj(kG)) 6= 0

if and only if i = j. So in Qb we get one arrow from εi to εi for each orbit of
edges, that is two self-pointing arrows for each εi.
Putting all together, we get that Qb has the following form.

ε1
%% yy

ε2
%% yy

... εn
%% yy

Our next example shows how our construction distinguish between dif-
ferent orbits of arrows.

Example 3.4. Consider the quivers Q :

e1 // f1

e2 // f2

e3 // f3

and Q′ :

e1

��

��

f1

e2

??

��

f2

e3

??

GG

f3
with the permutation group on three letters S3 acting by permuting vertices
e1, e2 and e3 on the one hand, and f1, f2 and f3 on the other hand. Both
quivers satisfy condition 2 and they have the following orbit decompositions
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Q = Orb( e1 // f1 ) and Q′ = Orb( e1 // f2 ), corresponding to the re-
quirements of condition 2. For Q we have that

StabS3(e1) = StabS3(f1) = {(1), (2, 3)} ∼= Z2.

We denote by {ε1, ε2} the set of orthogonal idempotents of the group algebra
of StabS3(e1) and by {η1, η2} the set of orthogonal idempotents of the group
algebra of StabS3(f1). More precisely we have{

ε1 = η1 = ((1) + (2, 3))/2;
ε2 = η2 = ((1)− (2, 3))/2.

There is one orbit of arrows from {e1, e2, e3} to {f1, f2, f3}. Now counting all
the nonzero products of the form εi · ηj , we get the arrows from the εi-s to the
ηj-s. Hence Qb has the following form.

ε1 // η1

ε2 // η2

For Q′ we have that

StabS3(e1) = StabS3(f1) = {(1), (1, 3)} ∼= Z2.

We denote by {ε1, ε2} the set of orthogonal idempotents of the group algebra
of StabS3(e1) and by {η1, η2} the set of orthogonal idempotents of the group
algebra of StabS3(f1). More precisely, we have{

ε1 = ((1) + (2, 3))/2;
ε2 = ((1)− (2, 3))/2.

and {
η1 = ((1) + (1, 3))/2;
η2 = ((1)− (1, 3))/2.

There is one orbit of arrows from {e1, e2, e3} to {f1, f2, f3}. Now counting all
the nonzero products of the form εi · ηj , we get the arrows from the εi-s to the
ηj-s. Hence Q′b has the following form.

ε1

  

// η1

ε2

>>

// η2
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4. THE QUATERNION ACTION

In the following section, we deal with all possible simple settings for the
quiver Q under condition 2 in the case when the action of the group is given
by the quaternion group. We define the quaternion group to be

Q8 = {1, 1, I, I, J, J, K, K},

satisfying the relations 1
2

= 1 and I2 = j2 = K2 = IJK = 1. In the following
sequence of examples each quiver will have two orbits of vertices and one orbit
of arrows between these two. By the Orbit-Stabilizer theorem the possible
cardinalities for the vertex orbits are 1, 2, 4 and 8. We will deal with these
possible combinations.

Example 4.1. Suppose k is an algebraically closed field with characteristic
not equal to two and let Q be the following quiver

f1

e1

α
>>

β   
f2

Let Q8 be the quaternion group, as defined above, acting on the quiver Q
by stabilizing e1 and elements J and K permuting the vertices f1 and f2.
We have two orbits of vertices Orb(e1) and Orb(f1) and one orbit of arrows
Orb(α) We follow the steps of Algorithm 1. For Orb(e1) we have that the
stabilizing subgroup is the hole group Q8. Let us consider the following set of
five primitive orthogonal idempotents of the group algebra kQ8:

ẽ1 = (1 + 1 + I + I + J + J +K +K)/8,

ẽ2 = (1 + 1 + I + I − J − J −K −K)/8,

ẽ3 = (1 + 1− I − I + J + J −K −K)/8,

ẽ4 = (1 + 1− I − I − J − J +K +K)/8,
ẽ5 = (1− 1)/2.

For Orb(f1) the stabilizer is {1, 1, I, I}, isomorphic to Z4. The corresponding
group algebra has the following set of two primitive orthogonal idempotents:

f̃1 = (1 + I + 1 + I)/4,

f̃2 = (1 + i · I − 1− i · I)/4,

f̃3 = (1− I + 1− I)/4,

f̃4 = (1− i · I − 1 + i · I)/4.
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Here i is a 4th root of unity. So we get that the quiver of the basic algebra
Morita equivalent to the skew group algebra (kQ)Q8 has as vertices ẽ1, ..., ẽ5
and f̃1, ..., f̃4 and there is an arrow from ẽi to f̃j if and only if ẽif̃j 6= 0 in the
group algebra kQ8. Now counting these nonzero products of idempotents we
get the following quiver (Q)b.

ẽ1 // f̃1

ẽ2

@@

f̃2

ẽ5

GG

??

��

��

ẽ3

��

f̃4

ẽ4 // f̃3

Example 4.2. Suppose k is an algebraically closed field with characteristic
not equal to two and let Q be the quiver

g1

g2

e1

α

FF

β

>>

γ

  
δ

��

g3

g4

.

Now Q8 is acting on the quiver Q by stabilizing e1 and permuting the gi-
s in the following way: I = (g1, g2)(g3, g4), J = (g1, g3)(g2, g4) and K =
(g1, g4)(g2, g3). Then again we have two orbits of vertices and one orbit of
arrows. The stabilizer Stab(e1) is again the hole group and we take the same
set of primitive orthogonal idempotents as in Example 4.1. The stabilizer
Stab(g1) is {1, 1}, isomorphic to Z2, hence a suitable set of idempotents for its
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group algebra is {
g̃1 = (1 + 1)/2,
g̃2 = (1− 1)/2.

The vertices of the new quiver Qb will be labeled by ẽ1, ..., ẽ5 and by g̃1, g̃2. We
draw an arrow from ẽi to g̃j if and only if ẽi · g̃j 6= 0 in the group algebra kQ8.
Counting the corresponding nonzero products we get that (kQ)Q8 is Morita
equivalent to the path algebra of the following quiver.

ẽ1

��

ẽ2

��
g̃1 ẽ5oo // g̃2

ẽ3

__

ẽ4

WW

The next example covers the cases when the size of one of the orbits is
exactly 8. In this case the stabilizer is only the identity, resulting only the
trivial idempotent, hence none of the expected arrows will become zero in the
arrow calculation process. We will deal with the case when the second orbit
consists of one element, but the same calculations can be carried out when the
size of the second orbit is 2, 4 or 8.

Example 4.3. Suppose k is an algebraically closed field with characteristic
not equal to two and let Q be the following quiver

h1 h2 h3 h4 h5 h6 h7 h8

e1

kk jj hh `` >> 66 44 33

By Cayley’s theorem Q8 can be embedded to the group of permutations on 8
letters h1, ..., h8, then the group is generated by

I = (h1, h3, h2, h4)(h5, h7, h6, h8),
J = (h1, h5, h2, h6)(h3, h8, h4, h7),
K = (h1, h7, h2, h8)(h3, h5, h4, h6).
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Now we take the action to be the natural one with respect to the above men-
tioned embedding, namely Q8 stabilizes e1 and permutes h1, ..., h8 in the above
way. Now we proceed by the steps of Theorem 1.1. The stabilizer Stab(e1) is
again the whole group and we take the same set of primitive orthogonal idem-
potents as in Example 4.1. The stabilizer Stab(h1) is just the identity. The
vertices of the new quiver Qb will be labeled by ẽ1, ..., ẽ5 and by h̃1. Now each
product of idempotents ẽi · h̃1 is non-zero, so we draw one arrow from each ẽi
to h̃1. As expected Qb is the following quiver.

h̃1

ẽ1

77

ẽ2

??

ẽ3

OO

ẽ4

__

ẽ5

gg

Example 4.4. Suppose k is an algebraically closed field with characteristic
not equal to two and consider the following quiver Q.

g1 g2 g3 g4

f1

`` >>

f2

`` >>

The action of Q8 on the g1, ..., g4 is the same as in Example 4.2 and the ac-
tion on f1, f2 is the same as in Example 4.1. The stabilizer Stab(g1) is {1, 1},
isomorphic to Z2, and we take the same set of idempotents g̃1, g̃2 as in Exam-
ple 4.2. The stabilizer Stab(f1) is {1, 1, I, I}, isomorphic to Z4. For this we
take the same set of idempotents f̃1, ..., f̃4 as in Example 4.1. The vertices of
the new quiver Q8 are labeled by f̃1, ..., f̃4 and by g̃1, g̃2. We draw an arrow
from f̃i to g̃j if and only if fi · gj 6= 0 in kQ8. We get that Qb is the following
quiver.

g̃1 g̃2

f̃1

??

f̃2

77

f̃3

gg

f̃4

__

As seen in the above example, if all the stabilizer subgroups are cyclic,
then we get that the number of vertices in Qb, corresponding to one orbit of
vertices, is exactly the cardinality of that stabilizer, since |Irr(Zn)| = n. We
also get that if one of the stabilizers is isomorphic to Zn and the other one is
isomorphic to Zm, then (for each arrow orbit) the total number of arrows in
the new quiver Qb between the two corresponding orbits is exactly the least
common multiple of n and m. This phenomenon was already shows by Reiten
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and Riedtmann in [4, 2.3]. So our result is indeed a direct generalization of the
aforementioned one.
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