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Somos sequences are sequences of rational numbers defined by a bilinear re-
currence relation. Remarkably, although the recurrences describing the Somos
sequences are rational, some Somos sequences turn out to have only integer
terms. In this paper, a family of Somos 4 sequences is given and it is proved
that all Somos 4 sequences associated to Tate normal forms with h−1 = ± 1
consist entirely of integers for n ≥ 0. It is also shown that there are infinitely
many squares and infinitely many cubes in Somos 4 sequences associated to Tate
normal forms.
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1. INTRODUCTION

For an integer k ≥ 4, a Somos k sequence is a sequence (hn) which satisfies
the recurrence relation

(1) hnhn−k =

bk/2c∑
i=1

τihn−ihn−k+i, for n ∈ Z

where the coefficients τi and the initial values h0, ..., hk−1 are given integers.
Especially, a Somos(k) sequence is a sequence whose coefficients and initial
values are all equal to 1. These sequences were named after Micheal Somos.
He first introduced the sequence Somos(6) which begins

1, 1, 1, 1, 1, 1, 3, 5, 9, 23, 75, ...

and observed that the terms of the sequence consist entirely of integers even
though the terms are obtained from a rational recursion, see [19] for more
details.

Note that the recurrences describing the Somos sequences involve divi-
sions by another term. It is clear that these sequences turn out to have rational
terms. The surprising fact is that there are sequences which contain only inte-
ger terms. Indeed, the Somos(k) sequences have only integer terms for k ≤ 7
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but not for k = 8 [6, 26]. The question of when a Somos sequence has only
integer terms has received much attention in the literature [5–7, 13, 16]. Some
history about the integrality properties of these sequences can be found in [6,7].
Gale also mentioned that there are many families of Somos sequences that
appear to have only integer terms.

In this work, we are interested in Somos 4 sequences which satisfy a
recurrence relation of the form

(2) hn+2hn−2 = τ1hn+1hn−1 + τ2h
2
n, for n ∈ Z

where τ1, τ2 are given integers. These sequences are generalisations of elliptic
divisibility sequences (EDSs) which were first introduced by M. Ward [30]. He
also showed that the terms of EDSs consist entirely of integers if the sequence
begins 1, h2, h3, h2c, ...(h2, h3, c ∈ Z). For more details see [4, 30].

In [26], Robinson was interested in the properties of the Somos(4) se-
quence reduced modulo a prime power pr where r ≥ 1. Swart [29] extended his
results to Somos 4 sequences and proved some of his conjectures. In particu-
lar, Somos 4 sequences are quite interesting because of the close relation with
elliptic curves. In fact, Somos 4 sequences with the first coefficient square can
be expressed in terms of the x-coordinates of the points (xn, yn) = Q + nP
where P = (0, 0) and Q = (x, y) is a suitable point on an elliptic curve. Somos
4 sequences are also closely related to cluster algebras [5], to integrable sys-
tems [12] and to continued fractions [20,21]. Fomin and Zelevinsky [5] used the
theory of cluster algebras to prove that all elements of the Somos 4 sequences
are Laurent polynomials, i.e.,

hn ∈ Z[τ1, τ2, h
±1
1 , h±12 , h±13 , h±14 ]

for all n ∈ Z. Hone and Swart [13] extended the known results on integrality of
Somos 4 sequences. They used the relation between Somos 4 sequences and se-
quences of points on elliptic curves. This gave a stronger Laurent phenomenon
for Somos 4 sequences. Hence they obtained integrality results for Somos 4
sequences.

In this paper, using the Tate normal form having one parameter α ∈ Z
of elliptic curves with torsion points, a family of Somos 4 sequences is given
by means of Mazur’s theorem. It is shown that all elements of the Somos
4 sequences associated to Tate normal forms with h−1 = ± 1 are elements
of the ring of polynomials in x, y, α and h0 with integral coefficients, i.e.,
hn ∈ Z[x, y, α, h0] for all n ≥ 0.

Our first main theorem shows that all Somos 4 sequences associated to
Tate normal forms with h−1 = ± 1 consist entirely of integers for n ≥ 0.
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Theorem 1. Let EN denote a Tate normal form of an elliptic curve
having integral points P = (0, 0) and Q = (x, y) with P torsion point of
maximal order N and Q+ nP 6= O for all n ∈ Z. Let (hn) denote a Somos 4
sequence associated to a Tate normal form with h−1 = ± 1. Then the Somos
4 sequence (hn) consists entirely of integers for n ≥ 0.

The question of when a term of a Lucas sequence can be square has
generated interest in the literature [1, 2, 24, 25]. Similar results concerning
cubes were also obtained for specific sequences such as Fibonacci, Lucas and
Pell numbers [18, 23]. It has been proved that the only perfect powers in the
Fibonnaci sequence are 1, 8 and 144 [3]. Authors wrote many papers when
a term of an integer sequence generated by linear recurrence can be a perfect
power. However, not so much is known about nonlinear recurrence sequences.
In [9, 10], we describe when a term of an elliptic divisibility sequence can be
a square or a cube, if one of the first six terms is zero. We [11] extended
these results to elliptic divisibility sequences associated to Tate normal forms.
Reynolds [22] showed that there are finitely many perfect powers in an elliptic
divisibility sequence whose first term is divisible by 2 or 3. The following
question arises: Are there finitely or infinitely many squares (perfect powers)
in a Somos 4 sequence?

In the second main theorem we gave a partial answer to this question:
There are infinitely many squares and infinitely many cubes in Somos 4 se-
quences associated to Tate normal forms.

Theorem 2. Let EN denote a Tate normal form of an elliptic curve
and let P , Q be points as defined in Theorem 1.1. Let (hn) denote a Somos 4
sequence associated to a Tate normal form with h−1 = ± 1. There are infinitely
many squares and infinitely many cubes in (hn).

In Lemma 3.1, we give explicit formulas for the terms of hn in terms of
x, y, α, h−1, h0. Theorem 1.1 and Theorem 1.2 are proven by using these
formulas.

2. SOME PRELIMINARIES

Let E denote an elliptic curve given by a Weierstrass equation

(3) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients a1, ..., a6 in Q. Let E(Q) denote the set of rational points on
E together with a point O, called the point at infinity. The set E(Q) forms
an abelian group, with the point at infinity as the identity. For more details
on elliptic curves in general, see [27, 28]. One of the most important theorems
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in the theory of elliptic curves is the Mordell-Weil theorem, which implies
that, if K is a number field containing Q, then E(K) is a finitely generated
abelian group. Also, the Mordell-Weil theorem shows that Etors(K), the torsion
subgroup of E(K), is finitely generated and abelian, hence it is finite, since its
generators are of finite order. It is always interesting to characterize the torsion
subgroup of a given elliptic curve. The question of a uniform bound on Etors(Q)
was studied from the point of view of modular curves by Shimura, Ogg, and
others. In 1976, B. Mazur proved the following strongest result which had been
conjectured by Ogg:

Theorem 3 (Mazur [17]). Let E be an elliptic curve defined over Q.
Then the torsion subgroup Etors(Q) is either isomorphic to Z/NZ for N =
1, 2, ..., 10, 12 or to Z/2Z × Z/2NZ for N = 1, 2, 3, 4. Further, each of these
groups does occur as an Etors(Q).

It is well known that all elliptic curves with a torsion point of order N lie
in one parameter family where N ∈ {4, ..., 10, 12}. The Tate normal form of
an elliptic curve E with a torsion point P = (0, 0) is defined by

EN : y2 + (1− c)xy − by = x3 − bx2.

If an elliptic curve in Weierstrass form has a point of order N > 3, then
there is an admissible change of variables that transforms the curve to the Tate
normal form. In this case the point P = (0, 0) is a torsion point of maximal
order. Especially, if we want a classification with respect to the order of the
torsion points, the use of Tate normal form of elliptic curves is unavoidable.

In [15], Kubert listed one parameter family of elliptic curves E defined
over Q with a torsion point of order N where N = 4, ..., 10, 12. Most cases can
be found in [14]. Also some algorithms are given by using the existence of such
a family [8]. To decide when an elliptic curve defined over Q has a point of
given order N , we need a result on parametrization of torsion structures:

Theorem 4 ([8]). Every elliptic curve with a point P of order N = 4,
..., 10, 12 can be written in the following Tate normal form

EN : y2 + (1− c)xy − by = x3 − bx2,

with the following relations:
1. If N = 4, b = α, c = 0.
2. If N = 5, b = α, c = α.
3. If N = 6, b = α+ α2, c = α.
4. If N = 7, b = α3 − α2, c = α2 − α.
5. If N = 8, b = (2α− 1)(α− 1), c = b/α.
6. If N = 9, c = α2(α− 1), b = c(α(α− 1) + 1).
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7. If N = 10, c = (2α3 − 3α2 + α)/(α− (α− 1)2), b = cα2/(α− (α− 1)2).
8. If N = 12, c = (3α2−3α+1)(α−2α2)/(α−1)3, b = c(−2α2+2α−1)/(α−1).

Theorem 2.2 states that, if any elliptic curve has a point of finite order
then this curve is birationally equivalent to one of the Tate normal forms given
in the theorem above. Therefore, in this work, we are only interested in the
elliptic curves in Tate normal forms with one parameter α ∈ Z.

The relation between an elliptic curve and a Somos 4 sequence is estab-
lished independently by N. Elkies (for more details see [19]) and N. Stephens.
In [29], some unpublished works of N. Stephens are given. See also [12] for a
different approach.

Let P = (0, 0) and Q = (x, y) be integral points on E as in Theorem 1.1.
Then the terms of Somos 4 sequence (hn) can be defined as follows: Let h−1
and h0 arbitrary non-zero integers and

(4) hn+1 = −xnh
2
n

hn−1

for all n ≥ 0 (see [29] for more details). The following result due to Nelson
Stephens.

Theorem 5 ([29]). Let E denote an elliptic curve given by a Weierstrass
equation

(5) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x

with integral coefficients a1, ..., a4. Let P = (0, 0) and Q = (x, y) be integral
points on E such that Q + nP 6= O for all n ∈ Z and write Q + nP = (xn,
yn). Then the coefficients τ1, τ2 and the initial values of the Somos 4 sequence
associated to the elliptic curve E given by

τ1 = a23, τ2 = a4(a4 + a1a3)− a23a2
and h−1and h0 arbitrary non-zero integers,

h1 = −xh20/h−1, h2 = −(a4x− a3y)h30/h
2
−1.

Let EN denote a Tate normal form of an elliptic curve E with a point P of
order N . We can use EN to give general terms of associated Somos 4 sequences.
In Theorem 2.3 we assume that the coefficients of EN are chosen to lie in Z.
However for N = 8, 10 or 12, EN has rational coefficients. In these cases,
we transform EN into a birationally equivalent curve E′N having an equation
with integral coefficients. The equations of the birationally equivalent curves
for N = 8, 10 or 12 are given as follows.

E′8 : y2+(α− β)xy − α3βy = x3−α2βx2,(6)
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E′10 : y2+(ζ2−αβζ)xy − α3βζ4y = x3−α3βζ2x2,(7)

E′12 : y2+(α− 1)((α− 1)3−λ)xy − (α− 1)8λθy = x3−(α− 1)4λθx2,(8)

where

β = (2α− 1)(α− 1),

ζ = α− (α− 1)2,(9)

λ = (3α2 − 3α+ 1)(α− 2α2),

θ = 2α− 2α2 − 1.

From now on, for simplicity of notation, we continue to write E8, E10, E12 for
E′8, E

′
10, E

′
12, respectively.

3. PROOF OF THEOREM 1.1

Let P and Q be points as in Theorem 1.1, and let h−1, h0 be arbitrary
non-zero integers. Let β, ζ, λ, θ be as in (2.7) and let

γ = α2(α− 1)(α2 − α+ 1).

We present below all the initial values h1, h2 and the coefficients τ1, τ2 of the
Somos 4 sequences associated to EN by using Theorem 2.3.

Table 1

The values τ1, τ2, h1 and h2

N τ1 τ2 h1 h2

4 α2 α3 −xh−1
−1h

2
0 −αyh−2

−1h
3
0

5 α2 α3 −xh−1
−1h

2
0 −αyh−2

−1h
3
0

6 α2(α+ 1)2 α3(α+ 1)3 −xh−1
−1h

2
0 −α(α+ 1)yh−2

−1h
3
0

7 α4(α− 1)2 α6(α− 1)3 −xh−1
−1h

2
0 −α2(α− 1)yh−2

−1h
3
0

8 α6β2 α8β3 −xh−1
−1h

2
0 −α3βyh−2

−1h
3
0

9 γ2 γ3 −xh−1
−1h

2
0 −γyh−2

−1h
3
0

10 α6β2ζ8 α9β3ζ10 −xh−1
−1h

2
0 −α3βζ4yh−2

−1h
3
0

12 (α− 1)16λ2θ2 (α− 1)20λ3θ3 −xh−1
−1h

2
0 −(α− 1)8λθyh−2

−1h
3
0

We consider only the case N = 8. The remaining cases can be dealt with
similarly. If N = 8 then the coefficients τ1, τ2 and the initial values h1, h2 of
the Somos 4 sequences associated to E8 are

τ1 = α6β2, τ2 = α8β3

and
h1 = −xh20/h−1, h2 = −α3βyh30/h

2
−1

as shown in Table 1. Using the relation (2) we obtain

h3 = α8β3(x2 − αy)h40/h
3
−1,
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h4 = −α14β5(x3 − αxy − y2)h50/h4−1,
and

(10) h5 = −α23β8(αβx4 + x3y − 2α2βx2y − αxy2 + α3βy2 − y3)h60/xh5−1.

Note that both h3 and h4 ∈ Z[α, x, y, h±1−1, h0], but h5 /∈ Z[α, x, y, h±1−1, h0] since
x appears in the denominator of h5. Now using the equation (6) we see that x
divides the numerator of h5. The equation (10) may therefore be rewritten as

h5 = −α23β9(αx3 − α2xy − y2)h60/h5−1.

Similarly using equation (2) we find that

h6 = α33β12(−x6 + α2βx5 + 2αx4y + 2x3y2 − 2α3βx3y − αβx2y2(11)

−α2x2y2 + α4βxy2 − 2αxy3 + α2βy3 − y4)h70/yh6−1.

In this case, the value y appears in the denominator of h6. Now applying (6)
to (11), we obtain

h6 = α33β13(α2βx3 + (α2 − α− β)x2y − α3βxy − (α3 − α2)y2)h70/h
6
−1.

In the same manner we see that

h7 = −α45β18((α4β − α5β)x3 + (α4 − α3 + α3β − 2α2β)x2y − (α3 − α2

−β)xy2 + (α6β − α5β)xy − (α5 − α4 − α3β)y2)h80/h
7
−1.

Now since P is a point of order 8 every subsequent term of the sequence
can be expressed as products of the previous 9 terms. Thus, the general term
of the Somos 4 sequence associated to E8 can be given as

hn = εα{(15n
2−p)/16}(α− 1){(7n

2−6n−q)/16}(2α− 1){(3n
2−r)/8}(12)

×P8(α, x, y)[Q8(α, x, y)]{(n−m)/8}h−n−1h
n+1
0 ;

where

ε =

{
+1 if n ≡ 0, 3, 6, 8, 9, 13, 14, 15 (16)
−1 if n ≡ 1, 2, 4, 5, 7, 10, 11, 12 (16),

p =


0 if n ≡ 0 (8)
7 if n ≡ 3, 5 (8)
12 if n ≡ 2, 6 (8)
15 if n ≡ 1, 7 (8)
16 if n ≡ 4 (8),

q =


0 if n ≡ 0, 2 (8)
−3 if n ≡ 3 (8)
8 if n ≡ 4, 6 (8)
1 if n ≡ 1, 5 (8)

13 if n ≡ 7 (8),

r =


0 if n ≡ 0 (8)
3 if n ≡ 1, 3, 5, 7 (8)
4 if n ≡ 2, 6 (8)
8 if n ≡ 4 (8),
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P8(α, x, y) =



1 if n ≡ 0, 7 (8)
x if n ≡ 1 (8)
y if n ≡ 2 (8)

x2 − αy if n ≡ 3 (8)
x3 − αxy − y2 if n ≡ 4 (8)

αx3 − α2xy − y2 if n ≡ 5 (8)

α2βx3 − (α− 1)2x2y − α3βxy − α2(α− 1)y2, if n ≡ 6 (8),

Q8 = −α4β(α− 1)x3 + 2α2(α− 1)3x2y + α5β(α− 1)xy − (α− 1)3xy2

+ α3(α− 1)
2
y2,

and

m =

{
k if n ≡ k (8) and k 6= 7
−1 if n ≡ k (8) and k = 7.

As an example, the 1222th, ...., 1231th terms of the Somos 4 sequences
associated to E8 can be obtained by using the general term formula (12). The
values in (12) can be found in Table 2.

Table 2

The values in (12) for the 1222th, ...., 1231th terms

n ≡ (16) ≡ (8) ε p q r P8(α, x, y) m

1222 6 6 +1 12 8 4
α2βx3 − (α− 1)2x2y
−α3βxy − α2(α− 1)y2

6

1223 7 7 −1 15 13 3 1 −1

1224 8 0 +1 0 0 0 1 0

1225 9 1 +1 15 1 3 x 1

1226 10 2 −1 12 0 4 y 2

1227 11 3 −1 7 −3 3 x2 − αy 3

1228 12 4 −1 16 8 8 x3 − αxy − y2 4

1229 13 5 +1 7 1 3 αx3 − α2xy − y2 5

1230 14 6 +1 12 8 4
α2βx3 − (α− 1)2x2y
−α3βxy − α2(α− 1)y2

6

1231 15 7 +1 15 13 3 1 −1

Thus by using the equation (12) we find the 1222th term in the sequence as

h1222 = εα{(15·1222
2−p)/16}(α− 1){(7·1222

2−6·1222−q)/16}(2α− 1){(3·1222
2−r)/8}

×P 8(α, x, y)[Q8(α, x, y)]{(1222−m)/8}h−n−1h
n+1
0 .

Consider the elliptic curve

E8 : y2 − 199xy + 138510y = x3 − 15390x2,
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for α = −9 and the points P = (0, 0), Q = (−210, −3900) on this curve. Now,
the 1222th term of the Somos 4 sequence associated to E8 is given by

h1222 = (+1)(−9){(15·1222
2−12)/16}(−10){(7·1222

2−6·1222−8)/16}

(−19){(3·1222
2−4)/8}×P 8(−9,−210,−3900)

[Q8(−9,−210,−3900)]{(1222−6)/8}

= −265431 32800365 5653923 19559981

for h−1 = h0 = 1. In the same manner, the other nine terms are obtained as
follows:

h1223 = −2655299 32804949 5654993 19560898,

h1224 = 2656370 32809539 5656064 19561816,

h1225 = −2657442 32814130 5657136 7 19562734,

h1226 = −2658515 32818726 5658209 13 19563653,

h1227 = −2659589 32823327 5659283 19564573,

h1228 = 2660664 32827929 5660358 19565494,

h1229 = −2661740 32832537 5661433 19566415,

h1230 = −2662819 32837148 5662509 19567337,

h1231 = 2663894 32841762 5663586 19568260.

The general terms of Somos 4 sequences associated to Tate normal forms
are given in the following lemma. For the convenience of the reader, we have
given the polynomials PN (α, x, y), QN (α, x, y) and the values ε, p, q, r, s, t,m
in Appendix A.

Lemma 1. Let EN be a Tate normal form of an elliptic curve. Let P and
Q be points on a Tate normal form as in Theorem 1.1 and let ζ, λ, θ, γ be as
defined above. Let (hn) be a Somos 4 sequence associated to a Tate normal
form with the initial values and the coefficients as above. Then the general
terms of (hn) are given by the following formulas:
1. If N = 4,

hn = εα{(3n
2−p)/8}P4(α, x, y)[Q4(α, x, y)]{(n−m)/4}h−n−1h

n+1
0 ,

2. if N = 5,

hn = εα{(2n
2−p)/5}P5(α, x, y)[Q5(α, x, y)]{(n−m)/5}h−n−1h

n+1
0 ,

3. if N = 6,

hn= εα{(5n
2−2n−p)/12}(α+ 1){(n

2−q)/3}P6(α, x, y)[Q6(α, x, y)]{(n−m)/6}h−n−1h
n+1
0 ,
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4. if N = 7,

hn =εα
{(5n2−p)/7}

(α− 1){(3n
2−n−q)/7}P7(α, x, y)[Q7(α, x, y)]{(n−m)/7}h−n−1h

n+1
0 ,

5. if N = 8,

hn = εα{(15n
2−p)/16}(α− 1){(7n

2−6n−q)/16}(2α− 1){(3n
2−r)/8}

×P 8(α, x, y)[Q8(α, x, y)]{(n−m)/8}h−n−1h
n+1
0 ,

6. if N = 9,

hn = εα{(7n
2−2n−p)/9}(α− 1){(4n

2−2n−q)/9}(α2−α+ 1){(n
2−r)/3}

×P 9(α, x, y)[Q9(α, x, y)]{(n−m)/9}h−n−1h
n+1
0

7. if N = 10,

hn = εα{(21n
2−p)/20}(α− 1){(9n

2−2n−q)/20}(2α− 1){(2n
2−r)/5}ζ{(5n

2−s)/4}

×P 10(α, x, y)[Q10(α, x, y)]{(n−m)/10}h−n−1h
n+1
0 ,

8. if N = 12,

hn = εα{(n
2−2n−p)/12}(α− 1){(59n

2−q)/24}(2α− 1){(n
2−r)/24}

λ{(3n
2−s)/8}θ{(n

2−t)/3}×P 12(α, x, y)[Q12(α, x, y)]{(n−m)/12}h−n−1h
n+1
0 ,

where PN (α, x, y), QN (α, x, y) are polynomials in Z[α, x, y].

Proof. We give the proof only for the case N = 8 by induction on n as
follows. It is clear that the result is true for n = 7. Hence we assume that
n > 7. First suppose that n ≡ 0 (8), n 6≡ 0 (16) and (12) is true for n + 1.
Then we have

hn+2 = −α60k2+30k+3(α− 1)28k
2+11k+1(2α− 1)24k

2+12k+1y Qk
8 h
−(8k+2)
−1 h8k+3

0

(k ∈ N) by (12). Indeed, we see that

hn−2 = α60k2−30k+3(α− 1)28k
2−17k+2(2α− 1)24k

2−12k+1

×(α2βx3 − (α− 1)2x2y − α3βxy − α2(α− 1)y2) Qk−1
8 h

−(8k−2)
−1 h8k−10

hn = α60k2(α− 1)28k
2−3k(2α− 1)24k

2

Qk
8 h

8k+1
0 h−8k−1

hn−1 = −α60k2−15k(α− 1)28k
2−10k(2α− 1)24k

2−6k Qk
8 h
−(8k−1)
−1 h8k0

hn+1 = α60k2+15k(α− 1)28k
2+4k(2α− 1)24k

2+6k x Qk
8 h
−(8k+1)
−1 h8k+2

0

Substituting these expressions and τ1 = α6β2, τ2 = α8β3 into (2) and then
using equation (6) we obtain

hn+2 = −α60k2+30k+3(α− 1)28k
2+11k+1(2α− 1)24k

2+12k+1y Qk
8 h
−(8k+2)
−1 h8k+3

0 .
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A similar result can be obtained when n ≡ 0 (16). Thus we proved the conclu-
sion (12) is true for n+ 2 which completes the proof for n ≡ 0 (8).

The remaining parts of the theorem can be proved in a similar man-
ner. �

From Lemma 3.1 we deduce that any Somos 4 sequence associated to a
Tate normal form is determined by the values α, x, y, h−1, h0.

Corollary 1. Let (hn) be a Somos 4 sequence associated to a Tate nor-
mal form with the initial values and the coefficients as above. Then each hn
can be expressed as elements of the ring

R = Z[α, x, y, h±1−1, h0].

In particular if h−1 = ±1 the Somos 4 sequence consists entirely of integers
for n ≥ 0.

Remark 1. It is also possible to use the recursion (2) to extend the Somos 4
sequences to negative indices. However, for n < 0 the terms of the Somos 4
sequences associated to Tate normal forms may not be integral. For instance,
consider the elliptic curve

E12 : y2 + 586xy − 948480y = x3 − 59280x2,

and the points P = (0, 0), Q = (−21945, 9828225) on this curve. The Somos 4
sequence (hn) associated to E12 is the sequence with coefficients

τ1 = 899614310400, τ2 = 53329136320512000

and the initial values

h−1 = h0 = 1, h1 = 21945, h2 = −9321874848000

which begins

1, 1, 21945,−9321874848000, 17296314776850913689600000,...

the sequence extends backward as

...,
75751032939797362507776000000

14641
,
2806796648448000

1331
,
−948480

121
, 1, 1,

21945, ... .

4. CASES N = 2, 3

There is no Tate normal form of an elliptic curve with the torsion point
of order two or three, but Kubert in [15] listed that the elliptic curves with
torsion point of order two or three are

(13) E2 : y2 = x3 + a2x
2 + a4x



428 Betül Gezer, Buse Çapa and Osman Bizim 12

and

(14) E3 : y2 + a1xy + a3y = x3,

respectively. Let h−1, h0 arbitrary nonzero integers. The initial values h1, h2
and the coefficients τi of the Somos 4 sequences associated to the elliptic curves
E2 and E3 are

τ1 = 0, τ2 = a24 and h1 = −xh−1−1h
2
0, h2 = −a4xh−2−1h

3
0 ,

and

τ1 = a23, τ2 = 0 and h1 = −xh−1−1h
2
0, h2 = a3yh

−2
−1h

3
0,

respectively.

Under these considerations, an easy computation gives the general terms
of these sequences.

Theorem 6. Let EN be an elliptic curve as in (13) or (14) and let P , Q
be points on EN as in Theorem 1.1. Let (hn) be a Somos 4 sequence associated
to EN with the initial values and the coefficients as above. Then the general
terms of (hn) are given by the following formulas:
i. If N = 2,

hn = εa
{(n2−p)/4}
4 x{(n−q)/2}h−n−1h

n+1
0

where

ε =

{
+1 if n ≡ 0, 3 (4)
−1 if n ≡ 1, 2 (4),

p =

{
0 if n ≡ 0 (2)
1 if n ≡ 1 (2),

q =

{
0 if n ≡ 0 (2)
−1 if n ≡ 1 (2).

ii. If N = 3,

hn = εa
{(n2−p)/3}
3 xqy{(n−r)/3}h−n−1h

n+1
0

where

ε =

{
+1 if n ≡ 0, 2 (3)
−1 if n ≡ 1 (3),

p =

{
0 if n ≡ 0 (3)
1 if n ≡ 1, 2 (3),

q =

{
0 if n ≡ 0, 2 (3)
1 if n ≡ 1 (3),

r =


0 if n ≡ 0 (3)
1 if n ≡ 1 (3)
−1 if n ≡ 2 (3).

5. PROOF OF THEOREM 1.2

Lemma 3.1 gives us the general terms of Somos 4 sequences associated
to Tate normal forms. So, we can say there are infinitely many squares and
infinitely many cubes in (hn) by using these explicit formulas. The symbols �
and C mean a square and a cube of a non-zero rational number.
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Lemma 2. Let (hn) denote a Somos 4 sequence associated to a Tate nor-
mal form with h−1 = ± 1.
i. If n ≡ −1 (2N), then hn = � for every non-zero α, x, y,
ii. if n ≡ −1 (3N), then hn = C for every non-zero α, x, y,
where N ∈ {4, ..., 10, 12}.

Proof. Let (hn) be a Somos 4 sequence associated to a Tate normal form
with h−1 = ± 1. Lemma 3.1 shows that each term of (hn) can be expressed
as products of the polynomials p(α, x, y, h0). It is easy to check that these
polynomials are pairwise relatively prime. This implies that if each factor of
the product is a square then hn is a square. Clearly, the same is true for the
cube case. We give the proof only for the case N = 8 based on this fact.
For (i), if n ≡ −1 (16) then n = 16k − 1(k ∈ N). Thus we have

hn = α30k(8k−1)(α− 1)4k(28k−5)(2α− 1)12k(8k−1) Q2k
8 h16k0 ,

by (12). Hence hn = �.
For(ii), if n ≡ −1 (24) then n = 24k − 1(k ∈ N). So we have

hn = εα45k(12k−1)(α− 1)6k(42k−5)(2α− 1)18k(12k−1) Q3k
8 h24k0 .

Therefore hn = C. The remaining cases can be proved in the same way as
above. �

Lemma 5.1 tells us that there are infinitely many squares and infinitely
many cubes in (hn) which proves the Theorem 1.2.

Remark 2. The same conclusion can be drawn for the cases N = 2 or 3,
i.e., let (hn) denote a Somos 4 sequence associated to EN with h−1 = ± 1,
i. if n ≡ −1 (2N), then hn = � for every non-zero α, x, y,
ii. if n ≡ −1 (3N), then hn = C for every non-zero α, x, y.

APPENDIX A

The polynomials PN (α, x, y), QN (α, x, y) and the values ε, p, q, r, s, t,m
in Lemma 3.1 are given as follows. 1. If N = 4,

P4 =


1 if n ≡ 0, 3 (4)
x if n ≡ 1 (4)
y if n ≡ 2 (4),

Q4 = x2 − y,

and

ε =

{
−1 if n ≡ 1, 2, 4, 5 (8)
+1 if n ≡ 0, 3, 6, 7 (8),
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p =


0 if n ≡ 0 (4)
3 if n ≡ 1, 3 (4)
4 if n ≡ 2 (4),

m =

{
k if n ≡ k (4) and k 6= 3
−1 if n ≡ k (4) and k = 3.

2. If N = 5,

P5 =


1 if n ≡ 0, 4 (5)
x if n ≡ 1 (5)
y if n ≡ 2 (5)
x2 − y if n ≡ 3 (5),

Q5 = x2 − xy − y,

and

ε =

{
−1 if n ≡ 1, 2, 4, 5, 8 (10)
+1 if n ≡ 0, 3, 6, 7, 9 (10),

p =


0 if n ≡ 0 (5)
2 if n ≡ 1, 4 (5)
3 if n ≡ 2, 3 (5),

m =

{
k if n ≡ k (5) and k 6= 4
−1 if n ≡ k (5) and k = 4.

3. If N = 6,

P6 =


1 if n ≡ 0, 5 (6)
x if n ≡ 1 (6)
y if n ≡ 2 (6)
x2 − y if n ≡ 3 (6)
x3 − xy − y2 if n ≡ 4 (6),

Q6 = (α+ 1)x3 − (α+ 1)xy − y2

and

ε =

{
+1 if n ≡ 0, 3, 6, 7, 11 (12)
−1 if n ≡ 1, 2, 4, 5, 8, 9, 10 (12),

p =


0 if n ≡ 0 (6)
3 if n ≡ 1, 3 (6)
4 if n ≡ 2 (6)
7 if n ≡ 5 (6)
12 if n ≡ 4 (6),

q =

{
0 if n ≡ 0, 3 (6)
1 if n ≡ 1, 2, 4, 5 (6),

m =

{
k if n ≡ k (6) and k 6= 5
−1 if n ≡ k (6) and k = 5.

4. If N = 7,

P7 =



1 if n ≡ 0, 6 (7)
x if n ≡ 1 (7)
y if n ≡ 2 (7)
x2 − y if n ≡ 3 (7)
x3 − xy − y2 if n ≡ 4 (7)
αx3 − αxy − y2 if n ≡ 5 (7),

Q7 = α2x3− (α− 1)x2y−α2xy− y2,
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and

ε =

{
+1 if n ≡ 0, 3, 6, 7, 10, 13 (14)
−1 if n ≡ 1, 2, 4, 5, 8, 9, 11, 12 (14),

p =


0 if n ≡ 0 (7)
3 if n ≡ 3 (7)
5 if n ≡ 1, 6 (7)
6 if n ≡ 2, 5 (7)
10 if n ≡ 4 (7),

q =



0 if n ≡ 0 (7)
2 if n ≡ 1 (7)
3 if n ≡ 2, 3 (7)
4 if n ≡ 6 (7)
7 if n ≡ 5 (7)
9 if n ≡ 4 (7),

m =

{
k if n ≡ k (7) and k 6= 6
−1 if n ≡ k (7) and k = 6.

5. If N = 9,

P9 =



1 if n ≡ 0, 8 (9)

x if n ≡ 1 (9)

y if n ≡ 2 (9)

x2 − y if n ≡ 3 (9)

x3 − xy − y2 if n ≡ 4 (9)

(α2−α+ 1)x3−(α2 − α+ 1)xy − y2 if n ≡ 5 (9)

(α3−α2+α)x3−(α− 1) x2y − (α3 − α2 + α)xy − y2 if n ≡ 6 (9)

(α4 − α3 + α2)x4+x3y − (α4 − α3 + α2)x
2
y

−(α2 + 1)xy2 − y3
if n ≡ 7 (9)

Q9 = α2(α2−α+ 1)2x4 − (α4−2α3+α2−1)x3y − α2(α2−α+ 1)2x2y

− (α3+1)xy2 − y3,

and

ε =

{
+1 if n ≡ 0, 3, 6, 7, 10, 11, 13, 14, 17 (18)
−1 if n ≡ 1, 2, 4, 5, 8, 9, 12, 15, 16 (18),

p =



0 if n ≡ 0 (9)
5 if n ≡ 1 (9)
6 if n ≡ 2 (9)
3 if n ≡ 3, 5 (9)
14 if n ≡ 4, 7 (9)
−3 if n ≡ 6 (9)
9 if n ≡ 8 (9),

q =



0 if n ≡ 0 (9)
2 if n ≡ 1 (9)
3 if n ≡ 2, 3 (9)
11 if n ≡ 4, 7 (9)
9 if n ≡ 5 (9)
6 if n ≡ 6, 8 (9),

r =

{
1 if n ≡ 1, 2, 4, 5, 7, 8 (9)
0 if n ≡ 0, 3, 6 (9),

m =

{
k if n ≡ k (9) and k 6= 8
−1 if n ≡ k (9) and k = 8.
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6. If N = 10,

P10 =



1 if n ≡ 0, 9 (10)

x if n ≡ 1 (10)

y if n ≡ 2 (10)

x2 − ζ2y if n ≡ 3 (10)

x3−ζ2xy − y2 if n ≡ 4 (10)

α2x3− α2ζ2xy − ζy2 if n ≡ 5 (10)

α3ζx3− (α− 1)x2y − α3ζ3xy − ζ
2
y2 if n ≡ 6 (10)

α4(2α− 1)ζ2x
3 − α(α− 1)(3α− 1)ζx2y

+(α− 1)xy2 − α4(2α− 1)ζ4xy − αζ4y2
if n ≡ 7 (10)

α7(2α− 1)ζ3x3 − (α− 1)x3y

−α3(α− 1)(2α2 + 2α− 1)ζ2x
2
y

−α7(2α− 1)ζ5xy

+(α− 1)(2α2 + 2α− 1)ζxy2 − α3ζ5y
2

if n ≡ 8 (10)

Q10 = −α9(2α− 1)ζ4x3+ (α− 1)(2α2 + 2α− 1)ζx
3
y

+α3(α− 1)(2α4 + 6α2 − 5α+ 1)ζ3x
2
y − (α− 1)x2y2

+α9(2α− 1)ζ6xy + (α4 − 10α3 + 4α− 1)(α− 1)ζ2xy
2
+α3ζ7y2,

and

ε =

{
+1 if n ≡ 0, 3, 6, 7, 9, 12, 13, 14, 17, 18, 19 (20)
−1 if n ≡ 1, 2, 4, 5, 8, 10, 11, 15, 16 (20),

p=



0 if n ≡ 0 (10)
21 if n ≡ 1, 9 (10)
24 if n ≡ 2, 8 (10)
9 if n ≡ 3, 7 (10)
36 if n ≡ 4 (10)
25 if n ≡ 5 (10)
16 if n ≡ 6 (10),

q =



0 if n ≡ 0 (10)
7 if n ≡ 1 (10)
12 if n ≡ 2 (10)
15 if n ≡ 3 (10)
36 if n ≡ 4 (10)
35 if n ≡ 5 (10)
32 if n ≡ 6 (10)
27 if n ≡ 7 (10)
20 if n ≡ 8 (10)
11 if n ≡ 9 (10)

r =


0 if n ≡ 0 (10)
2 if n ≡ 1, 6, 9 (10)
3 if n ≡ 2, 3, 7, 8 (10)
7 if n ≡ 4 (10)
5 if n ≡ 5 (10),

s =


0 if n ≡ 0 (10)
5 if n ≡ 1, 3, 5, 7, 9 (10)
4 if n ≡ 2, 6, 8 (10)
8 if n ≡ 4 (10),

m =

{
k if n ≡ k (10) and k 6= 9
−1 if n ≡ k (10) and k = 9.
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7. If N = 12,

P12 =



1 if n ≡ 0, 11 (12)

x if n ≡ 1 (12)

y if n ≡ 2 (12)

x2−(α− 1)4y if n ≡ 3 (12)

x3−(α− 1)4xy − y2 if n ≡ 4 (12)

θx3− θ(α− 1)4xy − (α− 1)y
2

if n ≡ 5 (12)

θ(α− 1)3(3α2−3α+ 1)x3 −(2α2 − α)x
2
y

−θ(α− 1)7(3α2 − 3α+ 1) xy − (α− 1)6y
2 if n ≡ 6 (12)

θ(α− 1)x4+ θ(α2 + α− 1)(α− 1)3x
2
y

−(3α2 − 3α+ 1)xy
2− θα(2α− 1)(α− 1)7y2

if n ≡ 7 (12)

θ2(α−1)3x4 + α2x3y + θ(α2−α+ 1)(α− 1)7x2y

+(2α− 1)(α− 1)5xy2+ θα(α− 1)12y2
if n ≡ 8 (12)

θ2(3α2−3α+ 1)(α− 1)6x4

+ (6α2 − 7α+ 3)α2(α− 1)3x
3
y + α2x2y2

+ θ(2α2 − α+ 1)(3α2 − 3α+ 1)(α− 1)10x2y
−(α− 1)7(8α3 − 11α2 + 6α− 1)xy2

− θα(3α2 − 3α+ 1)(α− 1)14y2

if n ≡ 9 (12)

2α2(3α2−4α+ 2)(α− 1)3x5+θ(3α2−3α+ 1)

×(14α5−36α4+40α3−23α2+7α− 1)(α− 1)7x4

+ α2x4y − α2(3α2−4α+ 2)

×(12α3−24α2+18α− 5)(α− 1)4 x3y

−θ(3α2−3α+ 1)× (12α5−30α4+33α3

−19α2+6α− 1)(α− 1)11x2y

+θ(9α3−13α2+7α− 1)(α− 1)10xy2

+θ2α(3α2−3α+ 1)(α− 1)17y2

if n ≡ 10 (12)

Q12 = α2(12α4−42α3+58α2−37α+ 10)(α− 1)6x5

−θ(3α2 − 3α+ 1)(30α5 − 66α4 + 63α3 − 31α2 + 8α− 1)(α− 1)11x4

+2α2(3α2 − 4α+ 2)(α− 1)3x
4
y + α2x

3
y2

−α2(12α6−138α5+362α4 − 457α3 + 319α2 − 121α+ 20)(α− 1)8x3y

+θ(3α2 − 3α+ 1)(28α5 − 60α4 + 56α3 − 27α2 + 7α− 1)(α−1)15x2y

−θ(12α3−16α2 + 8α−1)(α−1)14xy2−θ2α(3α2 − 3α+ 1)(α− 1)21y2,

and

ε =

{
+1 if n ≡ 0, 3, 8, 9, 13, 14, 16, 17, 18, 19, 22, 23 (24)
−1 if n ≡ 1, 2, 4, 5, 6, 7, 10, 11, 12, 15, 20, 21 (24),



434 Betül Gezer, Buse Çapa and Osman Bizim 18

p =



0 if n ≡ 0, 2 (12)
−1 if n ≡ 1 (12)
3 if n ≡ 3, 11 (12)
8 if n ≡ 4, 10 (12)
15 if n ≡ 5, 9 (12)
12 if n ≡ 6 (12)
23 if n ≡ 7 (12)
24 if n ≡ 8 (12),

q =



0 if n ≡ 0 (12)
59 if n ≡ 1, 11 (12)
44 if n ≡ 2, 10 (12)
51 if n ≡ 3, 9 (12)
80 if n ≡ 4 (12)
35 if n ≡ 5, 7 (12)
60 if n ≡ 6 (12)
56 if n ≡ 8 (12),

r =



0 if n ≡ 0 (12)
1 if n ≡ 1, 11 (12)
4 if n ≡ 2, 10 (12)
9 if n ≡ 3, 9 (12)
16 if n ≡ 4, 8 (12)
25 if n ≡ 5, 7 (12)
12 if n ≡ 6 (12),

s =


0 if n ≡ 0, 8 (12),
3 if n ≡ 1, 3, 5, 7, 9, 11 (12)
4 if n ≡ 2, 6, 10 (12)
8 if n ≡ 4 (12)

t =

{
1 if n ≡ 1, 2, 4, 5, 7, 8, 10, 11 (12)
0 if n ≡ 0, 3, 6, 9 (12),

m =

{
k if n ≡ k (12) and k 6= 11
−1 if n ≡ k (12) and k = 11.
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[18] A. Pethő, Full cubes in the Fibonacci sequence. Publ. Math. Debrecen 30 (1983),
117–127.

[19] J. Propp, The bilinear forum and the Somos sequence site. http://www.math.wisc.edu/
~propp/.

[20] A.J. van der Poorten, Elliptic curves and continued fractions. J. Integer. Seq. 8 (2005),
Article 05.2.5.

[21] A.J. van der Poorten, Hyperelliptic curves, continued fractions, and Somos sequences.
IMS Lecture Notes-Monograph Series. Dynamics & Stochastics 48 (2006), 212–224.

[22] J. Reynolds, Perfect powers in elliptic divisibility sequences. J. Number Theory 132
(2012), 998–1015.

[23] P. Ribenboim, Pell numbers, squares and cubes. Publ. Math. Debrecen 54 (1999),
131–152.

[24] P. Ribenboim and W. McDaniel, The square terms in Lucas sequences. J. Number
Theory 58 (1996), 104–123.

[25] P. Ribenboim and W. McDaniel, Squares in Lucas sequences having an even first pa-
rameter. Colloq. Math. 78 (1998), 29–34.

[26] R. Robinson, Periodicity of Somos sequences. Proc. Amer. Math. Soc. 116 (1992),
613–619.

[27] J.H. Silverman, The arithmetic of elliptic curves 2nd Edition. Grad. Texts in Math.
106. Springer Dordrecht Heidelberg London New York 2009.

[28] J.H. Silverman and J. Tate, Rational points on elliptic curves. Undergrad. Texts Math-
ematics, Springer, 1992.

[29] C.S. Swart, Elliptic curves and related sequences. Ph. D. thesis, Royal Holloway (Uni-
versity of London), 2003.

[30] M. Ward, Memoir on elliptic divisibility sequences. Amer. J. Math. 70 (1948), 31–74.

Received 17 January 2015 Uludağ University,
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