C_{4}-SUPERMAGIC LABELINGS OF DISJOINT UNION OF PRISMS

KASHIF ALI, SYED TAHIR RAZA RIZVI and ANDREA SEMANIČOVÁ-FEŇOVČÍKOVÁ

Communicated by Ioan Tomescu

Abstract

A simple graph G admits an H-covering if every edge in $E(G)$ belongs to a subgraph of G isomorphic to H. An H-magic labeling of a graph G admitting an H-covering is a bijective function from the vertex set $V(G)$ and the edge set $E(G)$ of the graph G onto the set of integers $\{1,2, \ldots,|V(G)|+|E(G)|\}$ such that for all subgraphs H^{\prime} isomorphic to H, the sum of labels of all the edges and vertices belonged to H^{\prime} are the same. Such a labeling is called H-supermagic if the smallest possible labels appear on the vertices. In this paper, we will deal with C_{4}-supermagic labeling for the disjoint union of l isomorphic copies of prism graphs $C_{n} \times P_{m}$ for $m \geq 2$ and $n \geq 3, n \neq 4, l \geq 1$.

AMS 2010 Subject Classification: 05C55.
Key words: cycle-supermagic labeling, disjoint union of graphs, prism graph.

INTRODUCTION

Let $G=(V, E)$ be a finite, simple, connected and undirected graph, where $V(G)$ and $E(G)$ are its vertex-set and edge-set, respectively. A labeling (or a valuation) of a graph is a map that carries the graph elements to the numbers, usually positive or non-negative integers.

An edge-covering of G is a family of subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ such that each edge of $E(G)$ belongs to at least one of the subgraphs $H_{i}, i=1,2, \ldots, t$. In this case we say that G admits an $\left(H_{1}, H_{2}, \ldots, H_{t}\right)$-(edge) covering. If every subgraph H_{i} is isomorphic to a given graph H, then the graph G admits an H-covering.

An H-magic labeling f of a graph G admitting an H-covering is a bijective function from the vertex set and the edge set of the graph G onto the set of integers $\{1,2, \ldots,|V(G)|+|E(G)|\}$ if there exists a positive integer $m(f)$, called the magic sum, such that for every subgraph H^{\prime} of G isomorphic to H, the $\operatorname{sum} w t_{f}\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)$ is equal to $m(f)$. The sum $w t_{f}(H)$ is called the H-weight.

If, in addition, the H-magic labeling f has the property that the smallest possible labels appear on the vertices, i.e. $\{f(v)\}_{v \in V(G)}=\{1,2, \ldots,|V(G)|\}$,
then the labeling is called H-supermagic. A graph is called H-(super)magic if it admits a H-(super)magic labeling.

When H is isomorphic to K_{2}, a K_{2}-magic labeling is also called an edge-magic total labeling. The notion of H-magic labeling was introduced by Gutiérrez and Lladó [2] as a natural extension of edge-magic total labeling defined by Kotzig and Rosa in [5] as magic valuation.

In [6] Lladó and Moragas showed the cyclic-magic and cyclic-supermagic behavior of several classes of connected graphs including subdivided wheels and subdivided friendship graphs and prisms. Ngurah et al. [8, 9] constructed cycle-supermagic labelings for fans, ladders and books. In [3, 4, 10] Jeyanthi and Selvagopal discussed some cycle-supermagic labelings of families of prism graphs. Maryati et al. [7], proved that the disjoint union of k isomorphic copies of a connected graph H is a H-supermagic graph if and only if $|V(H)|+|E(H)|$ is even or k is odd. For further details, the reader is referred to the dynamic survey [1].

In the following section, we will study the C_{4}-supermagic labelings of the disjoint union of l isomorphic copies of prisms $C_{n} \times P_{m}$ for $m \geq 2$ and $n \geq 3$, $n \neq 4, l \geq 1$.

MAIN RESULT

Let $n \geq 3, m \geq 2$ and $l \geq 1$ be positive integers. The prism graph, or simply the prism, is a graph isomorphic to the cartesian product $C_{n} \times P_{m}$ of a cycle on n vertices with a path on m vertices. Let us consider the disjoint union of l isomorphic copies of the prism graph $C_{n} \times P_{m}$, i.e. the graph $l\left(C_{n} \times P_{m}\right)$.

Let the vertex set of $l\left(C_{n} \times P_{m}\right)$ be

$$
V\left(l\left(C_{n} \times P_{m}\right)\right)=\left\{v_{i, j}^{k}: 1 \leq i \leq n ; 1 \leq j \leq m ; 1 \leq k \leq l\right\}
$$

and the edge set of $C_{n} \times P_{m}$ be

$$
\begin{aligned}
E\left(l\left(C_{n} \times P_{m}\right)\right)= & \left\{v_{i, j}^{k} v_{i+1, j}^{k}: 1 \leq i \leq n-1 ; 1 \leq j \leq m ; 1 \leq k \leq l\right\} \\
& \cup\left\{v_{1, j}^{k} v_{n, j}^{k}: 1 \leq j \leq m ; 1 \leq k \leq l\right\} \\
& \cup\left\{v_{i, j}^{k} v_{i, j+1}^{k}: 1 \leq i \leq n, 1 \leq j \leq m-1 ; 1 \leq k \leq l\right\}
\end{aligned}
$$

The graph $l\left(C_{n} \times P_{m}\right)$ is of order $\ln m$ and of size $\ln (2 m-1)$. Fig. 1 illustrates the k th copy of $C_{n} \times P_{m}$.

In the following theorem we prove that the disjoint union of arbitrary number of isomorphic copies of prisms $C_{n} \times P_{m}, m \geq 2$ and $n \geq 3, n \neq 4$, is C_{4}-supermagic.

Theorem 1. Let m, n, l be positive integers, $m \geq 2, n \geq 3, n \neq 4$ and $l \geq 1$. Then the graph $l\left(C_{n} \times P_{m}\right)$ is C_{4}-supermagic.

Fig. 1. The k th copy of $C_{n} \times P_{m}$.

Proof. Let us consider the labeling f from the vertex set and edge set of $l\left(C_{n} \times P_{m}\right)$ to the set of integers $\{1,2, \ldots, \ln (3 m-1)\}$ defined in the following way. For $k=1,2, \ldots, l$

$$
\left.\begin{array}{c}
f\left(v_{i, j}^{k}\right)=l(i-1)+\ln (j-1)+k \\
f\left(v_{i, j}^{k} v_{i, j-1}^{k}\right)=2 \ln m+1-l(i-1)-\ln (j-1)-k \\
j=1,2, \ldots, m \\
i=1,2, \ldots, n \\
j=2,3, \ldots, m
\end{array}\right\} \begin{array}{ll}
f\left(v_{i, j}^{k} v_{i+1, j}^{k}\right)= \begin{cases}3 \ln m+1-l(i-1)-\ln j-k & i=1,2, \ldots, n-1 \\
3 \ln m+1-\operatorname{li}-\ln j-k & j \equiv 1 \quad(\bmod 2), j \leq m \\
i=1,2, \ldots, n-1\end{cases} \\
f\left(v_{n, j}^{k} v_{1, j}^{k}\right)= \begin{cases}j \equiv 0 \quad(\bmod 2), j \leq m \\
3 \ln m+l+1-\ln (j+1)-k & j \equiv 1 \quad(\bmod 2), j \leq m \\
3 \ln m+1-\ln j-k & j \equiv 0 \quad(\bmod 2), j \leq m\end{cases}
\end{array}
$$

It is easy to see that every number from the set $\{1,2, \ldots, \ln (3 m-1)\}$ is used exactly once as a label, thus f is a bijection. Moreover, the vertices are labeled with the smallest possible numbers $\{1,2, \ldots, \ln m\}$, thus f is super.

Every cycle C_{4} in $l\left(C_{n} \times P_{m}\right)$ is either of the form

$$
C_{4}(i, j, k)=v_{i, j}^{k} v_{i+1, j}^{k} v_{i+1, j-1}^{k} v_{i, j-1}^{k} v_{i, j}^{k}
$$

where $i=1,2, \ldots, n-1, j=2,3, \ldots, m, k=1,2, \ldots, l$,
or of the form

$$
C_{4}(n, j, k)=v_{n, j}^{k} v_{1, j}^{k} v_{1, j-1}^{k} v_{n, j-1}^{k} v_{n, j}^{k}
$$

where $j=2,3, \ldots, m, k=1,2, \ldots, l$.
For the C_{4}-weight of the cycle $C_{4}(i, j, k), i=1,2, \ldots, n-1, j=2,3, \ldots, m$, $k=1,2, \ldots, l$, we get

$$
\begin{aligned}
w t_{f}\left(C_{4}(i, j, k)\right)= & \sum_{v \in V\left(C_{4}(i, j, k)\right)} f(v)+\sum_{e \in E\left(C_{4}(i, j, k)\right)} f(e) \\
= & \left(f\left(v_{i, j}^{k}\right)+f\left(v_{i+1, j}^{k}\right)+f\left(v_{i+1, j-1}^{k}\right)+f\left(v_{i, j-1}^{k}\right)\right) \\
& +\left(f\left(v_{i, j}^{k} v_{i+1, j}^{k}\right)+f\left(v_{i+1, j}^{k} v_{i+1, j-1}^{k}\right)\right. \\
& \left.+f\left(v_{i+1, j-1}^{k} v_{i, j-1}\right)+f\left(v_{i, j-1}^{k} v_{i, j}^{k}\right)\right) \\
= & (l(i-1)+\ln (j-1)+k)+(l i+\ln (j-1)+k) \\
& +(l i+\ln (j-2)+k)+(l(i-1)+\ln (j-2)+k) \\
& +(2 \ln m+1-l i-\ln (j-1)-k) \\
& +(2 \ln m+1-l(i-1)-\ln (j-1)-k) \\
& +f\left(v_{i, j}^{k} v_{i+1, j}^{k}\right)+f\left(v_{i+1, j-1}^{k} v_{i, j-1}\right) \\
= & 4 \ln m+2+l(2 i-1)+2 \ln (j-2)+2 k \\
& +f\left(v_{i, j}^{k} v_{i+1, j}^{k}\right)+f\left(v_{i, j-1} v_{i+1, j-1}^{k}\right) .
\end{aligned}
$$

Now we will distinguish two subcases according to the parity of j.
For j odd, $j \leq m$, we get

$$
\begin{aligned}
w t_{f}\left(C_{4}(i, j, k)\right)= & 4 \ln m+2+l(2 i-1)+2 \ln (j-2)+2 k \\
& +(3 \ln m+1-l(i-1)-\ln j-k) \\
& +(3 \ln m+1-\operatorname{li}-\ln (j-1)-k) \\
= & 10 \ln m-3 \ln +4 .
\end{aligned}
$$

For j even, $j \leq m$, we get

$$
\begin{aligned}
w t_{f}\left(C_{4}(i, j, k)\right)= & 4 \ln m+2+l(2 i-1)+2 \ln (j-2)+2 k \\
& +(3 \ln m+1-\operatorname{li}-\ln j-k)
\end{aligned}
$$

$$
\begin{aligned}
& +(3 \ln m+1-l(i-1)-\ln (j-1)-k) \\
= & 10 \ln m-3 \ln +4
\end{aligned}
$$

Now we will calculate the C_{4}-weight of the cycle $C_{4}(n, j, k), j=2,3, \ldots, m$, $k=1,2, \ldots, l$.

$$
\begin{aligned}
w t_{f}\left(C_{4}(n, j, k)\right)= & \sum_{v \in V\left(C_{4}(n, j, k)\right)} f(v)+\sum_{e \in E\left(C_{4}(n, j, k)\right)} f(e) \\
= & \left(f\left(v_{n, j}^{k}\right)+f\left(v_{1, j}^{k}\right)+f\left(v_{1, j-1}^{k}\right)+f\left(v_{n, j-1}^{k}\right)\right) \\
& +\left(f\left(v_{n, j}^{k} v_{1, j}^{k}\right)+f\left(v_{1, j}^{k} v_{1, j-1}^{k}\right)\right. \\
& \left.+f\left(v_{1, j-1}^{k} v_{n, j-1}\right)+f\left(v_{n, j-1}^{k} v_{n, j}^{k}\right)\right) \\
= & (l(n-1)+\ln (j-1)+k)+(\ln (j-1)+k) \\
& +(\ln (j-2)+k)+(l(n-1)+\ln (j-2)+k) \\
& +(2 \ln m+1-\ln (j-1)-k) \\
& +(2 \ln m+1-l(n-1)-\ln (j-1)-k) \\
& +f\left(v_{n, j}^{k} v_{1, j}^{k}\right)+f\left(v_{1, j-1}^{k} v_{n, j-1}\right) \\
= & 4 \ln m+2+l(n-1)+2 \ln (j-2)+2 k \\
& +f\left(v_{n, j}^{k} v_{1, j}^{k}\right)+f\left(v_{n, j-1} v_{1, j-1}^{k}\right) .
\end{aligned}
$$

Again we will consider two subcases.
For j odd, $j \leq m$, we have

$$
\begin{aligned}
w t_{f}\left(C_{4}(n, j, k)\right)= & 4 \ln m+2+l(n-1)+2 \ln (j-2)+2 k \\
& +(3 \ln m+l+1-\ln (j+1)-k) \\
& +(3 \ln m+1-\ln (j-1)-k) \\
= & 10 \ln m-3 \ln +4 .
\end{aligned}
$$

For j even, $j \leq m$, it holds

$$
\begin{aligned}
w t_{f}\left(C_{4}(n, j, k)\right)= & 4 \ln m+2+l(n-1)+2 \ln (j-2)+2 k \\
& +(3 \ln m+1-\ln j-k) \\
& +(3 \ln m+l+1-\ln j-k) \\
= & 10 \ln m-3 \ln +4 .
\end{aligned}
$$

In all cases, the C_{4}-weights are the same and are equal to the number $10 \operatorname{lnm}-$ $3 l n+4$. It means, that f is the C_{4}-supermagic labeling of $l\left(C_{n} \times P_{m}\right)$ for $m \geq 2$, $n \geq 3, n \neq 4$ and $l \geq 1$.

CONCLUSION

In this paper, we have shown that the disjoint union of l isomorphic copies of prisms $C_{n} \times P_{m}$ for $m \geq 2$ and $n \geq 3, n \neq 4, l \geq 1$ is C_{4}-supermagic. However, the construction described in Theorem 1 does not solve the case when $n=4$. For further investigation we state the following open problem.

OPEN PROBLEM. Find, if there exists, a C_{4}-supermagic labeling of the graph $l\left(C_{4} \times P_{m}\right)$ for $m \geq 2$ and $l \geq 1$.

Acknowledgments. The work was supported by Higher Education Commission of Pakistan for project number 20-3735/R\&D/HEC/14/698 and Slovak VEGA Grant 1/0056/15.

REFERENCES

[1] J.A. Gallian, A dynamic survey of graph labeling. Electron. J. Combin. 16 (2015) \#DS6.
[2] A. Gutiérrez and A. Lladó, Magic coverings. J. Combin. Math. Combin. Comput. 55 (2005), 43-56.
[3] P. Jeyanthi and P. Selvagopal, Some C_{4}-supermagic graphs. Ars Combin. 111 (2013), 129-136.
[4] P. Jeyanthi, P. Selvagopal and S.S. Sundaram, Some C_{3}-supermagic graphs. Util. Math. 89 (2012), 357-366.
[5] A. Kotzig and A. Rosa, Magic valuations of finite graphs. Canad. Math. Bull. 13 (1970), 451-461.
[6] A. Lladó and J. Moragas, Cycle-magic graphs. Discrete Math. 307 (2007), 2925-2933.
[7] T.K. Maryati, A.N.M. Salman, E.T. Baskoro and Irawati, The supermagicness of a disjoint union of isomorphic connected graphs. The Proceedings of The 4th IMT-GT International Conference on Mathematics, Statistics and Applications 3 (2008), 1-5.
[8] A.A.G. Ngurah, A.N.M. Salman and L. Susilowati, H-supermagic labeling of graphs. Discrete Math. 310 (2010), 1293-1300.
[9] A.A.G. Ngurah, A.N.M. Salman and I.W. Sudarsana, Supermagic coverings of the disjoint union of graphs and amalgamations. Discrete Math. 313 (2013), 397-405.
[10] P. Selvagopal and P. Jeyanthi, On C_{k}-supermagic graphs. Int. J. Math. Comput. Sci. 3 (2008), 25-30.

Received 13 October 2014 COMSATS Institute of Information Technology,
Department of Mathematics, Lahore, Pakistan
kashif.ali@ciitlahore.edu.pk
COMSATS Institute of Information Technology,
Department of Mathematics, Lahore, Pakistan srizvi@ciitlahore.edu.pk

Technical University Košice,
Department of Applied Mathematics and Informatics, Slovak Republic
andrea.fenovcikova@tuke.sk

