a-MINIMAX MODULES AND EXTENSION FUNCTORS OF LOCAL COHOMOLOGY

BAHRAM VAKILI

Communicated by Constantin Năstăsescu

Let R be a commutative Noetherian ring and \mathfrak{a} an ideal of R. The concepts of \mathfrak{a} -minimax and \mathfrak{a} -cominimax modules were introduced by Azami, Naghipour and Vakili in [1] as generalization of minimax and \mathfrak{a} -cofinite modules, respectively. The finiteness of extension functors of local cohomology modules was viewed by Dibaei and Yassemi in [4]. In this paper, we discuss the \mathfrak{a} -minimaxness of extension functors of local cohomology modules are a-minimaxness of extension functors of local cohomology modules, in several cases. Let M be an \mathfrak{a} -minimax R-module, and let t be a non-negative integer such that $\mathrm{H}^i_\mathfrak{a}(M)$ is \mathfrak{a} -cominimax for all i < t. In [1, Theorem 4.1] we have shown that for any \mathfrak{a} -minimax submodule N of $\mathrm{H}^t_\mathfrak{a}(M)$ and for any finitely generated R-module L with $\mathrm{Supp} L \subseteq V(\mathfrak{a})$, the R-module $\mathrm{Hom}_R(L,\mathrm{H}^t_\mathfrak{a}(M)/N)$ is \mathfrak{a} -minimax. In this paper, it is shown that $\mathrm{Ext}^i_R(L,\mathrm{H}^t_\mathfrak{a}(M)/N)$ is \mathfrak{a} -minimax for i = 0, 1; in addition, if $\mathrm{Hom}_R(R/\mathfrak{a},\mathrm{H}^{t+1}_\mathfrak{a}(M))$ is \mathfrak{a} -minimax, then $\mathrm{Ext}^i_R(L,\mathrm{H}^t_\mathfrak{a}(M)/N)$ is \mathfrak{a} -minimax for i = 0, 1, 2.

AMS 2010 Subject Classification: 13C15, 13D45, 13E05, 14B15.

Key words: a-relative Goldie dimension, a-minimax modules, a-cominimax modules, local cohomology.

1. INTRODUCTION

Throughout this paper, R will always be a commutative Noetherian ring with non-zero identity, and \mathfrak{a} will be an ideal of R. Let M be an R-module. The \mathfrak{a} -torsion submodule of M is defined as $\Gamma_{\mathfrak{a}}(M) = \bigcup_{n \ge 1} (0 :_M \mathfrak{a}^n)$. The i^{th} local cohomology functor $\mathrm{H}^i_{\mathfrak{a}}(.)$ is defined as the i^{th} right derived functor $\Gamma_{\mathfrak{a}}(.)$. It is known that for each $i \ge 0$ there is a natural isomorphism of R-modules

$$\operatorname{H}^{i}_{\mathfrak{a}}(M) \cong \lim_{\substack{\longrightarrow \\ n \ge 1}} \operatorname{Ext}^{i}_{R}(R/\mathfrak{a}^{n}, M).$$

We refer the reader to [6] or [3] for the basic properties of local cohomology.

An *R*-module *M* is said to have *finite Goldie dimension* (written $G \dim M < \infty$), if the injective hull E(M) of *M* decomposes as a finite direct sum of indecomposable (injective) submodules. It is clear by the definition of the Goldie dimension that

MATH. REPORTS 18(68), 3 (2016), 321–326

$$G \dim M = \sum_{\mathfrak{p} \in \operatorname{Ass}_R M} \mu^0(\mathfrak{p}, M),$$

where $\mu^{0}(\mathfrak{p}, M)$ is the 0-th Bass number of M with respect to prime ideal \mathfrak{p} and $\operatorname{Ass}_{R} M$ is the set of associated prime ideals of R. The \mathfrak{a} -relative Goldie dimension of M has been studied by Divaani-Aazar and Esmkhani in [5] and it is defined as

$$G \dim_{\mathfrak{a}} M = \sum_{\mathfrak{p} \in V(\mathfrak{a})} \mu^{0}(\mathfrak{p}, M).$$

In particular, they proved that $G \dim_{\mathfrak{a}} M = G \dim \Gamma_{\mathfrak{a}}(M)$. An *R*-module M is said to have *finite* \mathfrak{a} -relative Goldie dimension if the Goldie dimension of the \mathfrak{a} -torsion submodule $\Gamma_{\mathfrak{a}}(M)$ of M is finite.

In [7], Zöschinger introduced the interesting class of minimax modules. An *R*-module *M* is said to be a minimax module, if there is a finitely generated submodule *N* of *M*, such that M/N is Artinian. Zöschinger, has given in [7] and [8] many equivalent conditions for a module to be minimax. In particular, when *R* is a Noetherian ring, a module is minimax if and only if each of its quotients has finite Goldie dimension. The concepts of \mathfrak{a} -minimax and \mathfrak{a} cominimax modules were introduced by Azami, Naghipour and Vakili in [1] as generalization of minimax and \mathfrak{a} -cofinite modules. An *R*-module *M* is called \mathfrak{a} -minimax if the \mathfrak{a} -relative Goldie dimension of any quotient module of *M* is finite. It is clear that if *M* is \mathfrak{a} -torsion then *M* is \mathfrak{a} -minimax if and only if *M* is minimax. Also, we say that an *R*-module *M* is \mathfrak{a} -minimax for all $i \geq 0$.

The finiteness of extension functors of local cohomology modules was viewed by Dibaei and Yassemi in [4]. In this paper, we discuss the \mathfrak{a} -minimaxness of extension functors of local cohomology modules, in several cases. Let M be an \mathfrak{a} -minimax R-module, and let t be a non-negative integer such that $\mathrm{H}^{i}_{\mathfrak{a}}(M)$ is \mathfrak{a} -cominimax for all i < t. In [1, Theorem 4.1] we have shown that for any \mathfrak{a} -minimax submodule N of $\mathrm{H}^{t}_{\mathfrak{a}}(M)$ and for any finitely generated R-module Lwith $\mathrm{Supp} L \subseteq V(\mathfrak{a})$, the R-module $\mathrm{Hom}_{R}(L,\mathrm{H}^{t}_{\mathfrak{a}}(M)/N)$ is \mathfrak{a} -minimax. This generalizes the main result of Brodmann and Lashgari [2]. In this paper, it is shown that both $\mathrm{Hom}_{R}(L,\mathrm{H}^{t}_{\mathfrak{a}}(M)/N)$ and $\mathrm{Ext}^{1}_{R}(L,\mathrm{H}^{t}_{\mathfrak{a}}(M)/N)$ are \mathfrak{a} -minimax; in addition, if $\mathrm{Hom}_{R}(R/\mathfrak{a},\mathrm{H}^{t+1}_{\mathfrak{a}}(M))$ is \mathfrak{a} -minimax, then $\mathrm{Hom}_{R}(L,\mathrm{H}^{t}_{\mathfrak{a}}(M)/N)$, $\mathrm{Ext}^{1}_{R}(L,\mathrm{H}^{t}_{\mathfrak{a}}(M)/N)$ and $\mathrm{Ext}^{2}_{R}(L,\mathrm{H}^{t}_{\mathfrak{a}}(M)/N)$ are all \mathfrak{a} -minimax.

2. THE RESULTS

To prove the main results of this paper, we first bring the following lemma.

LEMMA 2.1. Let M be an R-module and $L = E(M/\Gamma_{\mathfrak{a}}(M))/M/\Gamma_{\mathfrak{a}}(M)$. Then (i) $\mathrm{H}^{i}_{\mathfrak{a}}(L) \simeq \mathrm{H}^{i+1}_{\mathfrak{a}}(M)$ and $\mathrm{Ext}^{i}_{R}(R/\mathfrak{a}, L) \simeq \mathrm{Ext}^{i+1}_{R}(R/\mathfrak{a}, M/\Gamma_{\mathfrak{a}}(M))$ for all $i \geq 0$.

(ii) $\operatorname{Ext}^1_R(R/\mathfrak{a}, M/\Gamma_\mathfrak{a}(M)) \simeq \operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^1_\mathfrak{a}(M)).$

Proof. For (i) See [4, Remark 2.1], and for (ii) See to the proof of [4, Theorem B]. \Box

PROPOSITION 2.2. Let M be an R-module. If $\operatorname{Ext}^1_R(R/\mathfrak{a}, M)$ and $\operatorname{Ext}^2_R(R/\mathfrak{a}, \Gamma_\mathfrak{a}(M))$ are \mathfrak{a} -minimax, then $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^1_\mathfrak{a}(M))$ is \mathfrak{a} -minimax.

Proof. Consider the exact sequence

 $\operatorname{Ext}^1_R(R/\mathfrak{a},M) \to \operatorname{Ext}^1_R(R/\mathfrak{a},M//\Gamma_\mathfrak{a}(M)) \to \operatorname{Ext}^2_R(R/\mathfrak{a},\Gamma_\mathfrak{a}(M)).$

Therefore, it follows from [1, Proposition 2.3] and assumption that $\operatorname{Ext}^{1}_{R}(R/\mathfrak{a}, M//\Gamma_{\mathfrak{a}}(M))$ is \mathfrak{a} -minimax, and so by previous lemma $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}^{1}_{\mathfrak{a}}(M))$ is \mathfrak{a} -minimax. \Box

Now, we are ready to present some sufficient conditions for the \mathfrak{a} -minimaxness of extension functors of local cohomology modules.

THEOREM 2.3. Let M be an R-module. Let t be a non-negative integer such that the local cohomology modules $H^i_{\mathfrak{a}}(M)$ are \mathfrak{a} -cominimax for all i < t.

(i) If $\operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a}, M)$ is \mathfrak{a} -minimax, then $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{t}(M)/N)$ is \mathfrak{a} -minimax for any \mathfrak{a} -minimax submodule N of $\operatorname{H}_{\mathfrak{a}}^{t}(M)$.

(ii) If $\operatorname{Ext}_{R}^{t}(R/\mathfrak{a}, M)$ and $\operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a}, M)$ are \mathfrak{a} -minimax, then for any \mathfrak{a} -minimax submodule N of $\operatorname{H}_{\mathfrak{a}}^{t}(M)$ and for any finitely generated R-module L with $\operatorname{Supp} L \subseteq V(\mathfrak{a})$, the R-module $\operatorname{Ext}_{R}^{i}(L, \operatorname{H}_{\mathfrak{a}}^{t}(M)/N)$ is \mathfrak{a} -minimax for all $i \leq 1$.

(iii) If both $\operatorname{Ext}_{R}^{t+2}(R/\mathfrak{a}, M)$ and $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{t+1}(M))$ are \mathfrak{a} -minimax, then the R-module $\operatorname{Ext}_{R}^{2}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{t}(M)/N)$ is \mathfrak{a} -minimax for any \mathfrak{a} -minimax sub-module N of $\operatorname{H}_{\mathfrak{a}}^{t}(M)$.

(iv) If the R-modules $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^{t+1}_{\mathfrak{a}}(M))$ and $\operatorname{Ext}^i_R(R/\mathfrak{a}, M)$ for i = t, t+1, t+2 are \mathfrak{a} -minimax, then for any \mathfrak{a} -minimax submodule N of $\operatorname{H}^t_{\mathfrak{a}}(M)$ and for any finitely generated R-module L with $\operatorname{Supp} L \subseteq V(\mathfrak{a})$, the R-module $\operatorname{Ext}^i_R(L, \operatorname{H}^t_{\mathfrak{a}}(M)/N)$ is \mathfrak{a} -minimax for all $i \leq 2$.

(v) If $\operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a}, M)$ and $\operatorname{Ext}_{R}^{2}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{t}(M))$ are both \mathfrak{a} -minimax, then the R-module $\operatorname{Hom}_{R}(L, \operatorname{H}_{\mathfrak{a}}^{t+1}(M)/N)$ is \mathfrak{a} -minimax for any \mathfrak{a} -minimax submodule N of $\operatorname{H}_{\mathfrak{a}}^{t+1}(M)$ and for any finitely generated R-module L with $\operatorname{Supp} L \subseteq V(\mathfrak{a})$.

Proof. (i) The exact sequence

$$0 \to N \to \mathrm{H}^t_{\mathfrak{a}}(M) \to \mathrm{H}^t_{\mathfrak{a}}(M)/N \to 0$$

induces the following exact sequence,

$$\operatorname{Ext}^1_R(R/\mathfrak{a}, \operatorname{H}^t_\mathfrak{a}(M)) \to \operatorname{Ext}^1_R(R/\mathfrak{a}, H^t_\mathfrak{a}(M)/N) \to \operatorname{Ext}^2_R(R/\mathfrak{a}, N)$$

Since $\operatorname{Ext}_R^2(R/\mathfrak{a}, N)$ is \mathfrak{a} -minimax, so in view of [1, Proposition 2.3], it is sufficient to show that $\operatorname{Ext}_R^1(R/\mathfrak{a}, H_\mathfrak{a}^t(M))$ is \mathfrak{a} -minimax. We use induction on t. When t = 0, then by assumption $\operatorname{Ext}_R^1(R/\mathfrak{a}, M)$ is \mathfrak{a} -minimax, and so the exact sequence

$$0 = \operatorname{Hom}_{R}(R/\mathfrak{a}, M/\Gamma_{\mathfrak{a}}(M)) \to \operatorname{Ext}^{1}_{R}(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(M)) \to \operatorname{Ext}^{1}_{R}(R/\mathfrak{a}, M)$$

implies that $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a},\Gamma_{\mathfrak{a}}(M))$ is \mathfrak{a} -minimax. Now suppose, inductively, that t > 0 and suppose that the result has been proved for t - 1. As $\Gamma_{\mathfrak{a}}(M)$ is \mathfrak{a} -cominimax, it follows that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a},\Gamma_{\mathfrak{a}}(M))$ is \mathfrak{a} -minimax for all $i \geq 0$. Hence by the exact sequence

$$\operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a}, M) \to \operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a}, M/\Gamma_{\mathfrak{a}}(M)) \to \operatorname{Ext}_{R}^{t+2}(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(M))$$

and assumption, $\operatorname{Ext}_R^{t+1}(R/\mathfrak{a}, M/\Gamma_\mathfrak{a}(M))$ is \mathfrak{a} -minimax. Also, as $H^0_\mathfrak{a}(M/\Gamma_\mathfrak{a}(M)) = \Gamma_\mathfrak{a}(M/\Gamma_\mathfrak{a}(M)) = 0$ and $H^i_\mathfrak{a}(M/\Gamma_\mathfrak{a}(M)) \simeq H^i_\mathfrak{a}(M)$ for all i > 0, it follows by assumption that $H^i_\mathfrak{a}(M/\Gamma_\mathfrak{a}(M))$ is \mathfrak{a} -cominimax for all i < t. Therefore, we may assume that M is \mathfrak{a} -torsion free. Let E be an injective envelope of M and put $M_1 = E/M$. Then by Lemma 2.1, $\operatorname{Ext}_R^i(R/\mathfrak{a}, M_1) \simeq \operatorname{Ext}_R^{i+1}(R/\mathfrak{a}, M)$ and $H^i_\mathfrak{a}(M_1) \simeq H^{i+1}_\mathfrak{a}(M)$ for all $i \geq 0$. The induction hypothesis applied to M_1 , yields that $\operatorname{Ext}_R^1(R/\mathfrak{a}, H^{t-1}_\mathfrak{a}(M_1))$ is \mathfrak{a} -minimax. Hence again by Lemma 2.1, $\operatorname{Ext}_R^i(R/\mathfrak{a}, H^t_\mathfrak{a}(M))$ is \mathfrak{a} -minimax.

(ii) Let N be an \mathfrak{a} -minimax submodule of $\mathrm{H}^t_{\mathfrak{a}}(M)$ and let L be a finitely generated R-module with $\mathrm{Supp} L \subseteq V(\mathfrak{a})$. Hence by part (i) and [1, Theorem 4.2], the R-module $\mathrm{Ext}^i_R(R/\mathfrak{a},\mathrm{H}^t_{\mathfrak{a}}(M)/N)$ is \mathfrak{a} -minimax for all $i \leq 1$. Now, in view of [1, Theorem 2.7], the R-module $\mathrm{Ext}^i_R(L,\mathrm{H}^t_{\mathfrak{a}}(M)/N)$ is \mathfrak{a} -minimax for all $i \leq 1$.

(iii) By the exact sequence

$$\operatorname{Ext}^2_R(R/\mathfrak{a}, \operatorname{H}^t_\mathfrak{a}(M)) \to \operatorname{Ext}^2_R(R/\mathfrak{a}, H^t_\mathfrak{a}(M)/N) \to \operatorname{Ext}^3_R(R/\mathfrak{a}, N)$$

and the fact that $\operatorname{Ext}_{R}^{3}(R/\mathfrak{a}, N)$ is \mathfrak{a} -minimax, it is sufficient to show that the R-module $\operatorname{Ext}_{R}^{2}(R/\mathfrak{a}, H_{\mathfrak{a}}^{t}(M))$ is \mathfrak{a} -minimax. To do this, we use induction on t. When t = 0, by assumption $\operatorname{Ext}_{R}^{2}(R/\mathfrak{a}, M)$ and $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{1}(M))$ are both \mathfrak{a} -minimax. Therefore, by Proposition 2.2, the R-module $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, M/\Gamma_{\mathfrak{a}}(M))$ is \mathfrak{a} -minimax. Thus the exact sequence

$$\operatorname{Ext}^{1}_{R}(R/\mathfrak{a}, M/\Gamma_{\mathfrak{a}}(M)) \to \operatorname{Ext}^{2}_{R}(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(M)) \to \operatorname{Ext}^{2}_{R}(R/\mathfrak{a}, M)$$

implies that $\operatorname{Ext}_{R}^{2}(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(M))$ is \mathfrak{a} -minimax. Now suppose, inductively, that t > 0 and suppose that the result has been proved for t - 1. As $\Gamma_{\mathfrak{a}}(M)$ is

a-cominimax, it follows from the exact sequence

$$\operatorname{Ext}_{R}^{t+2}(R/\mathfrak{a}, M) \to \operatorname{Ext}_{R}^{t+2}(R/\mathfrak{a}, M/\Gamma_{\mathfrak{a}}(M)) \to \operatorname{Ext}_{R}^{t+3}(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(M))$$

that $\operatorname{Ext}_{R}^{t+2}(R/\mathfrak{a}, M/\Gamma_{\mathfrak{a}}(M))$ is a-minimax. Therefore we may assume that M is a-torsion free. Let E be an injective envelope of M and put $M_{1} = E/M$. By using a similar proof as in the proof of part (i), the induction hypothesis applied to M_{1} , yields that $\operatorname{Ext}_{R}^{2}(R/\mathfrak{a}, H_{\mathfrak{a}}^{t-1}(M_{1}))$ is a-minimax, and so $\operatorname{Ext}_{R}^{2}(R/\mathfrak{a}, H_{\mathfrak{a}}^{t}(M))$ is a-minimax.

(iv) Let N be an \mathfrak{a} -minimax submodule of $\mathrm{H}^t_{\mathfrak{a}}(M)$ and let L be a finitely generated R-module with $\mathrm{Supp} L \subseteq V(\mathfrak{a})$. Hence by parts (ii) and (iii), the R-module $\mathrm{Ext}^i_R(R/\mathfrak{a},\mathrm{H}^t_{\mathfrak{a}}(M)/N)$ is \mathfrak{a} -minimax for all $i \leq 2$. Now, in view of [1, Theorem 2.7], the R-module $\mathrm{Ext}^i_R(L,\mathrm{H}^t_{\mathfrak{a}}(M)/N)$ is \mathfrak{a} -minimax for all $i \leq 2$.

(v) In view of [1, Theorem 2.7] it is enough to show that $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^{t+1}_{\mathfrak{a}}(M)/N)$ is \mathfrak{a} -minimax. To this end, by the exact sequence

$$\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^{t+1}_\mathfrak{a}(M)) \to \operatorname{Hom}_R(R/\mathfrak{a}, H^{t+1}_\mathfrak{a}(M)/N) \to \operatorname{Ext}^1_R(R/\mathfrak{a}, N)$$

and that $\operatorname{Ext}_R^1(R/\mathfrak{a}, N)$ is \mathfrak{a} -minimax, it is sufficient to show that $\operatorname{Hom}_R(R/\mathfrak{a}, H_\mathfrak{a}^{t+1}(M))$ is \mathfrak{a} -minimax. To do this, we use induction on t. When t = 0, by assumption $\operatorname{Ext}_R^1(R/\mathfrak{a}, M)$ and $\operatorname{Ext}_R^2(R/\mathfrak{a}, \Gamma_\mathfrak{a}(M))$ are \mathfrak{a} -minimax, and so in view of Proposition 2.2 the R-module $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}_\mathfrak{a}^1(M))$ is \mathfrak{a} -minimax. Now suppose, inductively, that t > 0 and suppose that the result has been proved for t - 1. Since $\Gamma_\mathfrak{a}(M)$ is \mathfrak{a} -cominimax, it follows from the exact sequence

$$\operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a},M) \to \operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a},M/\Gamma_{\mathfrak{a}}(M)) \to \operatorname{Ext}_{R}^{t+2}(R/\mathfrak{a},\Gamma_{\mathfrak{a}}(M))$$

that $\operatorname{Ext}_{R}^{t+1}(R/\mathfrak{a}, M/\Gamma_{\mathfrak{a}}(M))$ is \mathfrak{a} -minimax. Therefore we may assume that M is \mathfrak{a} -torsion free. Let E be an injective envelope of M and put $M_1 = E/M$. Again, by using a similar proof as in the proof of part (i), the induction hypothesis applied to M_1 , yields that $\operatorname{Hom}_{R}(R/\mathfrak{a}, H_{\mathfrak{a}}^{t}(M_1))$ is \mathfrak{a} -minimax, and so $\operatorname{Hom}_{R}(R/\mathfrak{a}, H_{\mathfrak{a}}^{t+1}(M))$ is \mathfrak{a} -minimax. \Box

By using the above result, we can deduce the following corollary, which is the main result of this paper.

COROLLARY 2.4. Let M be an \mathfrak{a} -minimax R-module, and let t be a nonnegative integer such that $\mathrm{H}^{i}_{\mathfrak{a}}(M)$ is \mathfrak{a} -cominimax for all i < t. Then the following hold:

(i) For any \mathfrak{a} -minimax submodule N of $\mathrm{H}^t_{\mathfrak{a}}(M)$ and for any finitely generated R-module L with $\mathrm{Supp} L \subseteq V(\mathfrak{a})$, the R-modules $\mathrm{Hom}_R(L, \mathrm{H}^t_{\mathfrak{a}}(M)/N)$ and $\mathrm{Ext}^1_R(L, \mathrm{H}^t_{\mathfrak{a}}(M)/N)$ are \mathfrak{a} -minimax.

(ii) If the R-modules $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^{t+1}_{\mathfrak{a}}(M))$ is \mathfrak{a} -minimax, then for any \mathfrak{a} -minimax submodule N of $\operatorname{H}^t_{\mathfrak{a}}(M)$ and for any finitely generated R-module L

with Supp $L \subseteq V(\mathfrak{a})$, the *R*-modules $\operatorname{Hom}_R(L, \operatorname{H}^t_{\mathfrak{a}}(M)/N)$, $\operatorname{Ext}^1_R(L, \operatorname{H}^t_{\mathfrak{a}}(M)/N)$ and $\operatorname{Ext}^2_R(L, \operatorname{H}^t_{\mathfrak{a}}(M)/N)$ are all \mathfrak{a} -minimax.

Proof. Since M is a-minimax, so $\operatorname{Ext}_R^i(R/\mathfrak{a}, M)$ is a-minimax for all i. Thus the result is followed by Theorem 2.3. \Box

Acknowledgments. The author is deeply grateful to the referee for the careful reading of the original manuscript and for the valuable suggestions. The research was supported in part by a grant from Islamic Azad University, Shabestar Branch.

REFERENCES

- J. Azami, R. Naghipour and B. Vakili, Finiteness properties of local cohomology modules for a-minimax modules. Proc. Amer. Math. Soc. 137 (2009), 439–448.
- [2] M.P. Brodmann and F.A. Lashgari, A finiteness result for associated primes of local cohomology modules. Proc. Amer. Math. Soc. 128 (2000). 2851–2853.
- [3] M.P. Brodmann and R.Y. Sharp, Local cohomology: an algebraic introduction with geometric applications. Cambridge Univ. Press, 1998.
- M.T. Dibaei and S. Yassemi, Finiteness of extension functors of local cohomology modules. Comm. Algebra 34 (2006) 3097–3101.
- [5] K. Divaani-Aazar and M.A. Esmkhani, Artinianness of local cohomology modules of ZDmodules. Comm. Algebra 33 (2005), 2857–2863.
- [6] A. Grothendieck, *Local cohomology*, Lecture Notes in Mathematics 41, Springer, Berlin, 1967, 161–166.
- [7] H. Zöschinger, *Minimax modulu*. J. Algebra **102** (1986), 1–32.
- [8] H. Zöschinger, Über die Maximalbedingung für radikalvolle Untermoduln. Hokkaido Math. J. 17 (1988), 101–116.

Received 23 October 2014

Islamic Azad University, Department of Mathematics, Shabestar Branch, Shabestar, Iran bvakil2004@yahoo.com, bvakil@iaushab.ac.ir