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The H mod K Theorem gives all possible periodic solutions in a Γ–equivariant
dynamical system, based on the group-theoretical aspects. In addition, it clas-
sifies the spatio temporal symmetries that are possible. By the contrary, the
Equivariant Hopf Theorem guarantees the existence of families of small–amplitude
periodic solutions bifurcating from the origin for each C–axial subgroup of Γ×S1.
In this paper we identify which periodic solution types, whose existence is guar-
anteed by the H mod K Theorem, are obtainable by Hopf bifurcation, when the
group Γ is finite cyclic.
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1. INTRODUCTION

In the formalism of equivariant differential equations [2], [3] and [4] have
been described two methods for obtaining periodic solutions: the H mod K
Theorem and the Equivariant Hopf Theorem. While the H mod K Theorem
offers the complete set of possible periodic solutions based exclusively on the
structure of the group Γ acting on the differential equation, the Equivariant
Hopf Theorem guarantees the existence of families of small-amplitude periodic
solutions bifurcating from the origin for all C–axial subgroups of Γ× S1.

Not always all solutions predicted by the H mod K Theorem can be
obtained by the generic Hopf bifurcation [4]. In [1] there are described which
periodic solutions, whose existence is guaranteed by the H mod K Theorem are
obtainable by the Hopf bifurcation when the group Γ is finite abelian. In this
article, we pose a more specific question: what periodic solutions predicted by
the H mod K Theorem are obtainable by the Hopf bifurcation when the group
Γ is finite cyclic. We will answer this question by finding which additional
constraints have to be added to the Abelian Hopf H mod K Theorem [1] so
that the periodic solutions predicted by the H mod K Theorem coincide with
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the ones obtained by the Equivariant Hopf Theorem when the group Γ is finite
cyclic.

2. THE H mod K THEOREM

We call (γ, θ) ∈ Γ×S1 a spatio-temporal symmetry of the solution x(t). A
spatio-temporal symmetry of x(t) for which θ = 0 is called a spatial symmetry,
since it fixes the point x(t) at every moment of time. The group of all spatio-
temporal symmetries of x(t) is denoted

Σx(t) ⊆ Γ× S1.

As shown in [4], the symmetry group Σx(t) can be identified with a pair of
subgroups H and K of Γ and a homomorphism Θ : H → S1 with kernel K.
Define

(1)
K = {γ ∈ Γ : γx(t) = x(t) ∀t}
H = {γ ∈ Γ : γx(t) = {x(t)} ∀t}.

The subgroup K ⊆ Σx(t) is the group of spatial symmetries of x(t) and
the subgroup H consists of those symmetries that preserve the trajectory of
x(t), ie. the spatial parts of the spatio-temporal symmetries of x(t). The groups
H ⊆ Γ and Σx(t) ⊆ Γ× S1 are isomorphic; the isomorphism is in fact just the
restriction to Σx(t) of the projection of Γ×S1 onto Γ. Therefore the group Σx(t)

can be written as

ΣΘ = {(h,Θ(h)) : h ∈ H,Θ(h) ∈ S1}.

Moreover, we call ΣΘ a twisted subgroup of Γ×S1. In our case Γ is a finite cyclic
group and the H mod K Theorem states necessary and sufficient conditions for
the existence of a periodic solution to a Γ− equivariant system of ODEs with
specified spatio-temporal symmetries K ⊂ H ⊂ Γ. Recall that the isotropy
subgroup Σx of a point x ∈ Rn consists of group elements that fix x, that is
they satisfy

Σx = σ ∈ Γ : σx = x.

Let N(H) be the normalizer of H in Γ, satisfying N(H) = {γ ∈ Γ : γH = Hγ}.
Let also Fix(K) = {x ∈ Rn : kx = x ∀k ∈ K}.

Definition 1. Let K ⊂ Γ be an isotropy subgroup. The variety LK is
defined by

LK =
⋃
γ /∈K

Fix(γ) ∩ Fix(K).
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Theorem 1 (H mod K Theorem [4]). Let Γ be a finite group acting on
Rn. There is a periodic solution to some Γ−equivariant system of ODEs on
Rn with spatial symmetries K and spatio–temporal symmetries H if and only
if the following conditions hold:

(a) H/K is cyclic;

(b) K is an isotropy subgroup;

(c) dim Fix(K) > 2. If dim Fix(K) = 2, then either H = K or H = N(K);

(d) H fixes a connected component of Fix(K)\LK, where LK appears as in
Definition 1 above;

Moreover, if (a) − (d) hold, the system can be chosen so that the periodic
solution is stable.

Definition 2. The pair of subgroups (H,K) is called admissible if the pair
satisfies hypotheses (a) − (d) of Theorem 1, that is, if there exist periodic
solutions to some Γ−equivariant system with (H,K) symmetry.

3. HOPF BIFURCATION WITH CYCLIC SYMMETRIES

In the following, we recall two results from [1] needed later for the proof
of the Theorem 2. Let x0 ∈ Rn. Suppose that V is an Σx0−invariant subspace
of Rn. Let V̂ = x0 + V, and observe that V̂ is also Σx0–invariant.

Lemma 1. Let g be an Σx0−equivariant map on V̂ such that g(x0) = 0.
Then g extends to a Γ–equivariant mapping f on Rn so that the center subspace
of (df)x0 equals the center subspace of (dg)x0 .

Proof. See [1]. �

Lemma 2. Let f : Rn → Rn be Γ−equivariant and let f(x0) = 0. Let V be
the center subspace of (df)x0 . Then there exists a Γ–equivariant diffeomorphism
ψ : Rn → Rn such that ψ(x0) = x0 and the center manifold of the transformed
vector field

ψ∗f(x) ≡ (dψ)−1
ψ(x)f(ψ(x))

is V̂ .

Proof. See [1]. �

In order to state the Cyclic Hopf Theorem, we need first the following
lemma.

Lemma 3. The group Γ is cyclic if and only it is a homomorphic image
of Z.
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Proof. To show that Γ is cyclic if and only if it is a homomorphic image
of Z, let Γ = 〈a〉 then the map

Z→ Γ, n→ an

is a homomorphism (since an+m = anam for all n,m ∈ Z) whose image is Γ.
Conversely, if f : Z → Γ is an epimorphism then let a = f(1). Every γ ∈ Γ
takes the form γ = f(n) for some n ∈ Z. If n > 0 then

γ = f(1 + . . .+ 1) = f(1) ◦Γ · · · ◦Γ f(1) = (f(1))n = an.

The same formula holds if n < 0. Thus Γ = 〈a〉. �

Theorem 2 (Cyclic Hopf Theorem). In systems with finite cyclic symme-
try, generically, Hopf bifurcation at a point x0 occurs with simple eigenvalues,
and there exists a unique branch of small–amplitude periodic solutions ema-
nating from x0. Moreover the spatio–temporal symmetries of the bifurcating
periodic solutions are

(2) H = Σx0 ,

and

(3) K = kerV (H),

H acts H–simply on V, while Γ and all of its subgroups, in particular H and
K are homomorphic images of Z. In addition let Zk act on Rk by a cyclic
permutation of coordinates. Let Zq ⊆ Zn ⊆ Zk. Then there is a Zn–simple
representation with kernel Zq with the single exception when n = k is even and
q = k

2 .

Proof. The proof relies on the proof of the homologous Theorem in [1],
with changes concerning the form of the subgroups H and K. However, we will
prefer to give the proof entirely, including the parts that coincide with the proof
in [1], to easy the lecture of the paper. Since Γ, H and K are homomorphic
images of Z, they are cyclic. We begin as in [1], by showing that the equiv-
ariant Hopf bifurcation leads to a unique branch of small–amplitude periodic
solutions emanating from x0. From Lemma 1 it follows that the bifurcation
point x0 = 0 and therefore Γ = Σx0 . Moreover, from Lemma 2 it follows that
if reducing to the center manifold, we may assume that Rn = V and therefore
from [3] it follows that the center subspace V at the Hopf bifurcation point
is Γ–simple. This means that V is either a direct sum of two absolutely irre-
ducible representations or it is itself irreducible but not absolutely irreducible.
Since the irreducible representations of abelian groups (and subsequently cyclic
groups) are one–dimensional and absolutely irreducible or two–dimensional and
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non-absolutely irreducible, it follows that V is two–dimensional and therefore
the eigenvalues obtained at the linearization about the bifurcation point x0

are simple. Now the standard Hopf Bifurcation Theorem applies to obtain a
unique branch of periodic solutions.

Let x(t, λ) be the unique branch of small–amplitude periodic solutions
that emanate at the Hopf bifurcation point x0. For each t,

x0 = lim
λ→0

x(t, λ).

Let H be the spatio-temporal symmetry subgroup of x(·, λ), and let Φ : H → S1

be the homomorphism that associates a symmetry h ∈ H with a phase shift
Φ(h) ∈ S1. To prove that H ⊂ Σx0 we have

hx0 = lim
λ→0

hx(0, λ) by continuity of h

= lim
λ→0

x(Φ(h), λ) by definition of spatio− temporal symmetries

= x0

and therefore h ∈ Σx0 . In the following we proof that Σx0 ⊂ H. Let γ ∈ Σx0 ⊆
Γ; therefore γx(t, λ) is also a periodic solution. Since the periodic is unique (as
shown above), we have

γ{x(t, λ)} = {x(t, λ)},
so γ ∈ H. Lemma 2 allows us to assume that the center manifold at x0 is
V̂ = v + x0, which may be identified with V, and therefore V is H–invariant.
Therefore V is H–simple since γ is cyclic (and subsequently abelian). Since Γ
is cyclic, all its subgroups are cyclic, in particular H and K.
The proof of the last condition is the proof of Proposition 6.2 in [1]. �

4. CONSTRUCTING SYSTEMS WITH CYCLIC SYMMETRIES
NEAR HOPF POINTS

This section consists in recalling the results corresponding section 4 in [1]
where the construction of systems with abelian symmetry near Hopf points has
been carried out. When Γ is finite cyclic, a key step in constructing H mod K
periodic solutions from Hopf bifurcation at x0 is the construction of a locally
Σx0–equivariant vector field. We first construct, for finite symmetry groups,
a Γ–equivariant vector field that has a stable equilibrium, x0 ∈ Rn, with the
desired isotropy. We will use

Lemma 4. For any finite set of distinct points y1, . . . , yl, vectors v1, . . . , vl
in Rn and matrices A1, . . . , Al ∈ GL(n), there exists a polynomial map g :
Rn → Rn such that g(yj) = vj and (dg)yj = Aj .
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Proof. See [5]. �

Theorem 3. Let Γ be a finite cyclic group acting on Rn and x0 ∈ Rn.
Then there exists a Γ–equivariant system of ODEs on Rn with a stable equilib-
rium x0.

Proof. See [1]. �

In conclusion any point x0 ∈ Rn can be a stable equilibrium for a Γ–
equivariant vector field f : Rn → Rn. It is clear that (df)x0 must commute
with the isotropy subgroup Σx0 of x0 [4]. The following result states that the
linearization about the equilibrium x0 can be any linear map that commutes
with the isotropy subgroup.

Theorem 4. Let x0 ∈ Rn and A : Rn → Rn be a linear map that com-
mutes with the isotropy subgroup Σx0 of x0. Then there exists a polynomial
Γ–equivariant vector field f : Rn → Rn such that f(x0) = 0 and (df)x0 = A.

Proof. See [1]. �

When constructing a Hopf bifurcation at points x0 ∈ Rn we do not nec-
essarily assume full isotropy. Genericity of Σx0–simple subspaces at points of
Hopf bifurcation is given by Γ–equivariant mappings as follows.

Lemma 5. Let Γ act on Rn and fix x0 ∈ Rn. Let V be a Σx0–invariant
neighborhood of x0 such that γV̄ ∩V̄ = ∅ for any γ ∈ Γ\Σx0 . Let g : V̄ ×R→ Rn
be a smooth Σx0–equivariant vector field. Then there exists an extension of g
to a smooth Γ−equivariant vector field f : Rn × R→ Rn.

Proof. See [1]. �

5. THE CYCLIC HOPF H mod K THEOREM

Theorem 5 (Cyclic Hopf H mod K Theorem). Let Γ be a finite cyclic
group acting on Rn. There is an H mod K periodic solution that arises by a
generic Hopf bifurcation if and only if the following seven conditions hold: The-
orem 1 (a)− (d), Γ and all its subgroups, in particular H and K are homomor-
phic images of Z, there exists an H–simple subspace V such that K = kerV (H),
and let Zk act on Rk by a cyclic permutation of coordinates. Let Zq ⊆ Zn ⊆ Zk.
Then there is a Zn–simple representation with kernel Zq with the single excep-
tion when n = k is even and q = k

2 .

Proof. Necessity follows from the H mod K Theorem (Theorem 1) and
the Cyclic Hopf Theorem (Theorem 2). We’ll prove the sufficiency next. The
idea of the proof will again, rely heavily on the proof of Abelian Hopf H mod K
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Theorem in [1]. Let x0 ∈ Rn and let H be the isotropy subgroup of the point
x0, ie. H = Σx0 . Moreover, let W be a H–simple representation. Since Γ is
cyclic (in particular, abelian), W is two–dimensional. Now we can define the
linear maps A(λ) : W →W by

A(λ) =

[
λ −1
1 λ

]
.

Since W is two–dimensional it is easy to prove the commutativity with A. We
have

A(λ) ·W =

[
λ −1
1 λ

]
·
[
a −b
b a

]
=

[
λa− b −λb− a
a+ λb aλ− b

]
= W ·A(λ).

Next we can extend Theorem 4 to a bifurcation problem as in Lemma 5. Let f :
Rn×R→ Rn be a Γ–equivariant polynomial such that for all γ ∈ Γ, f(γx0, λ) =
0 and (df)γx0,λ|γW = γA(λ)γ−1. Moreover, let g = f |W+x0 . From the way f
has been constructed, g is H–equivariant on W +x0 and g(x0) = 0, hence from
Lemma 2 we have that W is the center subspace of (dg)x0,0.

Next consider (dg)x0,λ|W ; its eigenvalues are σ(λ) ± iρ(λ) with σ(0) =
0, ρ(0) = 1 and σ′(0) 6= 0. Then the Equivariant Hopf Theorem extended to
a point x0 ∈ Rn implies the existence of small–amplitude periodic solutions
emanating from x0 with spatio-temporal symmetries H and spatial symme-
tries K. �

6. GENERAL CONSIDERATIONS BETWEEN THE DIFFERENCE
OF THE RESULTS IN THIS ARTICLE AND [1]

In the first place it must be highlighted that one can start we the method-
ology used in [1] and add the restrictions presented in this paper to obtain the
Cyclic Hopf H mod K Theorem, but not vice–versa. This is obvious, because
any cyclic group is abelian but not any abelian group is cyclic.

In this section we use the Cyclic Hopf H mod K Theorem to exhibit
symmetry pairs (H,K) that are admissible by the Abelian Hopf H mod K
Theorem but not admissible by the Cyclic Hopf H mod K Theorem. Let Zl
act on Rl by cyclic permutation of coordinates and Γ = Zl×Zk act on Rl×Rk
by the diagonal action, where l, k > 1. We show Abelian Hopf H mod K
admissible pairs but not Cyclic Hopf H mod K admissible pairs for this action
of Γ by classifying in Theorem 6 all Cyclic Hopf H mod K admissible pairs
K ⊆ H ⊆ Γ and showing that there are admissible pairs that are not on the
list.
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Theorem 6. By applying the Cyclic Hopf H mod K Theorem, the (H,K)
Hopf–admissible pairs in Γ are (Zm × Zn, Zm × Zq) where q divides n except
when q = k

2 and n = k, and (Zm×Zn, Zp×Zn) where p divides m except when

p = l
2 and m = l. Moreover, m and n are coprimes, m and q are coprimes and

p and n are coprimes.

Proof. The proof is a restriction to the cases m and n are coprimes, m
and q are coprimes and p and n are coprimes, of the proof of Theorem 6.1
in [1]. �

To find an example of a pair (H,K) that is admissible by the Abelian Hopf
H mod K Theorem but not by the Cyclic Hopf H mod K Theorem, let’s take
(H = Zm×Zn, K = Zm×Zq) where q divides n except when q = k

2 and n = k,
and m and n are not coprimes, m and q are not coprimes. They are admissible
by the Abelian Hopf H mod K by applying Theorem 6.1 in [1]. However,
they are not admissible by the Cyclic Hopf H mod K Theorem because of the
application of the the Fundamental Theorem of Finitely Generated Abelian
Groups. Indeed, if, for example m and n are not coprimes then they have a
common divisor integer a ∈ N that is prime, and in this case m = ab, n = ac
for some integers b ∈ N, c ∈ N and the group Zab×Zac is not cyclic. A similar
case applies for the group K = Zm × Zq if m and q are not coprimes, or the
group K = Zp × Zn if n and p are not coprimes.
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