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In this paper, we discuss a posteriori error estimates of quadratic constrained con-
vection diffusion optimal control problems using a combined method of Raviart-
Thomas mixed finite element method and discontinuous Galerkin method. The
state and co-state are approximated by the lowest order Raviart-Thomas mixed
finite element spaces and the control approximated by piecewise constant func-
tions. We derive a posteriori error estimates for the coupled state and control
approximations, the control strained with a single obstacle K = {u ∈ L2(Ω) :
u ≥ 0}. Such estimates, which are apparently not available in the literature,
can be used to construct reliable adaptive finite element approximation for the
convection diffusion optimal control problems. Finally, the performance of the
posteriori error estimators is assessed by a numerical example.
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1. INTRODUCTION

Optimal control problems governed by convection diffusion equations have
attracted substantial interest in recent years due to their applications in aero-
hydrodynamics, atmospheric, hydraulic pollution problems, combustion, explo-
ration and extraction of oil and gas resources, and engineering. The past decade
has seen significant developments in theoretical and computational methods
for optimal control problems. The finite element method is a valid numerical
method of studying the partial differential equation, but it is not deeply studied
in solving optimal control problems. For optimal control problems governed
by linear elliptic equations, there was a pioneering work on finite element ap-
proximation by Falk [7]. An optimal control problem for a two-dimensional
elliptic equation was investigated with pointwise control constraints in Meyer
and Rösch [18]. A systematic introduction of the finite element method for
optimal control problems can be found in, for instance, [9–11, 14–16] and the
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references cited therein. Most of these researches have been, however, only for
the standard finite element methods for optimal control problems.

In many optimal control problems, the objective functional contains the
gradient of the state variables. Thus, the accuracy of the gradient is very im-
portant in the numerical discretization of the state equations. Mixed finite
element methods are appropriate for the state equations in such cases since
both the scalar variable and its flux variable can be approximated to the same
accuracy by using such methods. In [2, 21] the authors presented a priori er-
ror estimates and superconvergence of mixed finite element methods for linear
optimal control problems. However, there does not seem to exist much work
on theoretical estimates of mixed finite element methods for evolution con-
vection optimal control problems. Adaptive finite element approximation is a
most important mean to boost accuracy and efficiency of the finite element
discretization. Adaptive finite element approximation uses a posteriori error
indicator to guide the mesh refinement procedure. Liu and Yan investigated
a posteriori error estimates and adaptive finite element approximation for op-
timal control problems governed by Stokes equations in [13]. In [1, 4–6], we
derived a priori error estimates and superconvergence for quadratic optimal
control problems using mixed finite element methods. A posteriori error es-
timates of mixed finite element methods for general convex optimal control
problems was addressed in [3].

The purpose of this work is to obtain a posteriori error estimates of tri-
angular mixed finite element method and discontinuous Galerkin method for
quadratic optimal control problems governed by convection diffusion equations.
In [22], the authors first provided a numerical scheme—RT mixed FEM/DG
scheme for the constrained optimal control problems governed by convection
dominated diffusion equations when the objective function is g(y) + j(u). A
priori and a posteriori error estimates were obtained for both the state, the co-
state and the control. Compared with the related work [22], the present paper
gives a posteriori error estimates for quadratic convection diffusion optimal con-
trol problems when the objective function is 1

2‖p−pd‖
2+ 1

2‖y−yd‖
2+ υ

2‖u‖
2 and

they are discretized by triangular Raviart-Thomas mixed finite element method
and discontinuous Galerkin method. The approach combines the advantages
of the Raviart-Thomas mixed finite element method and the discontinuous
Galerkin method. Since piecewise constant functions are in Raviart-Thomas
mixed finite element spaces, the combined method can be extended to the op-
timal control problem governed by evolution convection dominated diffusion.

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces
on Ω with a norm ‖ · ‖m,p given by ‖v‖pm,p =

∑
|α|≤m

‖Dαv‖pLp(Ω). We set
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Wm,p
0 (Ω) = {v ∈ Wm,p(Ω) : v |∂Ω= 0}. For p = 2, we denote Hm(Ω) =

Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2.

In this paper, we consider the following quadratic optimal control prob-
lems governed by convection diffusion equations

min
u∈K⊂U

{
1
2‖p− pd‖

2 + 1
2‖y − yd‖

2 + υ
2‖u‖

2
}

(1.1)

div(ε
1
2p)− div(βy) + ay = f + u, in Ω,(1.2)

p = −ε
1
2∇y, in Ω,(1.3)

y = 0, on ∂Ω,(1.4)

where the bounded open set Ω ⊂ R2, is a convex polygon with piecewise smooth
boundary ∂Ω, f ∈ U = L2(Ω), pd and yd are two known functions, p and y
are the state variables, and u is the control variable, and K is a closed convex
set in L2(Ω). a is a given function, υ and ε are positive constants, and β is a
given vector valued function. There is a constant a0 > 0, which is independent
of ε, such that a − 1

2∇ · β ≥ a0 > 0. In the above optimal control problem,
the state equation (1.2) is a convection dominated diffusion equation. It is well
known that the standard finite element discretizations applied to the convection
diffusion equation (1.2) lead to strong oscillations when the constant ε > 0 is
small.

The rest of this paper is organized as follows. In Section 2, we con-
struct the triangular mixed finite element discretization and the discontinuous
Galerkin method for quadratic constrained optimal control problems governed
by convection diffusion equations. In Section 3, a posteriori error estimates
are derived for quadratic convection diffusion optimal control problems using
a combined method of the Raviart-Thomas mixed finite element method and
the discontinuous Galerkin method. Next, an example is given to demonstrate
our theoretical results in Section 4. Finally, we give a conclusion and some
future works in Section 5.

2. MIXED METHODS FOR OPTIMAL CONTROL PROBLEMS

In this section, we study the triangular mixed finite element discretization
and the discontinuous Galerkin method of the quadratic convection diffusion
optimal control problems (1.1)–(1.4). Let Th be regular triangulation of Ω,
so that Ω =

⋃
τ∈Th

τ̄ , where |τ | is the area of τ , hτ is the diameter of τ and

h = maxhτ . In addition C or c denotes a general positive constant independent
of h. Let V = H(div; Ω) = {v ∈ (L2(Ω))2,divv ∈ L2(Ω)} endowed with
the norm given by ‖v‖H(div;Ω) = (‖v‖20,Ω + ‖divv‖20,Ω)1/2 and W = {w ∈
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L2(Ω), w|τ ∈ H1(τ), τ ∈ Th}, U = L2(Ω). Furthermore, set

B(p, w) = (div(ε
1
2p), w), p ∈ V , w ∈W,(2.1)

D(y, w) =
∑
e∈Th

(∫
τ
yβ · ∇w −

∫
∂τ−

y+[w]n · βds

)
+ (ay, w),(2.2)

where

∂τ− = {l ∈ ∂τ,n · β| < 0},(2.3)

[w] = w+ − w−,(2.4)

w+(x) = lim
t→0+

w(x+ tβ),(2.5)

w−(x) = lim
t→0−

w(x+ tβ),(2.6)

where n is the outward norm direction on ∂τ , [w] = w+ on ∂τ− when ∂τ− ⊂ ∂Ω.
Then we recast (1.1)–(1.4) as the following weak form: find (p, y, u) ∈ V ×
W × U such that

min
u∈K⊂U

{
1
2‖p− pd‖

2 + 1
2‖y − yd‖

2 + υ
2‖u‖

2
}

(2.7)

(p,v)−B(v, y) = 0, ∀v ∈ V ,(2.8)

B(p, w) +D(y, w) = (f + u,w), ∀w ∈W.(2.9)

Similar to [22], it can be proved that the optimal control problem (2.7)–
(2.9) has at least a solution (p, y, u), and that a triplet (p, y, u) is the solution of
(2.7)–(2.9) if and only if there is a co-state (q, z) ∈ V×W such that (p, y, q, z, u)
satisfies the following optimality conditions:

(p,v)−B(v, y) = 0, ∀v ∈ V ,(2.10)

B(p, w) +D(y, w) = (f + u,w), ∀w ∈W,(2.11)

(q,v)−B(v, z) = −(p− pd,v), ∀v ∈ V ,(2.12)

D(w, z) +B(q, w) = (y − yd, w), ∀w ∈W,(2.13)

(z + υu, ũ− u)U ≥ 0, ∀ũ ∈ U,(2.14)

where (·, ·)U is the inner product of U . In the rest of the paper, we shall simply
write the product as (·, ·) whenever no confusion should be caused.

Now, let us consider the approximation scheme of the above optimal con-
trol problems by a combined method of Raviart-Thomas mixed finite element
method and discontinuous Galerkin method. Let V h × Wh ⊂ V × W de-
notes the lowest order Raviart-Thomas mixed finite element space [20], namely,
V (τ) = P 2

0 (τ) + x · P0(τ), where P0 denotes the space of constant functions,
x = (x1, x2) which treated as a vector, and

V h := {vh ∈ V : ∀τ ∈ Th, vh|τ ∈ V (τ)},
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Wh := {wh ∈W : ∀τ ∈ Th, wh|τ ∈ P0(τ)},
Uh := {ũh ∈ U : ∀τ ∈ Th, ũh|τ ∈ P0(τ)}.

By the definition of finite element subspace, the mixed finite element and
discontinuous Galerkin discretization of (2.7)–(2.9) is as follows: compute
(ph, yh, uh) ∈ V h ×Wh ×Kh such that

min
uh∈Kh⊂Uh

{
1
2‖ph − pd‖

2 + 1
2‖yh − yd‖

2 + υ
2‖uh‖

2
}

(2.15)

(ph,vh)−B(vh, yh) = 0, ∀vh ∈ V h,(2.16)

B(ph, wh) +D(yh, wh) = (f + uh, wh), ∀wh ∈Wh,(2.17)

where Kh = Uh ∩K.
Similarly, the optimal control problem (2.15)–(2.17) again has at least

a solution (ph, yh, uh), and that a triplet (ph, yh, uh) is the solution of (2.15)–
(2.17) if and only if there is a co-state (qh, zh) ∈ V h×Wh such that (ph, yh, qh,
zh, uh) satisfies the following optimality conditions:

(ph,vh)−B(vh, yh) = 0, ∀vh ∈ V h,(2.18)

B(ph, wh) +D(yh, wh) = (f + uh, wh), ∀wh ∈Wh,(2.19)

(qh,vh)−B(vh, zh) = −(ph − pd,vh), ∀vh ∈ V h,(2.20)

B(qh, wh) +D(wh, zh) = (yh − yd, wh), ∀wh ∈Wh,(2.21)

(zh + υuh, ũh − uh) ≥ 0, ∀ũh ∈ Kh.(2.22)

Now, we define the standard L2(Ω)-orthogonal projection Ph : W →Wh,
(v − Phv, wh) = 0, ∀wh ∈Wh, which satisfies the approximation property [8]:

(2.23) ‖v − Phv‖0,Ω ≤ Ch‖v‖1,Ω, ∀v ∈ H1(Ω).

Let us define the projection operator Πh : V → V h, which satisfies: for any
q ∈ V

(div(q −Πhq), wh) = 0, ∀wh ∈Wh.(2.24)

Then, the interpolation operator Πh satisfies a local error estimate:

(2.25) ‖q −Πhq‖0,Ω ≤ Ch|q|1,Th , q ∈ H1(Th) ∩ V .

3. A POSTERIORI ERROR ESTIMATES

In this section, we study a posteriori error estimates for the triangular
mixed finite element and discontinuous Galerkin discretization of the quadratic
constrained convection diffusion optimal control problems. The constrained
convection diffusion optimal control problem normally has singularity. Under
the constraint of an obstacle type, typically it has gradient jumps around the
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free boundary of the contact set. Thus, the numerical error of the finite ele-
ment solution is frequently concentrated around these areas. Adaptive finite
element approximation has been found very useful in computing optimal con-
trol problems. It uses a posteriori error indicator to guide the mesh refinement
procedure. Adaptive finite element approximation refines only the area where
the error indicator is larger, so that a higher density of nodes is distributed
over the area where the solution is difficult to approximate. In this sense, the
efficiency and reliability of adaptive finite element approximation very much
rely on those of the error indicator used.

We consider the most useful type of constraints:

K = {u ∈ L2(Ω) : u ≥ 0}.

In order to have sharp a posteriori error estimates, we divide Ω into some
subsets:

Ω−0 = {x ∈ Ω : zh(x) ≤ 0},
Ω0 = {x ∈ Ω : zh(x) > 0, uh = 0},
Ω+

0 = {x ∈ Ω : zh(x) > 0, uh > 0}.

Then, it is clear that the three subsets do not intersect each other, and Ω =
Ω−0 ∪ Ω0 ∪ Ω+

0 .

As in [1], let

J(u) =
1

2
‖p− pd‖2 +

1

2
‖y − yd‖2 +

υ

2
‖u‖2,(3.1)

Jh(uh) =
1

2
‖ph − pd‖2 +

1

2
‖yh − yd‖2 +

υ

2
‖uh‖2.(3.2)

It can be shown that

(J ′(u), v) = (υu+ z, v),

(J ′(uh), v) = (υuh + z(uh), v),

(J ′h(uh), v) = (υuh + zh, v),

where z(uh) is the solution of the equations (3.3)–(3.6) with ũ = uh:

(p(ũ),v)−B(v, y(ũ)) = 0, ∀v ∈ V ,(3.3)

B(p(ũ), w) +D(y(ũ), w) = (f + ũ, w), ∀w ∈W,(3.4)

(q(ũ),v)−B(v, z(ũ)) = −(p(ũ)− pd,v), ∀v ∈ V ,(3.5)

D(w, z(ũ)) +B(q(ũ), w) = (y(ũ)− yd, w), ∀w ∈W.(3.6)

In many applications, J(·) is uniform convex near the solution u (see, e.g., [12]).
The convexity of J(·) is closely related to the second order sufficient conditions
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of the control problem, which are assumed in many studies on numerical meth-
ods of the problem. If J(·) is uniformly convex, then there is a c > 0, such
that

(J ′(u)− J ′(uh), u− uh) ≥ c‖u− uh‖20,Ω,(3.7)

where u and uh are the solutions of (2.7) and (2.15), respectively. We will
assume the above inequality throughout this paper.

Now we establish the following a error estimate, which can be proved
similarly to the proofs given in [3].

Theorem 3.1. Let u and uh be the solutions of (2.7)–(2.9) and (2.15)–
(2.17), respectively. Then we have

‖u− uh‖20,Ω ≤ C
(
η2

1 + ‖zh − z(uh)‖20,Ω
)
,(3.8)

where

η2
1 =

∫
Ω−0

|zh + υuh|2dx.

Proof. It follows from the inequality (3.7) that

c‖u− uh‖20,Ω ≤(J ′(u), u− uh)− (J ′(uh), u− uh)

≤− (J ′(uh), u− uh)

=(J ′h(uh), uh − u) + (J ′h(uh)− J ′(uh), u− uh).(3.9)

Note that

(J ′h(uh), uh − u) =

∫
Ω−0

(zh + υuh)(uh − u) +

∫
Ω+

0

(zh + υuh)(uh − u)

+

∫
Ω0

(zh + υuh)(−u).(3.10)

It is easy to see that∫
Ω−0

(zh + υuh)(uh − u) ≤
∫

Ω−0

|zh + υuh|2dx+ δ‖u− uh‖20,Ω

=Cη2
1 + δ‖u− uh‖20,Ω.(3.11)

Since uh is piecewise constant, uh|τ > 0 if τ∩Ω+
0 is not empty. If uh|τ > 0, there

exist σ > 0 and α ∈ Uh, such that α ≥ 0, ‖α‖L∞(τ) = 1 and (uh − σα)|τ ≥ 0.
For example, one can always find such a required α from one of the shape
functions on τ . Hence, ûh ∈ Kh, where ûh = uh − σα as x ∈ τ and otherwise
û = uh. Then, it follows from (2.22) that∫

τ
(zh + υuh)α =σ−1

∫
τ
(zh + υuh)(uh − (uh − σα))
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≤σ−1

∫
Ω

(zh + υuh)(uh − (uh − σα)) ≤ 0.(3.12)

Note that on Ω+
0 , zh + υuh ≥ zh > 0 and from (3.12) we have∫

τ∩Ω+
0

|zh + υuh|α =

∫
τ∩Ω+

0

(zh + υuh)α ≤ −
∫
τ∩Ω−0

(zh + υuh)α

≤
∫
τ∩Ω−0

|zh + υuh|.(3.13)

Let τ̂ be the reference element of τ , τ0 = τ ∩Ω+
0 , and τ̂0 ⊂ τ̂ be a part mapped

from τ̂0. Note that
( ∫

τ | · |
2
)1/2

,
∫
τ | · |α are both norms on L2(τ). In such a

case for the function α fixed above, it follows from the equivalence of the norm
in the finite-dimensional space that∫

τ∩Ω+
0

|zh + υuh|2

=

∫
τ0

|zh + υuh|2 ≤ Ch2
τ

∫
τ̂0

|zh + υuh|2

≤Ch2
τ

(∫
τ̂0

|zh + υuh|α
)2
≤ Ch−2

τ

(∫
τ∩Ω−0

|zh + υuh|α
)2

≤Ch−2
τ

(∫
τ∩Ω−0

|zh + υuh|
)2
≤ C

∫
τ∩Ω−0

|zh + υuh|2.(3.14)

So that, ∫
Ω+

0

(zh + υuh)(uh − u) ≤C
∫

Ω+
0

|zh + υuh|2 + δ‖u− uh‖20,Ω

≤C
∫

Ω−0

|zh + υuh|2 + δ‖u− uh‖20,Ω

≤Cη2
1 + δ‖u− uh‖20,Ω.(3.15)

It follows from the definition of Ω0 that zh > 0 on Ω0. Note that −u ≤ 0, we
have that ∫

Ω0

(zh + υuh)(−u) ≤ 0.(3.16)

It is easy to show that

(J ′h(uh)− J ′(uh), u− uh)

=(zh + υuh, u− uh)− (z(uh) + υuh, u− uh)

=(zh − z(uh), u− uh)

≤C‖zh − z(uh)‖20,Ω + δ‖u− uh‖20,Ω.(3.17)
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Therefore, (3.8) follows from (3.9)–(3.11) and (3.15)–(3.17). �

In order to estimate ‖y(uh)−yh‖0,Ω and ‖z(uh)−zh‖0,Ω, we need a priori
regularity estimate for the following auxiliary problems:{

div(ε
1
2ψ) + β · (∇ϕ) + aϕ = F,

ψ + ε
1
2∇ϕ = 0, x ∈ Ω, ϕ|∂Ω = 0,

(3.18)

and {
div(ε

1
2ψ)− div(βϕ) + aϕ = F,

ψ + ε
1
2∇ϕ = 0, x ∈ Ω, ϕ|∂Ω = 0.

(3.19)

The next lemma gives the desired a priori estimate (see, for example, [19]).

Lemma 3.1. Let (ψ, ϕ) be the solution of (3.18) or (3.19). Assume that
Ω is convex polygon or smooth, then we have

ε
3
2 ‖ϕ‖2,Ω + ε

1
2 ‖ϕ‖1,Ω + ‖ϕ‖0,Ω ≤ C‖F‖0,Ω.(3.20)

Fix a function uh ∈ Uh, let (p(uh), y(uh)) ∈ V ×W is the solution of the
equations (3.3)–(3.6). Let (ph, yh) ∈ V h×Wh be the solution of (2.18)–(2.22),
respectively. Set some intermediate errors: ξ1 := y(uh)− yh, ζ1 := p(uh)−ph.
Then we can show:

Theorem 3.2. Let (p(uh), y(uh), q(uh), z(uh)) ∈ (V ×W )2 and (ph, yh,
qh, zh) ∈ (V h×Wh)2 be the solutions of (3.3)–(3.6) and (2.18)–(2.22), respec-
tively. Then there is a positive constant C which only depends on Ω and the
shape of the elements, such that

(3.21) ‖y(uh)− yh‖20,Ω ≤ C
5∑
i=2

η2
i ,

where

η2
2 =

∑
τ∈Th

h2
τ
ε

(
f + uh − div(ε

1
2ph) + div(βyh)− ayh

)2
,

η2
3 =

∑
τ∈Th

hτ
ε

∫
τ p

2
h,

η2
4 =

∑
∂τ∩∂Ω=∅

hτ
ε

∫
∂τ [yh]2|n · β|ds,

η2
5 =

∑
τ̄∩∂Ω6=∅

hτ
ε

∫
∂Ω\∂τ−(yh)2

−|n · β|ds,

where [v]l is the jump of v on the edge l.
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Proof. Let us first consider the error estimates of ξ1. Let (ψ, ϕ) be the
solution of (3.18) with F = ξ1. Then it follows from equations (3.3)–(3.4) with
ũ = uh that

‖ξ1‖20,Ω =(div(ε
1
2ψ) + β · (∇ϕ) + aϕ, ξ1)− (ψ + ε

1
2∇ϕ, ζ1)

=(div(ε
1
2ψ) + β · (∇ϕ) + aϕ, y(uh)− yh)− (ψ, ζ1) + (ϕ,div(ε

1
2 ζ1))

=(div(ε
1
2ψ) + β · (∇ϕ) + aϕ, y(uh))− (div(ε

1
2ψ) + β · (∇ϕ) + aϕ, yh)

− (ψ,p(uh)) + (ψ,ph) + (ϕ,div(ε
1
2p(uh)))− (ϕ,div(ε

1
2ph))

=(div(ε
1
2ψ), y(uh))−(ψ,p(uh))+(ϕ,div(ε

1
2p(uh)))+(β · (∇ϕ), y(uh))

+ (aϕ, y(uh)) + (ψ,ph)− (ϕ,div(ε
1
2ph))

− (div(ε
1
2ψ) + β · (∇ϕ) + aϕ, yh)

=(f + uh, ϕ) + (ψ,ph)− (ϕ,div(ε
1
2ph))

− (div(ε
1
2ψ) + β · (∇ϕ) + aϕ, yh).(3.22)

Let Πh, Ph be the interpolation operators introduced in Section 2. It can be
shown from (2.18)–(2.19) that

(Πhψ,ph)−(div(ε
1
2 Πhψ),yh)−(Phϕ,div(ε

1
2ph))−(β ·∇Phϕ,yh)−(aPhϕ,yh)

+
∑
τ∈Th

∫
∂τ−

(yh)+[Phϕ]n · βds = −(f + uh, Phϕ).(3.23)

Note that the definition of the interpolation operator Πh implies that

(div(ε
1
2 (ψ −Πhψ)), yh) = 0,(3.24)

then we have

(ψ −Πhψ,ph)− (div(ε
1
2 (ψ −Πhψ)), yh)− (ϕ− Phϕ,div(ε

1
2ph))

−(β · ∇(ϕ− Phϕ), yh)−(a(ϕ− Phϕ), yh)−
∑
τ∈Th

∫
∂τ−

(yh)+[Phϕ]n · βds

=(ψ −Πhψ,ph)− (div(ε
1
2ph), ϕ− Phϕ) + (div(βyh), ϕ− Phϕ)

− (ayh, ϕ− Phϕ)−
∑
τ∈Th

∫
∂τ−

(yh)+[Phϕ]n · βds

−
∑
τ∈Th

∫
∂τ
yh(ϕ− Phϕ)n · βds

=(−div(ε
1
2ph) + div(βyh)− ayh, ϕ− Phϕ)

+ (ψ −Πhψ,ph)−
∑

∂τ−∩∂Ω=∅

∫
∂τ−

[yh](ϕ− Phϕ)−n · βds
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−
∫
∂Ω\(∪∂τ−)

(yh)−(ϕ− Phϕ)−n · βds.(3.25)

Therefore, from (3.22)–(3.25) we obtain

‖ξ1‖20,Ω =(f + uh − div(ε
1
2ph) + div(βyh)− ayh, ϕ− Phϕ) + (ψ −Πhψ,ph)

−
∑

∂τ−∩∂Ω=∅

∫
∂τ−

[yh](ϕ− Phϕ)−n · βds

−
∫
∂Ω\(∪∂τ−)

(yh)−(ϕ− Phϕ)−n · βds

≤C(δ)
∑
τ∈Th

h2
τ

ε

(
f + uh − div(ε

1
2ph) + div(βyh)− ayh

)2

+ C(δ)
∑
τ∈Th

hτ
ε

∫
τ
p2
h + C(δ)

∑
∂τ∩∂Ω=∅

hτ
ε

∫
∂τ

[yh]2|n · β|ds

+ C(δ)
∑

τ̄∩∂Ω6=∅

hτ
ε

∫
∂Ω\∂τ−

(yh)2
−|n · β|ds

+ Cδ
( ∑
τ∈Th

ε

h2
τ

‖ϕ− Phϕ‖20,τ +
∑
τ∈Th

ε

hτ

∫
∂τ

(ϕ− Phϕ)2

+
∑
τ∈Th

ε

hτ
‖ψ −Πhψ‖20,τ

)
.(3.26)

It follows from the error estimates of interpolation operator and Lemma 3.1
that ∑

τ∈Th

ε
h2
τ
‖ϕ− Phϕ‖20,τ ≤ Cε

∑
τ∈Th
‖ϕ‖21,τ = Cε‖ϕ‖21,Ω ≤ C‖ξ1‖20,Ω,(3.27)∑

τ∈Th

ε
hτ

∫
∂τ (ϕ−Phϕ)2≤C

∑
τ∈Th

ε
hτ
‖ϕ−Phϕ‖21

2
,τ
≤Cε‖ϕ‖21,Ω ≤ C‖ξ1‖20,Ω,(3.28) ∑

τ∈Th

ε
hτ
‖ψ −Πhϕ‖20,τ ≤ Cε

∑
τ∈Th
‖ϕ‖21

2
,τ
≤ Cε2‖∇ϕ‖21

2
,Ω
≤ C‖ξ1‖20,Ω.(3.29)

Then we can deduce that

‖ξ1‖20,Ω ≤C(δ)
∑
τ∈Th

h2
τ

ε

(
f + uh − div(ε

1
2ph) + div(βyh)− yh

)2

+ C(δ)
∑
τ∈Th

hτ
ε

∫
τ
p2
h + C(δ)

∑
∂τ∩∂Ω=∅

hτ
ε

∫
∂τ

[yh]2|n · β|ds

+ C(δ)
∑

τ̄∩∂Ω 6=∅

hτ
ε

∫
∂Ω\∂τ−

(yh)2
−|n · β|ds
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+ Cδ‖ξ1‖20,Ω.(3.30)

Therefore, (3.21) follows from (3.30) by setting δ = 1
2C . �

Let (q(uh), z(uh)) ∈ V ×W is the solution of the equations (3.3)–(3.6).
Let (qh, zh) ∈ V h×Wh be the solution of (2.18)–(2.22), respectively. Set some
intermediate errors: ξ2 := z(uh) − zh, ζ2 := q(uh) − qh. Using the argument
similar to the proof of Theorem 3.2, we can also derive the following result.

Theorem 3.3. Let (p(uh), y(uh), q(uh), z(uh)) ∈ (V ×W )2 and (ph, yh,
qh, zh) ∈ (V h×Wh)2 be the solutions of (3.3)–(3.6) and (2.18)–(2.22), respec-
tively. Then there is a positive constant C which only depends on Ω and the
shape of the elements, such that

(3.31) ‖z(uh)− zh‖20,Ω ≤ C
8∑
i=6

η2
i ,

where

η2
6 =

∑
τ∈Th

h2
τ
ε

(
yh − yd − div(ε

1
2qh)− β · ∇zh − azh

)2
,

η2
7 =

∑
τ∈Th

hτ
ε

∫
τ (qh + ph − pd)2,

η2
8 =

∑
τ∈Th

hτ
ε

∫
∂τ−

[zh]2|n · β|ds,

where [v]l is the jump of v on the edge l.

Proof. Let us first consider the error estimates of ξ2. Let (ψ, ϕ) be the
solution of (3.19) with F = ξ2. Then is follows from equations (3.5)–(3.6) with
ũ = uh that

‖ξ2‖20,Ω =(div(ε
1
2ψ)− div(βϕ) + aϕ, ξ2)− (ψ + ε

1
2∇ϕ, ζ2)

=(div(ε
1
2ψ)− div(βϕ) + aϕ, z(uh)− zh)− (ψ, ζ2) + (ϕ,div(ε

1
2 ζ2))

=(div(ε
1
2ψ)− div(βϕ) + aϕ, z(uh))− (div(ε

1
2ψ)− div(βϕ) + aϕ, zh)

− (ψ, q(uh)) + (ψ, qh) + (ϕ,div(ε
1
2q(uh)))− (ϕ,div(ε

1
2qh))

=(div(ε
1
2ψ),z(uh))−(ψ, q(uh))+(ϕ,div(ε

1
2q(uh)))−div(βϕ)+az(uh),ϕ)

+ (ψ, qh)− (ϕ,div(ε
1
2qh))− (div(ε

1
2ψ) + β · (∇ϕ) + aϕ, zh)

=(p(uh)− pd,ψ) + (y(uh)− yd, ϕ) + (ψ, qh)− (ϕ,div(ε
1
2qh))

− (div(ε
1
2ψ)− div(βϕ) + aϕ, zh)

=(p(uh)− pd,ψ) + (y(uh)− yd, ϕ) + (ψ, qh)− (div(ε
1
2ψ), zh)
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− (ϕ,div(ε
1
2qh))− (β · ∇zh, ϕ)− (aϕ, zh) +

∑
τ∈Th

∫
∂τ
zhϕn · βds,(3.32)

and from (2.20)–(2.21), we have

(Πhψ, qh)− (div(ε
1
2 Πhψ), zh)− (Phϕ,div(ε

1
2qh))− (β · ∇zh, Phϕ)

−(aPhϕ, zh) +
∑
τ∈Th

∫
∂τ−

(Phϕ)+[zh]n · βds

= −(ph − pd,Πhψ)− (yh − yd, Phϕ).(3.33)

The definition of the interpolation operator Πh implies that

(div(ε
1
2 (ψ −Πhψ)), zh) = 0.(3.34)

Combining (3.32)–(3.34), then we have

(ψ −Πhψ, qh)− (div(ε
1
2 (ψ −Πhψ)), zh)− (ϕ− Phϕ,div(ε

1
2qh))

−(β · ∇zh, ϕ−Phϕ)−(a(ϕ−Phϕ), zh)−
∑
τ∈Th

∫
∂τ−

(Phϕ)+[zh]n · βds

=(ψ −Πhψ, qh)− (div(ε
1
2qh), ϕ− Phϕ)− (β · ∇zh, ϕ− Phϕ)

− (azh, ϕ− Phϕ)−
∑
τ∈Th

∫
∂τ−

(Phϕ)+[zh]n · βds

=(ψ −Πhψ, qh)− (div(ε
1
2qh) + β · ∇zh + azh, ϕ− Phϕ)

−
∑
τ∈Th

∫
∂τ−

(Phϕ)+[zh]n · βds.(3.35)

Therefore, from (3.32)–(3.35) we obtain

‖ξ2‖20,Ω =(p(uh)− pd,ψ) + (y(uh)− yd, ϕ)− (ph − pd,Πhψ)− (yh − yd, Phϕ)

+ (ψ −Πhψ, qh)− (div(ε
1
2qh) + β · ∇zh + azh, ϕ− Phϕ)

−
∑
τ∈Th

∫
∂τ−

(Phϕ)+[zh]n · βds+
∑
τ∈Th

∫
∂τ
zhϕn · βds

+ (p(uh)− ph,ψ) + (y(uh)− yh, ϕ)

=(yh − yd − div(ε
1
2qh)− β · ∇zh − azh, ϕ− Phϕ)

+(ψ −Πhψ, qh + ph − pd)+(ε∇(y(uh)− yh),∇ϕ) + (y(uh)− yh, ϕ)

+
∑
τ∈Th

∫
∂τ−

[zh](ϕ− Phϕ)+n · βds

≤C(δ)
∑
τ∈Th

h2
τ

ε

(
yh − yd − div(ε

1
2qh)− β · ∇zh − azh

)2
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+ C(δ)‖y(uh)− yh‖20,Ω

+ C(δ)
∑
τ∈Th

hτ
ε

∫
τ
(qh + ph − pd)2 + C(δ)

∑
τ∈Th

hτ
ε

∫
∂τ−

[zh]2|n · β|ds

+ Cδ
( ∑
τ∈Th

ε

h2
τ

‖ϕ− Phϕ‖20,τ +
∑
τ∈Th

ε

hτ

∫
∂τ−

(ϕ− Phϕ)2
+

+
∑
τ∈Th

ε

hτ
‖ψ −Πhψ‖20,τ + ‖ϕ‖22,Ω

)
.(3.36)

Similarly, it follows from the error estimates of interpolation operator that

(3.37)
∑
τ∈Th

ε

h2
τ

‖ϕ− Phϕ‖20,τ ≤ Cε
∑
τ∈Th

‖ϕ‖21,τ = Cε‖ϕ‖21,Ω ≤ C‖ξ2‖20,Ω,

(3.38)∑
τ∈Th

ε

hτ

∫
∂τ−

(ϕ− Phϕ)2
+ ≤ C

∑
τ∈Th

ε

hτ
‖ϕ− Phϕ‖21

2
,τ
≤ Cε‖ϕ‖21,Ω ≤ C‖ξ2‖20,Ω,

(3.39)
∑
τ∈Th

ε

hτ
‖ψ −Πhϕ‖20,τ ≤ Cε

∑
τ∈Th

‖ϕ‖21
2
,τ
≤ Cε2‖∇ϕ‖21

2
,Ω
≤ C‖ξ2‖20,Ω.

Then we can deduce that

‖ξ2‖20,Ω ≤C(δ)
∑
τ∈Th

h2
τ

ε

(
yh − yd − div(ε

1
2qh)− β · ∇zh − azh

)2

+ C(δ)
∑
τ∈Th

hτ
ε

∫
τ
(qh + ph − pd)2

+ C(δ)
∑
τ∈Th

hτ
ε

∫
∂τ−

[zh]2|n · β|ds

+ Cδ‖ξ2‖20,Ω.(3.40)

Then by setting δ = 1
2C in (3.40), we obtain (3.31). �

Next, we estimate ‖p − p(uh)‖0,Ω, ‖y − y(uh)‖0,Ω, ‖q − q(uh)‖0,Ω, and
‖z − z(uh)‖0,Ω.

Theorem 3.4. Let (p, y, q, z, u) ∈ (V ×W )2×U is the solution of (2.10)–
(2.14) and (p(uh), y(uh), q(uh), z(uh)) ∈ (V ×W )2 is the solution of (3.3)–(3.6)
with ũ = uh. There is a constant C > 0, independent of h, such that

‖p− p(uh)‖0,Ω + ‖y − y(uh)‖0,Ω ≤ C‖u− uh‖0,Ω,(3.41)

‖q − q(uh)‖0,Ω + ‖z − z(uh)‖0,Ω ≤ C‖u− uh‖0,Ω.(3.42)
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Proof. Similar to Reference [22], we introduce a new norm:

(3.43) ‖y‖2∗ = a0‖y‖20,Ω +
1

2

∑
τ∈Th

∫
∂τ−

[y]2|n · β|ds+
1

2

∫
∂Ω\(∪∂τ−)

y2
−|n · β|ds.

Note that [w] = w+ on ∂τ− when τ− ⊂ ∂Ω. Then using the same technique as
the discontinuous Galerkin method for first order hyperbolic equation [17], it
can be derived that

D(y, y) =((a− 1

2
divβ)y, y) +

1

2

∑
τ∈Th

∫
∂τ−

[y]2|n · β|ds+
1

2

∫
∂Ω\(∪∂τ−)

y2
−|n · β|ds

≥a0‖y‖20,Ω +
1

2

∑
τ∈Th

∫
∂τ−

[y]2|n · β|ds+
1

2

∫
∂Ω\(∪∂τ−)

y2
−|n · β|ds

≥‖y‖2∗.

Let

A((p, y), (v, w)) = (p,v)−B(v, y) +B(p, w) +D(y, w).

Set the norm

‖(p, y)‖2A = ‖q‖20,Ω + ‖y‖2∗.

Then it is easy to see that

A((p, y), (p, y)) = (p,p) +D(y, y) ≥ ‖q‖20,Ω + ‖y‖2∗ = ‖(p, y)‖2A.(3.44)

Note that (p, y) and (p(uh), y(uh)) are the solutions of (2.10)–(2.14) and (3.3)–
(3.6), respectively. Then we derive

(p− p(uh),v)−B(v, y − y(uh)) = 0, ∀v ∈ V ,
B(p− p(uh), w) +D(y − y(uh), w) = (u− uh, w), ∀w ∈W.

Setting v = p− p(uh), w = y − y(uh), we obtain

A((p− p(uh), y − y(uh)), (p− p(uh), y − y(uh))) = (u− uh, y − y(uh)).

By using the property of A, we derive

‖p− p(uh)‖20,Ω + ‖y − y(uh)‖20,Ω ≤ ‖u− uh‖20,Ω.

Similarly, setting A((q, z), (v, w)) = (q,v) − B(v, z) + B(q, w) + D(z, w), we
obtain

‖q − q(uh‖20,Ω + ‖z − z(uh)‖20,Ω ≤ ‖u− uh‖20,Ω.

Then we prove Theorem 3.4. �

Finally, by using the Theorems 3.1–3.4, we can derive the following result:
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Theorem 3.5. Let (p, y, q, z, u) ∈ (V ×W )2×U and (ph, yh, qh, zh, uh) ∈
(V h×Wh)2×Uh be the solutions of (2.10)–(2.14) and (2.18)–(2.22). Assume
all the conditions in Theorems 3.1–3.3 hold. Then we have

‖y − yh‖20,Ω + ‖z − zh‖20,Ω + ‖u− uh‖20,Ω ≤ C
8∑
i=1

η2
i ,

where η1, η2, ..., and η8 are defined in Theorem 3.1, Theorem 3.2, and Theo-
rem 3.3, respectively.

Proof. Combining Theorems 3.1–3.4 and the triangle inequality to obtain
that

‖y − yh‖20,Ω + ‖z − zh‖20,Ω + ‖u− uh‖20,Ω
≤‖y − y(uh)‖20,Ω + ‖y(uh)− yh‖20,Ω

+ ‖z − z(uh)‖20,Ω + ‖z(uh)− zh‖20,Ω + ‖u− uh‖20,Ω
≤‖y(uh)− yh‖20,Ω + ‖z(uh)− zh‖20,Ω + C‖u− uh‖20,Ω

≤C
8∑
i=1

η2
i .

This completes the proof of the theorem. �

Remark 3.1. By using a more careful analysis (see, for example, [22]), we
can also prove that

‖p− ph‖2V −1 + ‖q − qh‖2V −1 ≤ C
9∑
i=1

η2
i ,

where η1, η2, ..., and η8 are defined in Theorem 3.1, Theorem 3.2, and Theo-
rem 3.3, respectively, and

η2
9 =

∑
l∩∂Ω=∅

hl

∫
l
([ph · t]2 + [qh · t]2)ds,(3.45)

where t is the tangential vector on l.

4. NUMERICAL EXAMPLE

In the section, we use a posteriori error estimates presented in our paper
as an indicator for the adaptive finite element approximation. There has been
immense research on developing fast numerical algorithms for optimal control
problems in the scientific literature that it is simply impossible to give even
a very brief review here. However, there seems to be still some way to go
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before efficient solvers can be developed even for the constrained quadratic
convection diffusion optimal control problems. The reason seems to be that
there are so many computational bottlenecks in solving an optimal control
problem. It has been recently found that suitable adaptive meshes can greatly
reduce discretization errors, see, for example, [10].

For the constrained quadratic convection diffusion optimal control prob-
lems, we pay more attention on the state variables y, z and the control variable
u, while some results on the state variables p, q are ignored.

Our numerical example is the following optimal control problem:

min
u∈K⊂U

{
1
2‖p− pd‖

2 + 1
2‖y − yd‖

2 + 1
2‖u‖

2
}

div(ε
1
2p)− div(βy) + y = f + u, in Ω,

p = −ε
1
2∇y, in Ω,

y = 0, on ∂Ω.

In this example, we choose the domain Ω = [0, 1] × [0, 1], β = (2, 3),
ε = 10−4. Let Ω be partitioned into Th as described in Section 2. The op-
timal control problem considered in this section is control constrained with a
single obstacle: K = {u ∈ U, u ≥ 0}. In the numerical simulation, we use the
combined method of triangular Raviart-Thomas mixed finite element method
and discontinuous Galerkin method to approximate quadratic convection diffu-
sion optimal control problems. We shall use η1 as the control mesh refinement
indicator, and η2-η5 and η6-η8 as the state’s and co-state’s.

We set the known functions as follows:

y = sin(x1)x2
2

(
1− e((2x1−2)/ε)

)(
1− e((3x2−3)/ε)

)
,

z = sin(πx1) sin(πx2)e
−
(

(x1−1/2)2

0.01
+

(x2−1/2)2

0.01

)
,

u = max{1− cos(πx1/2)− cos(πx2/2), 0}, p = −ε
1
2∇y.

These functions can be inserted into the equations and then the corresponding
terms f , pd and yd can be computed out.

Table 1 presents the errors of the control u on the uniform mesh and
the adaptive mesh, respectively. It can be clearly seen from Table 1 that on
the adaptive meshes one may use fewer mesh nodes of u to produce a given
L2 control error reduction. Then it is clear that the adaptive finite element
method is more efficient.

In Table 2, we give the errors of the state y, z on the uniform mesh and
the adaptive mesh. Again, it is shown from Table 2 that the a posteriori
error estimators provided in this paper are to generate efficient adaptive finite
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element approximation and substantial computing work can be saved by using
the adaptive finite element method.

Table 1
Numerical results of u on the uniform and adaptive meshes

Uniform
mesh nodes

‖u− uh‖0,Ω Adaptive
mesh nodes

‖u− uh‖0,Ω

41 3.9872e-2 243 1.2502e-2

145 1.9926e-2 378 8.2724e-3

545 1.0030e-2 726 5.9167e-3

2113 4.9902e-3 916 3.6183e-3

Table 2
Numerical results of y, z on the uniform and adaptive meshes

Uniform
mesh nodes

‖y − yh‖0,Ω ‖z − zh‖0,Ω Adaptive
mesh nodes

‖y − yh‖0,Ω ‖z − zh‖0,Ω

41 3.5671e-2 3.1227e-2 356 1.0052e-2 9.5184e-3

145 1.7946e-2 1.5614e-2 608 7.6785e-3 7.3170e-3

545 8.5346e-3 7.8071e-3 836 4.9796e-3 4.8618e-3

2113 4.1517e-3 3.9020e-3 1019 3.3587e-3 3.1798e-3

5. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the combined method of triangular
Raviart-Thomas mixed finite element method and discontinuous Galerkin
method for quadratic convection diffusion optimal control problems with the
admissible set:

K = {u ∈ L2(Ω) : u ≥ 0}.

The state and co-state are approximated by the lowest order Raviart-
Thomas mixed finite element spaces and the control approximated by piecewise
constant functions. We derive a posteriori error estimates for the coupled
state and control approximations. Such estimates, which are apparently not
available in the literature, can be used to construct reliable adaptive finite
element approximation scheme for the quadratic convection diffusion optimal
control problems.

Optimal control problems governed by convection diffusion equations
arise in many scientific and engineering computing problems, such as atmo-
spheric and hydraulic pollution problems, mathematical model about air pol-
lution control problem, which is discussed in [23]. The model represents an
optimal control problem in which air emission is controlled at a permissible
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level while the negative impacts on human activities are minimized. In this
kind of cases, the control function is a source term, while the observation func-
tion can be described by convection diffusion equation.

In our future work, we shall use the mixed finite element method and
discontinous Galerkin method to deal with the optimal control problems gov-
erned by linear or nonlinear convection diffusion equations with the admissible
set:

K = {u ∈ L2(Ω) :

∫
Ω
u(x)dx ≥ 0}.
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