ON POSITIVE DEFINITE QUADRATIC FORMS AND THE EXTENDED HECKE GROUP $\overline{H}(\sqrt{2})$

MERYEM CILDIR, OZDEN KORUOGLU and AHMET TEKCAN

Communicated by Alexandru Zaharescu

In this work, our main goal is to determine the connection between positive quadratic forms F = (a, b, c) in $\overline{H}(\sqrt{2})$ whose base points z = z(F) lie on the line $x = \frac{-\sqrt{2}}{m}$ and the elements of extended Hecke group $\overline{H}(\sqrt{2})$.

AMS 2010 Subject Classification: 11E18, 11E25, 11F06.

Key words: extended Hecke group, positive quadratic form, base points.

1. INTRODUCTION

A real binary quadratic form (or just a form) F is polynomial in two variables x and y of the type

$$F = F(x, y) = ax^2 + bxy + cy^2$$

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discriminant of F is defined by the formula $b^2 - 4ac$ and is denoted by $\Delta = \Delta(F)$. A binary quadratic form F is called

- (1) integral form if and only if $a, b, c \in \mathbb{Z}$
- (2) positive definite if and only if $\Delta(F) < 0$ and a, c > 0
- (3) indefinite if and only if $\Delta(F) > 0$.

Most properties of quadratic forms can be given by the aid of extended modular group $\overline{\Gamma}$. Gauss (1777–1855) defined the group action of $\overline{\Gamma}$ on the set of forms as follows:

(1.1)
$$gF(x,y) = (ar^{2} + brs + cs^{2})x^{2} + (2art + bru + bts + 2csu)xy + (at^{2} + btu + cu^{2})y^{2}$$

for $g = \begin{bmatrix} r & s \\ t & u \end{bmatrix} \in \overline{\Gamma}$, that is, gF is obtained from F by making the substitution $x \to rx + tu$ and $y \to sx + uy$, that is,

$$gF = (rx + ty, sx + uy).$$

MATH. REPORTS 18(68), 3 (2016), 355-361

Moreover, $\Delta(F) = \Delta(gF)$ for all $g \in \overline{\Gamma}$, that is, the action of $\overline{\Gamma}$ on forms leaves the discriminant invariant. If F is indefinite or integral, then so is gF for all $g \in \overline{\Gamma}$. Let F and G be two forms. If there exists a $g \in \overline{\Gamma}$ such that gF = G, then F and G are called equivalent. If det g = 1, then F and G are called properly equivalent, and if det g = -1, then F and G are called improperly equivalent (for further details on binary quadratic forms see [1, 2, 4, 7]).

2. POSITIVE DEFINITE FORMS AND THE EXTENDED HECKE GROUP $\overline{H}(\sqrt{2})$

In this section, we deal with the connection between positive definite forms and the extended Hecke groups. For this reason, we first give some preliminary results on Hecke groups.

In [5], Hecke introduced the groups $H(\lambda)$ generated by two linear fractional transformations

$$T(z) = -\frac{1}{z}$$
 and $U(z) = z + \lambda$

Hecke showed that $H(\lambda)$ is discrete if and only if $\lambda = \lambda_q = 2\cos(\frac{\pi}{q}), q \in \mathbb{N}$, $q \geq 3$ or $\lambda \geq 2$. These groups have come to be known as the Hecke groups, and we will denote them by $H(\lambda_q)$ for $q \geq 3$. The Hecke group $H(\lambda_q)$ is isomorphic to the free product of two finite cyclic groups of orders 2 and q, and it has the presentation

$$H(\lambda_q) = \langle T, S \mid T^2 = S^q = I \rangle \cong C_2 * C_q.$$

For q = 4, we get a presentation of $H(\sqrt{2})$ as

$$H(\lambda_4) = H(\sqrt{2}) = \langle T, S \mid T^2 = S^4 = I \rangle \cong C_2 * C_4.$$

Adding the reflection $R(z) = \frac{1}{\overline{z}}$ to Hecke groups, we then obtain the extended Hecke group $\overline{H}(\lambda)$. The extended Hecke groups $\overline{H}(\lambda_q)$ are isomorphic to the free product of two dihedral groups of orders 4 and 2q with amalgamation C_2 . We know that the extended Hecke group $\overline{H}(\sqrt{2})$ is isomorphic to $D_2 *_{C_2} D_4$ (where D_n denote the Dihedral group) and has a presentation

$$\overline{H}(\sqrt{2}) = \left\langle T, S, R \mid T^2 = R^2 = S^4 = (TR)^2 = (RS)^2 = I \right\rangle.$$

The fundamental region of $\overline{H}(\sqrt{2})$ is

$$\operatorname{Reg}(\overline{H}(\sqrt{2})) = \{ z \in \mathbb{U} : -\frac{\sqrt{2}}{2} \le \operatorname{Re}(z) \le 0 \text{ and } |z| \ge 1 \},\$$

where \mathbb{U} denotes the upper half-plane (for further details see [3, 6, 8, 9]).

It is known that given any positive definite form F = (a, b, c), there exists a complex number z in \mathbb{U} such that

(2.1)
$$F(x,y) = a(x+zy)(x+\overline{z}y).$$

In this case z is called the base point of F and is denoted by z = z(F). Taking z = u + iv in (2.1), we get

$$\widetilde{F}(x,y) = ax^2 + 2auxy + a|z|^2 y^2.$$

So we obtain 2au = b and $a |z|^2 = c$. Therefore, we get $u = \frac{b}{2a}$ and $v = \frac{\sqrt{-\Delta(F)}}{2a}$. Since v is positive, we get

$$z = \frac{b + i\sqrt{-\Delta\left(F\right)}}{2a} \in \mathbb{U}.$$

Conversely for a given point $z \in \mathbb{U}$, Tekcan and Bizim proved in [10] that there exists a positive definite quadratic form F = (a, b, c) whose base point is z. They showed that given any complex number z = x + iy in \mathbb{U} , there exists a positive definite form F of the form

(2.2)
$$F = (a, b, c) = \left(\frac{1}{|z|^2}, \frac{2x}{|z|^2}, 1\right)$$

3

of discriminant $\Delta(F) = \frac{-4y^2}{|z|^4} < 0$ whose base point is z. So there is a one-toone correspondence between positive definite forms and points in U.

Tekcan and Bizim considered the positive definite forms whose base points lying on the line $x = \frac{-1}{m}$ for some integer $m \ge 2$ and proved the following result.

LEMMA 2.1 ([10], Theorem 2.1). For $m \ge 2$ consider the line $x = \frac{-1}{m}$. Then there exists a positive definite quadratic form F = (a, b, c) of discriminant $\Delta(F) = -D$, where $0 < D < m^2$, whose base point z(F) lies on the line $x = \frac{-1}{m}$.

Later they determined the number of integral positive definite forms whose base points lying on the line $x = \frac{-1}{m}$ and proved

LEMMA 2.2 ([10], Corollary 2.2). If m is odd, say m = 2k + 1, for $k \in \mathbb{Z}^+$ then there exist k positive definite integral forms

$$F_j = (mj, -2j, 1), 1 \le j \le k$$

of discriminant $\Delta(F_j) = -4j(m-j)$ whose base points $z(F_j)$ lie on the line $x = \frac{-1}{m}$. If m is even, say m = 2k, for $k \in \mathbb{Z}^+$, then there exist m-1 positive definite integral forms

 $F_j = (kj, -j, 1), \ 1 \le j \le m - 1$

of discriminant $\Delta(F_j) = -j(2m-j)$ whose base points $z(F_j)$ lie on the line $x = \frac{-1}{m}$.

In the present paper, we consider the same problem by considering the Hecke group $\overline{H}(\sqrt{2})$ instead of $\overline{\Gamma}$. Now let

$$F = \mathbb{Z}[\sqrt{2}]F = \mathbb{Z}[\sqrt{2}](a, b, c)$$

be a positive definite form such that $a, b, c \in \mathbb{Z}[\sqrt{2}]$. Then we can give the following theorem.

THEOREM 2.3. Let $m \ge 3$ be an integer and let $0 < 2D < m^2$. Then there exists a positive definite form $\mathbb{Z}[\sqrt{2}]F$ of discriminant -D whose base point lies on the line $x = \frac{-\sqrt{2}}{m}$.

Proof. Let $m \ge 3$ be an integer, and let $x = \frac{-\sqrt{2}}{m}$. Then from (2.2), we get the positive definite form

$$F = \left(\frac{mD}{2(m + \sqrt{m^2 - 2D})}, \frac{-D\sqrt{2}}{m + \sqrt{m^2 - 2D}}, 1\right)$$

in $\mathbb{Z}[\sqrt{2}]$. Notice that this form is not integral. To do it integral, we have two cases:

Case 1: Let *m* be odd, say m = 2k + 1 for some $k \in \mathbb{Z}^+$. Then *F* is an integral positive definite form, that is, $F \in \mathbb{Z}[\sqrt{2}]$ if and only if $2D = m^2 - (2l-1)^2$ for $|l| \leq k$. Indeed, let $F \in \mathbb{Z}[\sqrt{2}]$. Since *m* is odd, *D* must be even and so $\sqrt{m^2 - 2D}$ is odd, say $\sqrt{m^2 - 2D} = |2l - 1|$ for some $l \in \mathbb{Z}^+$. Then clearly, $2D = m^2 - (2l-1)^2$. Since *D* must be positive, we get

$$D > 0 \Leftrightarrow m^2 - (2l-1)^2 > 0 \Leftrightarrow (m-2l+1)(m+2l-1) > 0.$$

Note that m = 2k + 1. So we have to

$$(k+l)(k-l+1) > 0$$

In this case either l > 0 or l < 0. If l > 0, then k + l > 0 since k is positive. Therefore k - l + 1 must be positive and hence k > l - 1. Let l < 0. If k + l < 0, then we get k - l + 1 < 0 and so k + 1 < l, which contradicts with $k \in \mathbb{Z}^+$. Therefore, k + 1 > 0. Thus, k - l + 1 > 0. Which means that $-k \leq l$. From these two conditions, we obtain $|l| \leq k$.

Conversely let $|l| \le k$ for $2D = m^2 - (2l-1)^2$. In this case since m - (2l-1) is even, we get

$$a = \frac{mD}{2(m + \sqrt{m^2 - 2D})} = \frac{(2k+1)(k-l+1)}{2} \in \mathbb{Z}$$

since (k-l) is odd and $|l| \leq k$. Similarly we easily deduce that

$$b = \frac{-D}{m + \sqrt{m^2 - 2D}} = l - k - 1 \in \mathbb{Z}.$$

Case 2: Let *m* be even, say m = 2k for some $k \in \mathbb{Z}^+$. Then *F* is an integral positive definite form, that is, $F \in \mathbb{Z}[\sqrt{2}]$ if and only if $2D = m^2 - t^2$ for $|t| \leq m - 1$, where $t \neq 0$ is an integer. Let $F \in \mathbb{Z}[\sqrt{2}]$. Then $0 < 2D < m^2 \implies \sqrt{m^2 - 2D} = |t|$ for $t \in \mathbb{Z}$. So $2D = m^2 - t^2$. Since *D* is positive, $m^2 - t^2$ must be positive, that is,

$$(m-t)(m+t) > 0$$

Therefore it can be easily seen $|t| \leq m - 1$.

Conversely, let $2D = m^2 - t^2$ for $|t| \le m - 1$. Then since m is even, we get

$$a = \frac{mD}{2(m + \sqrt{m^2 - 2D})} = \frac{k(m - t)}{2} \in \mathbb{Z}$$
$$b = \frac{-D}{m + \sqrt{m^2 - 2D}} = -\frac{(m - t)}{2} \in \mathbb{Z}.$$

This completes the proof.

5

and

From the above theorem, we can give the following result.

COROLLARY 2.4. Let $F = \mathbb{Z}[\sqrt{2}](a, b, c)$ be the positive definite form obtained in Theorem 2.3.

- (1) If m is odd, say m = 2k + 1 for $k \in \mathbb{Z}^+$, then there are k positive definite forms $F_j = (mj, -2\sqrt{2}j, 1)$ for $1 \le j \le k$ in $\mathbb{Z}[\sqrt{2}]$ of discriminant $\Delta(F_j) = 4j(4j - m)$ whose base points lying on the line $x = -\frac{\sqrt{2}}{m}$.
- (2) If m is even, say m = 2k for $k \in \mathbb{Z}^+$, then there are m-1 positive definite forms $F_j = (kj, -\sqrt{2}j, 1)$ for $1 \le j \le m-1$ in $\mathbb{Z}[\sqrt{2}]$ of discriminant $\Delta(F_j) = 2j(j-2k)$ whose base points lying on the line $x = -\frac{\sqrt{2}}{m}$.

Example 2.5. Let m = 3. Then there is one positive definite form $F = (3, -2\sqrt{2}, 1)$ of discriminant -4 whose base point lying on the line $x = -\frac{\sqrt{2}}{3}$, and for m = 4, there are three positive definite quadratic forms $F_1 = (2, -\sqrt{2}, 1)$, $F_2 = (4, -2\sqrt{2}, 1)$ and $F_3 = (6, -3\sqrt{2}, 1)$ whose base points lying on the line $x = -\frac{\sqrt{2}}{4}$.

A positive definite form F = (a, b, c) is called reduced if $|b| \le a \le c$. If a positive definite form F of discriminant Δ is not reduced, than it can be transferred into a reduced form

$$F_R = \begin{cases} (1, 0, \frac{\Delta}{4}) & \text{if } \Delta \equiv 0 \pmod{4} \\ (1, 1, \frac{1-\Delta}{4}) & \text{if } \Delta \equiv 1 \pmod{4} \end{cases}$$

of discriminant Δ by an element of $\overline{\Gamma}$, that is, there exists a $g \in \overline{\Gamma}$ such that $gF = F_R$. Similarly the form $F = \mathbb{Z}[\sqrt{2}](a, b, c)$ is called reduced if $|b| \leq a \leq c$ and if a positive definite form F of discriminant Δ is not reduced, than it can be transferred into a reduced form

(2.3)
$$F_R = \begin{cases} (1,0,-\frac{\Delta}{4}) & \text{if } \Delta \equiv 0 \pmod{4} \\ (1,-\sqrt{2},\frac{2-\Delta}{4}) & \text{if } \Delta \equiv 2 \pmod{4} \end{cases}$$

of discriminant Δ by an element of $\overline{H}(\sqrt{2})$, that is, there exists a $g \in \overline{H}(\sqrt{2})$ such that $gF = F_R$.

The positive definite forms obtained in Corollary 2.4 are not reduced. But we can transfer them into the reduced forms as follows:

THEOREM 2.6. Let $F = \mathbb{Z}[\sqrt{2}](a, b, c) \in \overline{H}(\sqrt{2})$ be a non-reduced positive definite form obtained in Corollary 2.4. Then there exists a $g \in \overline{H}(\sqrt{2})$ such that $gF = F_R$, where F_R is defined in (2.3).

Proof. Let m be odd. Then positive definite forms are $F_j = (mj, -2\sqrt{2}j, 1)$ for $1 \le j \le k$. The discriminant of F_j is

$$\Delta(F_j) = (-2\sqrt{2}j)^2 - 4mj \equiv 0 \pmod{4}.$$

So the reduced form is $F_{Rj} = (1, 0, mj - 2j^2)$ by (2.3). Let $g_j = \begin{bmatrix} r & s \\ t & u \end{bmatrix} \in \overline{H}(\sqrt{2})$. Then from (1.1), we have the system of equations:

$$mjr^{2} - 2\sqrt{2}jrs + s^{2} = 1$$

2mjrt - 2\sqrt{2}jru - 2\sqrt{2}jts + 2su = 0
mjt^{2} - 2\sqrt{2}jtu + u^{2} = mj - 2j^{2}.

This system of equations has a solution for r = 0, s = 1, t = 1 and $u = \sqrt{2}j$, that is, $g_j F_j = F_{R_j}$ for $g_j = \begin{bmatrix} 0 & 1 \\ 1 & \sqrt{2}j \end{bmatrix} \in \overline{H}(\sqrt{2})$.

Let *m* be even. Then positive definite forms are $F_j = (kj, -\sqrt{2}j, 1)$ for $1 \leq j \leq m-1$. The discriminant of F_j is $\Delta(F_j) = 2j^2 - 4kj$. Here we have two cases.

(i) If j is even, say j = 2h, for some $h \in \mathbb{Z}^+$, then the discriminant of F_j is

$$\Delta(F_j) = 4(2h^2 - kh) \equiv 0 \pmod{4}.$$

So the reduced form is $F_{R_j} = (1, 0, kj - \frac{j^2}{2})$. The system of equations

$$kjr^{2} - \sqrt{2}jrs + s^{2} = 1$$
$$2kjrt - \sqrt{2}jru - \sqrt{2}jts + 2su = 0$$
$$kjt^{2} - \sqrt{2}jtu + u^{2} = kj - \frac{j^{2}}{2}$$

has a solution for r = 0, s = 1, t = 1 and $u = \frac{\sqrt{2}j}{2}$, that is, $g_j F_j = F_{R_j}$ for $g_j = \begin{bmatrix} 0 & 1 \\ 1 & \frac{\sqrt{2}j}{2} \end{bmatrix} \in \overline{H}(\sqrt{2}).$

(ii) If j is odd, say j = 2e - 1 for some $e \in \mathbb{Z}^+$, then $F_j = (k(2e - 1), -\sqrt{2}(2e - 1), 1)$ of discriminant

$$\Delta = 8e^2 - 8e + 2 - 8ke + 4k \equiv 2 \pmod{4}.$$

So the reduced form is $F_{R_j} = (1, -\sqrt{2}, -2e^2 + 2e + 2ke - k)$. The system of equations

$$k(2e-1)r^{2} - \sqrt{2}(2e-1)rs + s^{2} = 1$$

$$2k(2e-1)rt - \sqrt{2}(2e-1)ru - \sqrt{2}(2e-1)ts + 2su = -\sqrt{2}$$

$$k(2e-1)t^{2} - \sqrt{2}(2e-1)tu + u^{2} = -2e^{2} + 2e + 2ke - k$$

has a solution for r = 0, s = -1, t = 1 and $u = e\sqrt{2}$, that is, $g_j F_j = F_{R_j}$ for

$$g_j = \begin{bmatrix} 0 & -1 \\ 1 & (\frac{j+1}{2})\sqrt{2} \end{bmatrix} \in \overline{H}(\sqrt{2}). \quad \Box$$

7

REFERENCES

- J. Buchmann and U. Vollmer, Binary Quadratic Forms: An Algorithmic Approach. Springer-Verlag, Berlin, Heidelberg, 2007.
- [2] D.A. Buell, Binary Quadratic Forms, Classical Theory and Modern Computations. Springer-Verlag, New York, 1989.
- [3] I.N. Cangül, Normal Subgroups of Hecke Groups. Ph.D. Thesis, Southampton University, 1993.
- [4] D.E. Flath, Introduction to Number Theory. Wiley, 1989.
- [5] E. Hecke, Uber die Bestimmung Dirichletscher Reichen durch ihre Funktionalgleichungen. Math. Ann. 112 (1936), 664–699.
- [6] E. Hecke, Mathematische Werke, Zweite Auflage, Vandenhoeck u. Ruprecht. Göttingen, 1970.
- [7] O.T. O'Meara, Introduction to Quadratic Forms. Springer Verlag, New York, 1973.
- [8] R. Sahin and O. Koruoglu, Commutator subgroups of the power subgroups of same Hecke groups. Ramanujan J. 24 (2011), 151–159.
- R. Sahin and O. Koruoglu, Commutator subgroups of the power subgroups of Hecke groups II. C.R. Math. Acad. Sci. Paris 349 (2011), 127–130.
- [10] A. Tekcan and O. Bizim, The connection between quadratic forms and the extended modular group. Math. Bohem. 128 (2003), 3, 225–236.

Received 6 January 2015

Balıkesir Science and Art Center, Balıkesir-Turkiye cildir_meryem@hotmail.com

Balıkesir University, Necatibey Fac. of Education, Dept. Elem. Math. Teaching, Balıkesir-Turkiye ozdenk@balikesir.edu.tr

Uludag University, Faculty of Science, Department of Mathematics, Bursa-Turkiye tekcan@uludag.edu.tr