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In this work, our main goal is to determine the connection between positive
quadratic forms F = (a, b, c) in H(

√
2) whose base points z = z(F ) lie on the

line x = −
√
2

m
and the elements of extended Hecke group H(

√
2).

AMS 2010 Subject Classification: 11E18, 11E25, 11F06.

Key words: extended Hecke group, positive quadratic form, base points.

1. INTRODUCTION

A real binary quadratic form (or just a form) F is polynomial in two
variables x and y of the type

F = F (x, y) = ax2 + bxy + cy2

with real coefficients a, b, c. We denote F briefly by F = (a, b, c) . The discrim-
inant of F is defined by the formula b2 − 4ac and is denoted by ∆ = ∆ (F ) . A
binary quadratic form F is called

(1) integral form if and only if a, b, c ∈ Z
(2) positive definite if and only if∆(F ) < 0 and a, c > 0

(3) indefinite if and only if ∆(F ) > 0.

Most properties of quadratic forms can be given by the aid of extended
modular group Γ. Gauss (1777–1855) defined the group action of Γ on the set
of forms as follows:

gF (x, y) = (ar2 + brs+ cs2)x2 + (2art+ bru+ bts+ 2csu)xy(1.1)

+ (at2 + btu+ cu2)y2

for g =

[
r s
t u

]
∈ Γ, that is, gF is obtained from F by making the substitution

x→ rx+ tu and y → sx+ uy, that is,

gF = (rx+ ty, sx+ uy).
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Moreover, ∆ (F ) = ∆ (gF ) for all g ∈ Γ, that is, the action of Γ on forms leaves
the discriminant invariant. If F is indefinite or integral, then so is gF for all
g ∈ Γ. Let F and G be two forms. If there exists a g ∈ Γ such that gF = G,
then F and G are called equivalent. If det g = 1, then F and G are called
properly equivalent, and if det g = −1, then F and G are called improperly
equivalent (for further details on binary quadratic forms see [1, 2, 4, 7]).

2. POSITIVE DEFINITE FORMS

AND THE EXTENDED HECKE GROUP H(
√
2)

In this section, we deal with the connection between positive definite
forms and the extended Hecke groups. For this reason, we first give some
preliminary results on Hecke groups.

In [5], Hecke introduced the groups H(λ) generated by two linear frac-
tional transformations

T (z) = −1

z
and U(z) = z + λ

Hecke showed that H(λ) is discrete if and only if λ = λq = 2 cos(πq ), q ∈ N,
q ≥ 3 or λ ≥ 2. These groups have come to be known as the Hecke groups, and
we will denote them by H(λq) for q ≥ 3. The Hecke group H(λq) is isomorphic
to the free product of two finite cyclic groups of orders 2 and q, and it has the
presentation

H(λq) =
〈
T, S | T 2 = Sq = I

〉 ∼= C2 ∗ Cq.
For q = 4, we get a presentation of H(

√
2) as

H(λ4) = H(
√

2) =
〈
T, S | T 2 = S4 = I

〉 ∼= C2 ∗ C4.

Adding the reflection R(z) = 1
z to Hecke groups, we then obtain the extended

Hecke group H (λ) . The extended Hecke groups H(λq) are isomorphic to the
free product of two dihedral groups of orders 4 and 2q with amalgamation C2.
We know that the extended Hecke group H(

√
2) is isomorphic to D2 ∗C2 D4

(where Dn denote the Dihedral group) and has a presentation

H(
√

2) =
〈
T, S,R | T 2 = R2 = S4 = (TR)2 = (RS)2 = I

〉
.

The fundamental region of H(
√

2) is

Reg(H(
√

2)) = {z ∈ U:−
√

2

2
≤ Re(z) ≤ 0 and |z| ≥ 1},

where U denotes the upper half–plane (for further details see [3, 6, 8, 9]).
It is known that given any positive definite form F = (a, b, c), there exists

a complex number z in U such that

(2.1) F (x, y) = a(x+ zy)(x+ zy).
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In this case z is called the base point of F and is denoted by z = z(F ). Taking
z = u+ iv in (2.1), we get

F (x, y) = ax2 + 2auxy + a |z|2 y2.

So we obtain 2au = b and a |z|2 = c. Therefore, we get u = b
2a and v =

√
−∆(F )

2a .
Since v is positive, we get

z =
b+ i

√
−∆ (F )

2a
∈ U.

Conversely for a given point z ∈ U, Tekcan and Bizim proved in [10] that there
exists a positive definite quadratic form F = (a, b, c) whose base point is z.
They showed that given any complex number z = x + iy in U, there exists a
positive definite form F of the form

(2.2) F = (a, b, c) =

(
1

|z|2
,

2x

|z|2
, 1

)
of discriminant ∆(F ) = −4y2

|z|4 < 0 whose base point is z. So there is a one–to–

one correspondence between positive definite forms and points in U.
Tekcan and Bizim considered the positive definite forms whose base points

lying on the line x = −1
m for some integer m ≥ 2 and proved the following result.

Lemma 2.1 ([10], Theorem 2.1). For m ≥ 2 consider the line x = −1
m .

Then there exists a positive definite quadratic form F = (a, b, c) of discriminant
∆(F ) = −D, where 0 < D < m2, whose base point z(F ) lies on the line x = −1

m .

Later they determined the number of integral positive definite forms
whose base points lying on the line x = −1

m and proved

Lemma 2.2 ([10], Corollary 2.2). If m is odd, say m = 2k+1, for k ∈ Z+

then there exist k positive definite integral forms

Fj = (mj, −2j, 1), 1 ≤ j ≤ k
of discriminant ∆(Fj) = −4j(m − j) whose base points z(Fj) lie on the line
x = −1

m . If m is even, say m = 2k, for k ∈ Z+, then there exist m− 1 positive
definite integral forms

Fj = (kj, −j, 1), 1 ≤ j ≤ m− 1

of discriminant ∆(Fj) = −j(2m − j) whose base points z(Fj) lie on the line
x = −1

m .

In the present paper, we consider the same problem by considering the
Hecke group H(

√
2) instead of Γ. Now let

F = Z[
√

2]F = Z[
√

2](a, b, c)

be a positive definite form such that a, b, c ∈ Z[
√

2]. Then we can give the
following theorem.
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Theorem 2.3. Let m ≥ 3 be an integer and let 0 < 2D < m2. Then there
exists a positive definite form Z[

√
2]F of discriminant −D whose base point

lies on the line x = −
√

2
m .

Proof. Let m ≥ 3 be an integer, and let x = −
√

2
m . Then from (2.2), we

get the positive definite form

F =

(
mD

2(m+
√
m2 − 2D)

,
−D
√

2

m+
√
m2 − 2D

, 1

)
in Z[

√
2]. Notice that this form is not integral. To do it integral, we have two

cases:
Case 1: Let m be odd, say m = 2k + 1 for some k ∈ Z+. Then F

is an integral positive definite form, that is, F ∈ Z[
√

2] if and only if 2D =
m2 − (2l − 1)2 for |l| ≤ k. Indeed, let F ∈ Z[

√
2]. Since m is odd, D must be

even and so
√
m2 − 2D is odd, say

√
m2 − 2D = |2l−1| for some l ∈ Z+. Then

clearly, 2D = m2 − (2l − 1)2. Since D must be positive, we get

D > 0⇔ m2 − (2l − 1)2 > 0⇔ (m− 2l + 1)(m+ 2l − 1) > 0.

Note that m = 2k + 1. So we have to

(k + l)(k − l + 1) > 0.

In this case either l > 0 or l < 0. If l > 0, then k + l > 0 since k is positive.
Therefore k− l+1 must be positive and hence k > l−1. Let l < 0. If k+ l < 0,
then we get k − l + 1 < 0 and so k + 1 < l, which contradicts with k ∈ Z+.
Therefore, k + 1 > 0. Thus, k − l + 1 > 0. Which means that −k ≤ l. From
these two conditions, we obtain |l| ≤ k.

Conversely let |l| ≤ k for 2D = m2−(2l−1)2. In this case since m−(2l−1)
is even, we get

a =
mD

2(m+
√
m2 − 2D)

=
(2k + 1)(k − l + 1)

2
∈ Z

since (k − l) is odd and |l| ≤ k. Similarly we easily deduce that

b =
−D

m+
√
m2 − 2D

= l − k − 1 ∈ Z.

Case 2: Let m be even, say m = 2k for some k ∈ Z+. Then F is an
integral positive definite form, that is, F ∈ Z[

√
2] if and only if 2D = m2 − t2

for |t| ≤ m − 1, where t 6= 0 is an integer. Let F ∈ Z[
√

2]. Then 0 < 2D <
m2 =⇒

√
m2 − 2D = |t| for t ∈ Z. So 2D = m2 − t2. Since D is positive,

m2 − t2 must be positive, that is,

(m− t)(m+ t) > 0.
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Therefore it can be easily seen |t| ≤ m− 1.
Conversely, let 2D = m2 − t2 for |t| ≤ m − 1. Then since m is even, we

get

a =
mD

2(m+
√
m2 − 2D)

=
k(m− t)

2
∈ Z

and

b =
−D

m+
√
m2 − 2D

= −(m− t)
2

∈ Z.

This completes the proof. �

From the above theorem, we can give the following result.

Corollary 2.4. Let F = Z[
√

2](a, b, c) be the positive definite form ob-
tained in Theorem 2.3.

(1) If m is odd, say m = 2k+ 1 for k ∈ Z+, then there are k positive definite
forms Fj = (mj,−2

√
2j, 1) for 1 ≤ j ≤ k in Z[

√
2] of discriminant

∆(Fj) = 4j(4j −m) whose base points lying on the line x = −
√

2
m .

(2) If m is even, say m = 2k for k ∈ Z+, then there are m−1 positive definite
forms Fj = (kj,−

√
2j, 1) for 1 ≤ j ≤ m − 1 in Z[

√
2] of discriminant

∆(Fj) = 2j(j − 2k) whose base points lying on the line x = −
√

2
m .

Example 2.5. Let m = 3. Then there is one positive definite form F =

(3,−2
√

2, 1) of discriminant −4 whose base point lying on the line x = −
√

2
3 ,

and form = 4, there are three positive definite quadratic forms F1 =(2,−
√

2, 1),
F2 = (4,−2

√
2, 1) and F3 = (6,−3

√
2, 1) whose base points lying on the line

x = −
√

2
4 .

A positive definite form F = (a, b, c) is called reduced if |b| ≤ a ≤ c. If
a positive definite form F of discriminant ∆ is not reduced, than it can be
transferred into a reduced form

FR =

{
(1, 0, ∆

4 ) if ∆ ≡ 0(mod 4)

(1, 1, 1−∆
4 ) if ∆ ≡ 1(mod 4)

of discriminant ∆ by an element of Γ, that is, there exists a g ∈ Γ such that
gF = FR. Similarly the form F = Z[

√
2](a, b, c) is called reduced if |b| ≤ a ≤ c

and if a positive definite form F of discriminant ∆ is not reduced, than it can
be transferred into a reduced form

(2.3) FR =

{
(1, 0,−∆

4 ) if ∆ ≡ 0(mod 4)

(1,−
√

2, 2−∆
4 ) if ∆ ≡ 2(mod 4)

of discriminant ∆ by an element of H(
√

2), that is, there exists a g ∈ H(
√

2)
such that gF = FR.
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The positive definite forms obtained in Corollary 2.4 are not reduced.
But we can transfer them into the reduced forms as follows:

Theorem 2.6. Let F = Z[
√

2](a, b, c) ∈ H(
√

2) be a non–reduced positive
definite form obtained in Corollary 2.4. Then there exists a g ∈ H(

√
2) such

that gF = FR, where FR is defined in (2.3).

Proof. Letm be odd. Then positive definite forms are Fj = (mj,−2
√

2j, 1)
for 1 ≤ j ≤ k. The discriminant of Fj is

∆(Fj) = (−2
√

2j)2 − 4mj ≡ 0(mod 4).

So the reduced form is FRj = (1, 0,mj − 2j2) by (2.3). Let gj =

[
r s
t u

]
∈

H(
√

2). Then from (1.1), we have the system of equations:

mjr2 − 2
√

2jrs+ s2 = 1

2mjrt− 2
√

2jru− 2
√

2jts+ 2su = 0

mjt2 − 2
√

2jtu+ u2 = mj − 2j2.

This system of equations has a solution for r = 0, s = 1, t = 1 and u =
√

2j,

that is, gjFj = FRj for gj =

[
0 1

1
√

2j

]
∈ H(

√
2).

Let m be even. Then positive definite forms are Fj = (kj,−
√

2j, 1) for
1 ≤ j ≤ m − 1. The discriminant of Fj is ∆(Fj) = 2j2 − 4kj. Here we have
two cases.

(i) If j is even, say j = 2h, for some h ∈ Z+, then the discriminant of Fj
is

∆(Fj) = 4(2h2 − kh) ≡ 0(mod 4).

So the reduced form is FRj = (1, 0, kj − j2

2 ). The system of equations

kjr2 −
√

2jrs+ s2 = 1

2kjrt−
√

2jru−
√

2jts+ 2su = 0

kjt2 −
√

2jtu+ u2 = kj − j2

2

has a solution for r = 0, s = 1, t = 1 and u =
√

2j
2 , that is, gjFj = FRj for

gj =

[
0 1

1
√

2j
2

]
∈ H(

√
2).

(ii) If j is odd, say j = 2e − 1 for some e ∈ Z+, then Fj = (k(2e −
1),−

√
2(2e− 1), 1) of discriminant

∆ = 8e2 − 8e+ 2− 8ke+ 4k ≡ 2(mod 4).



7 On positive definite quadratic forms and the extended Hecke group H(
√

2) 361

So the reduced form is FRj = (1,−
√

2,−2e2 + 2e + 2ke − k). The system of
equations

k(2e− 1)r2 −
√

2(2e− 1)rs+ s2 = 1

2k(2e− 1)rt−
√

2(2e− 1)ru−
√

2(2e− 1)ts+ 2su = −
√

2

k(2e− 1)t2 −
√

2(2e− 1)tu+ u2 = −2e2 + 2e+ 2ke− k

has a solution for r = 0, s = −1, t = 1 and u = e
√

2, that is, gjFj = FRj for

gj =

[
0 −1

1 ( j+1
2 )
√

2

]
∈ H(

√
2). �
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