ON POSITIVE DEFINITE QUADRATIC FORMS AND THE EXTENDED HECKE GROUP $\bar{H}(\sqrt{2})$

MERYEM CILDIR, OZDEN KORUOGLU and AHMET TEKCAN

Communicated by Alexandru Zaharescu

In this work, our main goal is to determine the connection between positive quadratic forms $F=(a, b, c)$ in $\bar{H}(\sqrt{2})$ whose base points $z=z(F)$ lie on the line $x=\frac{-\sqrt{2}}{m}$ and the elements of extended Hecke group $\bar{H}(\sqrt{2})$.
AMS 2010 Subject Classification: 11E18, 11E25, 11F06.
Key words: extended Hecke group, positive quadratic form, base points.

1. INTRODUCTION

A real binary quadratic form (or just a form) F is polynomial in two variables x and y of the type

$$
F=F(x, y)=a x^{2}+b x y+c y^{2}
$$

with real coefficients a, b, c. We denote F briefly by $F=(a, b, c)$. The discriminant of F is defined by the formula $b^{2}-4 a c$ and is denoted by $\Delta=\Delta(F)$. A binary quadratic form F is called
(1) integral form if and only if $a, b, c \in \mathbb{Z}$
(2) positive definite if and only if $\Delta(F)<0$ and $a, c>0$
(3) indefinite if and only if $\Delta(F)>0$.

Most properties of quadratic forms can be given by the aid of extended modular group $\bar{\Gamma}$. Gauss (1777-1855) defined the group action of $\bar{\Gamma}$ on the set of forms as follows:

$$
\begin{align*}
g F(x, y)= & \left(a r^{2}+b r s+c s^{2}\right) x^{2}+(2 a r t+b r u+b t s+2 c s u) x y \tag{1.1}\\
& +\left(a t^{2}+b t u+c u^{2}\right) y^{2}
\end{align*}
$$

for $g=\left[\begin{array}{ll}r & s \\ t & u\end{array}\right] \in \bar{\Gamma}$, that is, $g F$ is obtained from F by making the substitution $x \rightarrow r x+t u$ and $y \rightarrow s x+u y$, that is,

$$
g F=(r x+t y, s x+u y) .
$$

Moreover, $\Delta(F)=\Delta(g F)$ for all $g \in \bar{\Gamma}$, that is, the action of $\bar{\Gamma}$ on forms leaves the discriminant invariant. If F is indefinite or integral, then so is $g F$ for all $g \in \bar{\Gamma}$. Let F and G be two forms. If there exists a $g \in \bar{\Gamma}$ such that $g F=G$, then F and G are called equivalent. If $\operatorname{det} g=1$, then F and G are called properly equivalent, and if $\operatorname{det} g=-1$, then F and G are called improperly equivalent (for further details on binary quadratic forms see $[1,2,4,7]$).

2. POSITIVE DEFINITE FORMS

AND THE EXTENDED HECKE GROUP $\overline{\boldsymbol{H}}(\sqrt{2})$

In this section, we deal with the connection between positive definite forms and the extended Hecke groups. For this reason, we first give some preliminary results on Hecke groups.

In [5], Hecke introduced the groups $H(\lambda)$ generated by two linear fractional transformations

$$
T(z)=-\frac{1}{z} \text { and } U(z)=z+\lambda
$$

Hecke showed that $H(\lambda)$ is discrete if and only if $\lambda=\lambda_{q}=2 \cos \left(\frac{\pi}{q}\right), q \in \mathbb{N}$, $q \geq 3$ or $\lambda \geq 2$. These groups have come to be known as the Hecke groups, and we will denote them by $H\left(\lambda_{q}\right)$ for $q \geq 3$. The Hecke group $H\left(\lambda_{q}\right)$ is isomorphic to the free product of two finite cyclic groups of orders 2 and q, and it has the presentation

$$
H\left(\lambda_{q}\right)=\left\langle T, S \mid T^{2}=S^{q}=I\right\rangle \cong C_{2} * C_{q}
$$

For $q=4$, we get a presentation of $H(\sqrt{2})$ as

$$
H\left(\lambda_{4}\right)=H(\sqrt{2})=\left\langle T, S \mid T^{2}=S^{4}=I\right\rangle \cong C_{2} * C_{4}
$$

Adding the reflection $R(z)=\frac{1}{z}$ to Hecke groups, we then obtain the extended Hecke group $\bar{H}(\lambda)$. The extended Hecke groups $\bar{H}\left(\lambda_{q}\right)$ are isomorphic to the free product of two dihedral groups of orders 4 and $2 q$ with amalgamation C_{2}. We know that the extended Hecke group $\bar{H}(\sqrt{2})$ is isomorphic to $D_{2} *_{C_{2}} D_{4}$ (where D_{n} denote the Dihedral group) and has a presentation

$$
\bar{H}(\sqrt{2})=\left\langle T, S, R \mid T^{2}=R^{2}=S^{4}=(T R)^{2}=(R S)^{2}=I\right\rangle
$$

The fundamental region of $\bar{H}(\sqrt{2})$ is

$$
\operatorname{Reg}(\bar{H}(\sqrt{2}))=\left\{z \in \mathbb{U}:-\frac{\sqrt{2}}{2} \leq \operatorname{Re}(z) \leq 0 \text { and }|z| \geq 1\right\}
$$

where \mathbb{U} denotes the upper half-plane (for further details see $[3,6,8,9]$).
It is known that given any positive definite form $F=(a, b, c)$, there exists a complex number z in \mathbb{U} such that

$$
\begin{equation*}
F(x, y)=a(x+z y)(x+\bar{z} y) \tag{2.1}
\end{equation*}
$$

In this case z is called the base point of F and is denoted by $z=z(F)$. Taking $z=u+i v$ in (2.1), we get

$$
F(x, y)=a x^{2}+2 a u x y+a|z|^{2} y^{2} .
$$

So we obtain $2 a u=b$ and $a|z|^{2}=c$. Therefore, we get $u=\frac{b}{2 a}$ and $v=\frac{\sqrt{-\Delta(F)}}{2 a}$. Since v is positive, we get

$$
z=\frac{b+i \sqrt{-\Delta(F)}}{2 a} \in \mathbb{U} .
$$

Conversely for a given point $z \in \mathbb{U}$, Tekcan and Bizim proved in [10] that there exists a positive definite quadratic form $F=(a, b, c)$ whose base point is z. They showed that given any complex number $z=x+i y$ in \mathbb{U}, there exists a positive definite form F of the form

$$
\begin{equation*}
F=(a, b, c)=\left(\frac{1}{|z|^{2}}, \frac{2 x}{|z|^{2}}, 1\right) \tag{2.2}
\end{equation*}
$$

of discriminant $\Delta(F)=\frac{-4 y^{2}}{|z|^{4}}<0$ whose base point is z. So there is a one-toone correspondence between positive definite forms and points in \mathbb{U}.

Tekcan and Bizim considered the positive definite forms whose base points lying on the line $x=\frac{-1}{m}$ for some integer $m \geq 2$ and proved the following result.

Lemma 2.1 ([10], Theorem 2.1). For $m \geq 2$ consider the line $x=\frac{-1}{m}$. Then there exists a positive definite quadratic form $F=(a, b, c)$ of discriminant $\Delta(F)=-D$, where $0<D<m^{2}$, whose base point $z(F)$ lies on the line $x=\frac{-1}{m}$.

Later they determined the number of integral positive definite forms whose base points lying on the line $x=\frac{-1}{m}$ and proved

Lemma 2.2 ([10], Corollary 2.2). If m is odd, say $m=2 k+1$, for $k \in \mathbb{Z}^{+}$ then there exist k positive definite integral forms

$$
F_{j}=(m j,-2 j, 1), 1 \leq j \leq k
$$

of discriminant $\Delta\left(F_{j}\right)=-4 j(m-j)$ whose base points $z\left(F_{j}\right)$ lie on the line $x=\frac{-1}{m}$. If m is even, say $m=2 k$, for $k \in \mathbb{Z}^{+}$, then there exist $m-1$ positive definite integral forms

$$
F_{j}=(k j,-j, 1), 1 \leq j \leq m-1
$$

of discriminant $\Delta\left(F_{j}\right)=-j(2 m-j)$ whose base points $z\left(F_{j}\right)$ lie on the line $x=\frac{-1}{m}$.

In the present paper, we consider the same problem by considering the Hecke group $\bar{H}(\sqrt{2})$ instead of $\bar{\Gamma}$. Now let

$$
F=\mathbb{Z}[\sqrt{2}] F=\mathbb{Z}[\sqrt{2}](a, b, c)
$$

be a positive definite form such that $a, b, c \in \mathbb{Z}[\sqrt{2}]$. Then we can give the following theorem.

Theorem 2.3. Let $m \geq 3$ be an integer and let $0<2 D<m^{2}$. Then there exists a positive definite form $\mathbb{Z}[\sqrt{2}] F$ of discriminant $-D$ whose base point lies on the line $x=\frac{-\sqrt{2}}{m}$.

Proof. Let $m \geq 3$ be an integer, and let $x=\frac{-\sqrt{2}}{m}$. Then from (2.2), we get the positive definite form

$$
F=\left(\frac{m D}{2\left(m+\sqrt{m^{2}-2 D}\right)}, \frac{-D \sqrt{2}}{m+\sqrt{m^{2}-2 D}}, 1\right)
$$

in $\mathbb{Z}[\sqrt{2}]$. Notice that this form is not integral. To do it integral, we have two cases:

Case 1: Let m be odd, say $m=2 k+1$ for some $k \in \mathbb{Z}^{+}$. Then F is an integral positive definite form, that is, $F \in \mathbb{Z}[\sqrt{2}]$ if and only if $2 D=$ $m^{2}-(2 l-1)^{2}$ for $|l| \leq k$. Indeed, let $F \in \mathbb{Z}[\sqrt{2}]$. Since m is odd, D must be even and so $\sqrt{m^{2}-2 D}$ is odd, say $\sqrt{m^{2}-2 D}=|2 l-1|$ for some $l \in \mathbb{Z}^{+}$. Then clearly, $2 D=m^{2}-(2 l-1)^{2}$. Since D must be positive, we get

$$
D>0 \Leftrightarrow m^{2}-(2 l-1)^{2}>0 \Leftrightarrow(m-2 l+1)(m+2 l-1)>0 .
$$

Note that $m=2 k+1$. So we have to

$$
(k+l)(k-l+1)>0
$$

In this case either $l>0$ or $l<0$. If $l>0$, then $k+l>0$ since k is positive. Therefore $k-l+1$ must be positive and hence $k>l-1$. Let $l<0$. If $k+l<0$, then we get $k-l+1<0$ and so $k+1<l$, which contradicts with $k \in \mathbb{Z}^{+}$. Therefore, $k+1>0$. Thus, $k-l+1>0$. Which means that $-k \leq l$. From these two conditions, we obtain $|l| \leq k$.

Conversely let $|l| \leq k$ for $2 D=m^{2}-(2 l-1)^{2}$. In this case since $m-(2 l-1)$ is even, we get

$$
a=\frac{m D}{2\left(m+\sqrt{m^{2}-2 D}\right)}=\frac{(2 k+1)(k-l+1)}{2} \in \mathbb{Z}
$$

since $(k-l)$ is odd and $|l| \leq k$. Similarly we easily deduce that

$$
b=\frac{-D}{m+\sqrt{m^{2}-2 D}}=l-k-1 \in \mathbb{Z}
$$

Case 2: Let m be even, say $m=2 k$ for some $k \in \mathbb{Z}^{+}$. Then F is an integral positive definite form, that is, $F \in \mathbb{Z}[\sqrt{2}]$ if and only if $2 D=m^{2}-t^{2}$ for $|t| \leq m-1$, where $t \neq 0$ is an integer. Let $F \in \mathbb{Z}[\sqrt{2}]$. Then $0<2 D<$ $m^{2} \Longrightarrow \sqrt{m^{2}-2 D}=|t|$ for $t \in \mathbb{Z}$. So $2 D=m^{2}-t^{2}$. Since D is positive, $m^{2}-t^{2}$ must be positive, that is,

$$
(m-t)(m+t)>0
$$

Therefore it can be easily seen $|t| \leq m-1$.
Conversely, let $2 D=m^{2}-t^{2}$ for $|t| \leq m-1$. Then since m is even, we get

$$
a=\frac{m D}{2\left(m+\sqrt{m^{2}-2 D}\right)}=\frac{k(m-t)}{2} \in \mathbb{Z}
$$

and

$$
b=\frac{-D}{m+\sqrt{m^{2}-2 D}}=-\frac{(m-t)}{2} \in \mathbb{Z}
$$

This completes the proof.
From the above theorem, we can give the following result.
Corollary 2.4. Let $F=\mathbb{Z}[\sqrt{2}](a, b, c)$ be the positive definite form obtained in Theorem 2.3.
(1) If m is odd, say $m=2 k+1$ for $k \in \mathbb{Z}^{+}$, then there are k positive definite forms $F_{j}=(m j,-2 \sqrt{2} j, 1)$ for $1 \leq j \leq k$ in $\mathbb{Z}[\sqrt{2}]$ of discriminant $\Delta\left(F_{j}\right)=4 j(4 j-m)$ whose base points lying on the line $x=-\frac{\sqrt{2}}{m}$.
(2) If m is even, say $m=2 k$ for $k \in \mathbb{Z}^{+}$, then there are $m-1$ positive definite forms $F_{j}=(k j,-\sqrt{2} j, 1)$ for $1 \leq j \leq m-1$ in $\mathbb{Z}[\sqrt{2}]$ of discriminant $\Delta\left(F_{j}\right)=2 j(j-2 k)$ whose base points lying on the line $x=-\frac{\sqrt{2}}{m}$.
Example 2.5. Let $m=3$. Then there is one positive definite form $F=$ $(3,-2 \sqrt{2}, 1)$ of discriminant -4 whose base point lying on the line $x=-\frac{\sqrt{2}}{3}$, and for $m=4$, there are three positive definite quadratic forms $F_{1}=(2,-\sqrt{2}, 1)$, $F_{2}=(4,-2 \sqrt{2}, 1)$ and $F_{3}=(6,-3 \sqrt{2}, 1)$ whose base points lying on the line $x=-\frac{\sqrt{2}}{4}$.

A positive definite form $F=(a, b, c)$ is called reduced if $|b| \leq a \leq c$. If a positive definite form F of discriminant Δ is not reduced, than it can be transferred into a reduced form

$$
F_{R}= \begin{cases}\left(1,0, \frac{\Delta}{4}\right) & \text { if } \Delta \equiv 0(\bmod 4) \\ \left(1,1, \frac{1-\Delta}{4}\right) & \text { if } \Delta \equiv 1(\bmod 4)\end{cases}
$$

of discriminant Δ by an element of $\bar{\Gamma}$, that is, there exists a $g \in \bar{\Gamma}$ such that $g F=F_{R}$. Similarly the form $F=\mathbb{Z}[\sqrt{2}](a, b, c)$ is called reduced if $|b| \leq a \leq c$ and if a positive definite form F of discriminant Δ is not reduced, than it can be transferred into a reduced form

$$
F_{R}= \begin{cases}\left(1,0,-\frac{\Delta}{4}\right) & \text { if } \Delta \equiv 0(\bmod 4) \tag{2.3}\\ \left(1,-\sqrt{2}, \frac{2-\Delta}{4}\right) & \text { if } \Delta \equiv 2(\bmod 4)\end{cases}
$$

of discriminant Δ by an element of $\bar{H}(\sqrt{2})$, that is, there exists a $g \in \bar{H}(\sqrt{2})$ such that $g F=F_{R}$.

The positive definite forms obtained in Corollary 2.4 are not reduced. But we can transfer them into the reduced forms as follows:

Theorem 2.6. Let $F=\mathbb{Z}[\sqrt{2}](a, b, c) \in \bar{H}(\sqrt{2})$ be a non-reduced positive definite form obtained in Corollary 2.4. Then there exists a $g \in \bar{H}(\sqrt{2})$ such that $g F=F_{R}$, where F_{R} is defined in (2.3).

Proof. Let m be odd. Then positive definite forms are $F_{j}=(m j,-2 \sqrt{2} j, 1)$ for $1 \leq j \leq k$. The discriminant of F_{j} is

$$
\Delta\left(F_{j}\right)=(-2 \sqrt{2} j)^{2}-4 m j \equiv 0(\bmod 4)
$$

So the reduced form is $F_{R j}=\left(1,0, m j-2 j^{2}\right)$ by (2.3). Let $g_{j}=\left[\begin{array}{ll}r & s \\ t & u\end{array}\right] \in$ $\bar{H}(\sqrt{2})$. Then from (1.1), we have the system of equations:

$$
\begin{aligned}
m j r^{2}-2 \sqrt{2} j r s+s^{2} & =1 \\
2 m j r t-2 \sqrt{2} j r u-2 \sqrt{2} j t s+2 s u & =0 \\
m j t^{2}-2 \sqrt{2} j t u+u^{2} & =m j-2 j^{2} .
\end{aligned}
$$

This system of equations has a solution for $r=0, s=1, t=1$ and $u=\sqrt{2} j$, that is, $g_{j} F_{j}=F_{R_{j}}$ for $g_{j}=\left[\begin{array}{cc}0 & 1 \\ 1 & \sqrt{2} j\end{array}\right] \in \bar{H}(\sqrt{2})$.

Let m be even. Then positive definite forms are $F_{j}=(k j,-\sqrt{2} j, 1)$ for $1 \leq j \leq m-1$. The discriminant of F_{j} is $\Delta\left(F_{j}\right)=2 j^{2}-4 k j$. Here we have two cases.
(i) If j is even, say $j=2 h$, for some $h \in \mathbb{Z}^{+}$, then the discriminant of F_{j} is

$$
\Delta\left(F_{j}\right)=4\left(2 h^{2}-k h\right) \equiv 0(\bmod 4) .
$$

So the reduced form is $F_{R_{j}}=\left(1,0, k j-\frac{j^{2}}{2}\right)$. The system of equations

$$
\begin{aligned}
k j r^{2}-\sqrt{2} j r s+s^{2} & =1 \\
2 k j r t-\sqrt{2} j r u-\sqrt{2} j t s+2 s u & =0 \\
k j t^{2}-\sqrt{2} j t u+u^{2} & =k j-\frac{j^{2}}{2}
\end{aligned}
$$

has a solution for $r=0, s=1, t=1$ and $u=\frac{\sqrt{2} j}{2}$, that is, $g_{j} F_{j}=F_{R_{j}}$ for $g_{j}=\left[\begin{array}{cc}0 & 1 \\ 1 & \frac{\sqrt{2} j}{2}\end{array}\right] \in \bar{H}(\sqrt{2})$.
(ii) If j is odd, say $j=2 e-1$ for some $e \in \mathbb{Z}^{+}$, then $F_{j}=(k(2 e-$ $1),-\sqrt{2}(2 e-1), 1)$ of discriminant

$$
\Delta=8 e^{2}-8 e+2-8 k e+4 k \equiv 2(\bmod 4)
$$

So the reduced form is $F_{R_{j}}=\left(1,-\sqrt{2},-2 e^{2}+2 e+2 k e-k\right)$. The system of equations

$$
\begin{aligned}
k(2 e-1) r^{2}-\sqrt{2}(2 e-1) r s+s^{2} & =1 \\
2 k(2 e-1) r t-\sqrt{2}(2 e-1) r u-\sqrt{2}(2 e-1) t s+2 s u & =-\sqrt{2} \\
k(2 e-1) t^{2}-\sqrt{2}(2 e-1) t u+u^{2} & =-2 e^{2}+2 e+2 k e-k
\end{aligned}
$$

has a solution for $r=0, s=-1, t=1$ and $u=e \sqrt{2}$, that is, $g_{j} F_{j}=F_{R_{j}}$ for $g_{j}=\left[\begin{array}{cc}0 & -1 \\ 1 & \left(\frac{j+1}{2}\right) \sqrt{2}\end{array}\right] \in \bar{H}(\sqrt{2})$.

REFERENCES

[1] J. Buchmann and U. Vollmer, Binary Quadratic Forms: An Algorithmic Approach. Springer-Verlag, Berlin, Heidelberg, 2007.
[2] D.A. Buell, Binary Quadratic Forms, Classical Theory and Modern Computations. Springer-Verlag, New York, 1989.
[3] I.N. Cangül, Normal Subgroups of Hecke Groups. Ph.D. Thesis, Southampton University, 1993.
[4] D.E. Flath, Introduction to Number Theory. Wiley, 1989.
[5] E. Hecke, Über die Bestimmung Dirichletscher Reichen durch ihre Funktionalgleichungen. Math. Ann. 112 (1936), 664-699.
[6] E. Hecke, Mathematische Werke, Zweite Auflage, Vandenhoeck u. Ruprecht. Göttingen, 1970.
[7] O.T. O’Meara, Introduction to Quadratic Forms. Springer Verlag, New York, 1973.
[8] R. Sahin and Ö. Koruoglu, Commutator subgroups of the power subgroups of same Hecke groups. Ramanujan J. 24 (2011), 151-159.
[9] R. Sahin and Ö. Koruoglu, Commutator subgroups of the power subgroups of Hecke groups II. C.R. Math. Acad. Sci. Paris 349 (2011), 127-130.
[10] A. Tekcan and O. Bizim, The connection between quadratic forms and the extended modular group. Math. Bohem. 128 (2003), 3, 225-236.

Received 6 January 2015
Balukesir Science and Art Center, Balıkesir-Turkiye cildir_meryem@hotmail.com

Balıkesir University, Necatibey Fac. of Education, Dept. Elem. Math. Teaching, Balıkesir-Turkiye
ozdenk@balikesir.edu.tr
Uludag University, Faculty of Science, Department of Mathematics, Bursa-Turkiye
tekcan@uludag.edu.tr

