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We study the effect of a variable surface tension in the Landau-Levich problem,
concerning the thickness of the fluid layer adhering on a plate withdrawn from a
pool filled with a viscous liquid, in the range of very small capillary numbers. A
thickening effect was observed, when the surface tension on the air-fluid interface
is variable, compared to the case of a constant surface tension studied by Landau
and Levich (1942). In some previous papers a thickening factor of order 42/3

was obtained. In this paper, we obtain a thickening factor of order 42/3(1−NΓ)
where N is the derivative of the variable surface tension in terms of the reduced
surfactant concentration Γ, computed at the value of Γ on the liquid pool surface
– see formula (2)2 in Introduction.
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1. INTRODUCTION

We consider a plate which is pushed out from a pool filled with an in-
compressible fluid of viscosity µ and density ρ. A thin layer of fluid is adhering
on the plate. The air-fluid interface, the velocity and pressure of the fluid, the
surface tension and the surfactant concentration on the air-fluid interface are
denoted by

h(x), u, p, σ, Γ1.

The reduced surfactant concentration Γ is given below in formula (2)2,
related to the surfactant concentration on the pool surface and Γ1.

The Ox axis is down, in the gravity direction. The Oy axis is horizontal,
then x = 0 is denoting the pool surface. In this coordinate system, the plate
is moving upward with the velocity (−U).

An important parameter is the capillary number Ca = µU/σ0 where σ0 =
σ(Γ0) is the surface tension on x = 0 and Γ0 is the surfactant concentration
on x = 0. The thickness of the thin fluid layer adhering far on the top of the
plate is denoted by b.
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A large literature exists, concerning the calculation of film thickness b.
One of the first results was given in the seminal paper of Landau and Levich
(1942), where a matching procedure with the static meniscus was used to
obtain the value of b in the case of constant surface tension σ0 on the fluid-air
interface. The flow was divided in three regions – see Fig. 1: a region AB
very close to the horizontal surface of the pool, the static meniscus BC (an
intermediate region where the lubrication approximation will be used) and the
constant thickness region CD far up on the plate.

This problem is quite similar (from a mathematical point of view) with
the flow of a gas-bubble in a horizontal thin tube filled with a viscous fluid,
studied by Bretherton (1961). In this last paper, a disagreement between ex-
perimental and theoretical results concerning the values of b was observed. For
small Ca, the experimental values were larger, compared with the theoretical
results. Bretherton supposed that this disagreement is due to the traces of
variable surfactant concentration existing on the bubble surface. Later, this
disagreement was observed also in the Landau-Levich problem.

Wilson (1982) studied the Landau-Levich problem and gave a rigorous
justification of the matching procedure used by Landau and Levich in 1942.

Fig. 1. Matching regions in Landau-Levich problem.
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Some explanations of the above “thickening”phenomenon were given by
Ratulowski and Chang (1989, 1990) and Park (1991), due to a variable surface
tension on the air-fluid interface h(x). Here a maximum thickening factor of
order 42/3 was obtained, compared with the case σ = σ0 = constant, by using
the scaling method introduced by Homsy and Park (1984).

Daripa and Pasa (2009, 2010) proved the thickening effect of surfactant,
by using asymptotic methods and a direct integration of the flow equations,
but they did not obtained the effective thickening factor.

In this paper, we give an estimate of b in terms of the problem data, when
the surface tension is variable, function of the surfactant concentration on the
air-fluid interface. When (Γ0 − Γ1) is small, the surface tension σ is given by
the following approximate formula

(1) σ = σ(Γ1) = σ0[1 +
Γ0

σ0

dσ

dΓ1
(Γ0)

Γ1 − Γ0

Γ0
] = σ0(1 +NΓ),

(2) N =
Γ0

σ0

dσ

dΓ1
(Γ0) =

1

σ0

dσ

dΓ
(Γ = 0) < 0, Γ = [Γ1(x)− Γ0]/Γ0,

where Γ is the reduced surfactant concentration. Γ1 is the (variable) surfactant
concentration in the points far from the liquid pool. We suppose that the
surfactant is insoluble and the surfactant transport is due only to the surface
diffusion process.

We obtain the thickening factor

(3) 42/3[1−NΓ(C)],

given in the formula (49).

The new element, compared with Ratulowski and Chang (1990) and Park
(1991) is the factor [1 − NΓ(C)]. We do not use the scaling procedure, but
the direct integration of the flow equations and the flux method, described in
Section 2.

Our main result is to compare the thickness of the adhering film far-up
on the plate in the two cases – with constant and variable surface tension on
the air-liquid interface. For this we do not need the exact values of the film
thickness in the two cases.

The paper is laid out as follows. In Section 2 we give the value of b for a
constant surface tension. The effect of a variable surface tension is described
in Section 3, where we obtain the new thickening factor, starting with the full
equations system which governs the flow, including also the diffusion equation
for the surfactant. We conclude in Section 4.
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2. CONSTANT SURFACE TENSION

Recall formula (2). In this section, we consider N = 0, σ = σ0.

a) A first empiric result can be obtained by equating the Gravity and
Viscous forces in the thin fluid-layer adhering on the plate:

bρg ≈ µuy, uy ≈ U/b⇒ b2 ≈ O(µU/ρg).

Therefore by using the capillary number Ca = µU/σ0 we get the formula

(4) b ≈ Ca1/2d, d2 = σ0/ρg.

b) A second empiric result can be obtained by using lubrication equations
(5) in the region BC and the Laplace’s law (6) (the air pressure is considered
zero)

(5) µuyy = px − ρg; 0 = py;

(6) p = −σ0hxx

We introduce the following dimensionless quantities:

(7) x∗, y∗, h∗ =
x

d
,
y

d
,
h

d
, u∗ =

u

U
; p∗ =

pd

σ0
, Γ∗ = Γ,

where d2 = σ0/(ρg) and the flow equations (5)–(6) become:

(8) Cau∗y∗y∗ = p∗x∗ − 1, p∗ = −h∗x∗x∗ .

The thickness in the region BC is denoted by ε and the length of this region
is denoted by l. From the first equation (8) we have

Ca ·O(u∗) ≈ [O(p∗x∗)− 1]ε2, l[Ca ·O(u∗) + ε2] ≈ ε2O(p∗).

The second equation (8) is giving

l2 ·O(p∗) ≈ ε.

Consider O(p∗), O(u∗) ≈ 1, then from the above two relations we get

(9) l(Ca+ ε2) ≈ ε2, l2 ≈ ε.

We use the hypothesis

(10) lε2 << 1,

then from relations (9), (10) we obtain

(11) lCa ≈ ε2, l2Ca2 ≈ ε4, Ca2 ≈ ε3 ⇒ ε ≈ Ca2/3.

Near point C we use the approximation ε ≈ b and obtain b ≈ Ca2/3 .
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The above law b ≈ Ca2/3 was first obtained by Landau and Levich (1942),
who supposed Ca << 1. We also consider this assumption, then our condition
(10) which is giving Ca5/3 << 1, is verified if Ca << 1. In experiments
capillary numbers Ca ≈ 10−6 were considered, then we have Ca2/3 ≈ 10−4 and
Ca1/3 ≈ 10−2.

c) We use now the lubrication approximation in BC and the correspond-
ing boundary conditions for the velocity, in dimensional quantities:

(12) µuyy = px − ρg, 0 = py, for 0 < y < h(x);

uy = 0, p = −σhxx, on y = h(x);

u = −U on y = 0.

We use the dimensionless quantities (7) and from the last three above equations
it follows

(13) Cau∗y∗y∗ = p∗x∗ − 1; 0 = p∗y∗ ;

u∗y∗ = 0, p∗ = −h∗x∗x∗ on y∗ = h∗(x∗); u∗ = −1 on y∗ = 0.

The corresponding velocity and the surface velocity, denoted by u∗ and u∗s,
are given by

(14) u∗ =
p∗x∗ − 1

Ca
(y∗2/2− y∗h∗)− 1, u∗s =

p∗x∗ − 1

2Ca
(−h∗2)− 1 < 0.

Far up on the plate we have p∗x∗ = 0, h∗ ≈ b/d, therefore from the last relation
we obtain the estimate

(15) h∗2 ≤ 2Ca⇒ b ≤ Ca1/2d
√

2,

which is in agreement with the above value (4).

d) We use now the incompressibility condition, by equating the flux of
liquid (flowing in the layer between the plate and the free surface) at a point
x ∈ BC, denoted by F (x), with the very small flux far up on the plate, denoted
by F (−∞). We omit the ∗ in this subsection d) where we use dimensionless
quantities. From (14) we have

F (x) =

∫ h(x)

0
udy =

px − 1

3Ca
(−h3)− h, F (−∞) =

b3

3Ca
− b,

therefore we get the equation of the free surface

(16) F (x) = F (−∞)⇒ h3

3Ca
(hxxx + 1) = (h− b) +

b3

3Ca
.

We introduce the function δ(x) as follows:

δ(x) = h(x)/b− 1 > 0, δ << 1, δ(−∞) = 0
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then we have hxxx = bδxxx and the equation (16) is giving

b3(δ + 1)3

3Ca
(bδxxx + 1) = bδ +

b3

3Ca
.

We consider the approximations (1 + δ)3 ≈ 1 + 3δ, (1 + 3δ)−1 ≈ (1− 3δ), we
divide with b in the above relation and get

b2

3Ca
(bδxxx + 1) = δ(1− 3δ) +

b2

3Ca
(1− 3δ).

We neglect δ2 in the last above relation and obtain

b3

3Ca
δxxx + δ(

b2

Ca
− 1) = 0.

This last equation has oscillating solutions, but we are interested in the
solutions which verify the decay condition at x = −∞, then we need 1 −
b2/Ca > 0. Then in fact (recall we used the dimensionless quantities) we
obtain b∗ < Ca1/2 and for the dimensional thickness b we obtain the estimate

(17) b < Ca1/2d,

which can be considered as an improvement of (4).
e) We use the flux method, we put h = b + ε, ε << 1, we neglect

b2ε, bε3, ε3 and from (16) we obtain:

(18) hxxx = 3Ca
h− b
h3

.

The following transformation was introduced by Bretherton (1961)

(19) h = bη, x =
b

(3Ca)1/3
z

and we obtain the equation of the free surface:

(20) ηzzz = (η − 1)/η3.

The equation (20) was first given by Landau and Levich (1942) and obtained
again by Bretherton (1961). In the region η ≈ 1, near the point C in the region
BC (see Figure 1), from (20) we get

(21) ηzzz = 0, ηzz = K1,

where K1 is a constant. Returning back to h, x we obtain

(22) b =
(3Ca)2/3K1

hxx(C)
.

The above relation will be used for comparison with the thickness obtained
when a variable surface tension exists on the free surface h(x).
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3. VARIABLE SURFACE TENSION

In this section, we consider a variable surface tension σ(x) on the free
surface, given by formula (2). We introduce the Marangoni number M = −N ,
then (2) becomes

(23) σ = σ0(1−MΓ), M = −N.

In dimensional quantities, we have two new equations, compared with the
case of the constant surface tension σ0:

(24) p = −σ(x)hxx, µuy = σx.

We still use the notations

b, h

for the thickness of the fluid-layer adhering far up on the plate and for the free
surface air-fluid, in the variable surface tension case. Only in the last part of
this section, we compare with the corresponding values in the constant surface
tension case, denoted by

bC , hC .

In dimensionless quantities ∗, equations (24) are (recall Γ∗ = Γ)

(25) p∗ = −(1−MΓ∗)h∗Sx∗x∗ , Ca u∗y∗ = −MΓ∗
x∗ .

Park (1991) considered the following scalings, by using the empiric esti-
mates of l, b, given in point b) of the previous section:

(26) x =
x∗

Ca1/3
, y =

y∗

Ca2/3
, h =

h∗

Ca2/3
, p = p∗, u = u∗, Γ = Γ∗/(Ca)2/3,

that means surfactant values are of order (Ca)2/3. Equations (13), (25) and
the above scalings (26) are giving:

Cauyy/Ca
4/3 = px/Ca

1/3 − 1⇒

(27) uyy = px − Ca1/3,

(28) p = −(1−MCa2/3Γ)Ca2/3hxx/Ca
2/3 ⇒ p = −hxx,

(29) Ca · uy/Ca2/3 = −MCa2/3Γx/Ca
1/3 ⇒ uy = −MΓx.

However, the relation [24] of Park(1991) is uyy = px, therefore the term
Ca1/3 was neglected, compared with (27). The range Ca ≈ 10−6 was used in
experiments. In Section 2, points b), e), we obtained bC ≈ Ca2/3. Therefore
we can’t neglect that the value Ca1/3 and the correct scaled form of equation
(13) is relation (27).
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In equation (28) we neglected the term MCa4/3Γhxx due to our hypoth-
esis Ca << 1; the variable surface tension is not appearing in the Laplace’s
law (28).

A maximum multiplication factor of order 42/3 due to the variable surface
tension effect was obtained by Ratulowski and Chang (1990) and by Park
(1991).

In this section, we do not use the above scalings and the surface tension
will appear in the Laplace’s law. As a consequence, the new factor of the form
(1−NΓ) will appear as the thickening effect of surfactant, proved below.

We use a direct integration method of the flow equations. We get an
improvement of the maximum thickening factor 42/3, given by Park (1991) and
Ratulowski and Chang (1990) and obtain an explicit formula in terms of the
surfactant concentration and Marangoni number M defined by relation (23).

We consider the full dimensional equations system, including also the
diffusion equation for the (insoluble) surfactant on the air-liquid interface:

(30) µuyy = px − ρg, 0 = py,

(31)
µuy = σx, p = −σhxx on the free surface y = h(x); u = U on y = 0;

(32) (Γ1)t +∇s · (Γ1u
s) = Ds∆sΓ1 + J on y = h(x),

where J is the flux of surfactant from the pool to the surface, Ds > 0 is the
surface diffusion coefficient and the surface gradient ∇s, the surface velocity
us and the surface laplacian ∆s will be given below. As we supposed that the
surfactant is insoluble, we have J = 0. The surfactant transport is due only to
the surface diffusion process.

The first point is to prove that the surfactant concentration is an increas-
ing function in terms of x.

The free surface is given by

F (x, y) = y − h(x) = 0

therefore the corresponding normalized normal and tangent are:

n =
(−hx, 1)

(1 + h2x)1/2
, t =

(1, hx)

(1 + h2x)1/2

The Surface gradient ∇s is given by

(∇s)1 =
∂

∂x
− n1(n · ∇) =

∂

∂x
− −hx

1 + h2x
(−hx

∂

∂x
+ 1

∂

∂y
),

We suppose σy ≈ 0, then we obtain

(33) (∇s)1 =
∂

∂x
− −hx

1 + h2x
(−hx

∂

∂x
) =

1

1 + h2x
· ∂
∂x
,
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(34) (∇s)2 =
∂

∂y
− n2(n · ∇) =

hx
1 + h2x

· ∂
∂x

Therefore, the vectorial form is

∇s =
1

1 + h2x
(i · ∂

∂x
+ j · hx

∂

∂x
),

where i, j are the unit vectors.

The Surface velocity is defined by us = u− n(un):

us
1 =

u+ hxv

(1 + h2x)
; us

2 =
hxu+ h2xv

(1 + h2x)
.

We use this particular form of us
2 and introduce the notation

us
1 = us

therefore

(us)1 = us =
u+ hxv

1 + h2x
;

(us)2 =
hx(u+ hxv)

1 + h2x
= hxu

s.

The relations (33)–(34) are giving:

∇s · Γ1u
s =

1

1 + h2x
[(Γ1u

s
1)x + hx(Γ1u

s
2)x] =

1

1 + h2x
[(Γ1u

s)x + hx(Γ1hxu
s)x].

We define the Surface Laplacian by the expressions: (∇s) · (∇s);

(∇s)1(∇s)1 =
1

1 + h2x

∂

∂x
(

1

1 + h2x

∂

∂x
);

(∇s)2(∇s)2 =
hx

1 + h2x

∂

∂x
(

hx
1 + h2x

∂

∂x
),

therefore

(35) ∆s = (
1

1 + h2x
)
∂2

∂x2
− (

hxhxx
(1 + h2x)2

)
∂

∂x
.

We use the above formulas and equation (32)

(36) [(1 + Γ)us]x + hx[hx(1 + Γ)us]x = Ds{Γxx −
hxhxxΓx

1 + h2x
},

We have to find the sign of Γx. For this, we use equation (36), the
hypothesis

Γus ≈ 0, hx[hx(1 + Γ)us]x ≈ 0, hxhxx ≈ 0
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and get

(us)x = DsΓxx.

Far up on the plate we have us = −U then

us = DsΓx − U.

We have us > −U in the lubrication region BC, then

(37) Γx > 0.

The above property is very natural: recall the axis Ox is pointed down, directed
toward the pool filled by the viscous liquid, then Γ is increasing.

Daripa and Paşa (2009) proved the thickening effect, by using relation
(37) and an asymptotic expansion, but they did not obtained the thickening
ratio.

Recall that the thickness of the thin film of fluid adhering on the plate
in the variable surface tension is denoted by b and the free surface is denoted
by h.

In the following, we obtain the thickening factor due to the surfactant
effect, but we use the dimensional variables. The solution of (30)–(31) is given
by

(38) u = (1/µ)(px − ρg)(y2/2− yh) + (y/µ)σx − U,

(39) us = (1/µ)(px − ρg)(−h2/2) + (h/µ)σx − U,

where us is the surface velocity. We use the flux method, then the equation
(38) of the velocity is giving the free surface equation below

(40) (h3/3µ)(−px + ρg) + (h2/2µ)σx − Uh = ρgb3/(3µ)− Ub

We multiply relation (39) with h/2, we subtract from (40) and get

(41)
h3

12µU
(−px + ρg) =

2(h− b)− h(us/U + 1)

2
+
ρgb3

3µU
.

The following transformation is considered

(42) h = bη, x =
b

(12Ca)1/3
z

and from relations (1), (31)2 and (41) we get

(43) b((1 +NΓ)ηzz)z +
b3ρg

σ012Ca
=

2b(η − 1)− bη(us/U + 1)

2η3
+

ρgb3

σ0η33Ca
.

In points b), e) of Section 2 we obtained bC ≈ Ca2/3. We use this result
and suppose that, also in the variable surface tension case, the adhering film
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thickness b is of order Ca2/3. This assumption will be verified in formula (49)
given below.

The terms containing b3 in equation (43) can be neglected, if b ≈ Ca2/3.
Indeed, in this case, the ratio b3/Ca is of order Ca << 1 - see the last lines of
point b) in Section 1.

Near point C in the region BC, where η ≈ 1 and us → −U , the relation
(43) becomes

(44) ([1 +NΓ(C)]ηzz)z ≈
η − 1

η3
≈ 0,

obtained with the transformation (42). From (44) we get

(45) [1 +NΓ(C)]ηzz ≈ K2 = constant.

Recall the case σ = σ0, but where hC , bC stand for the air-fluid intreface
and film-thickness. The relation (21), where we use the subscript C , becomes

(46) (ηC)zz ≈ K1 = constant

and was obtained with the transformation hC = bCηC , x = {bC/(3Ca)1/3}z
from relation (18).

It is natural to consider that M → 0 is giving η → ηC ; moreover in this
case we get hxx(C) ≈ hCxx(C), where C is the upward point of the meniscus
BC - see Fig. 1. Therefore, the last two formulas are giving

(47) K1 = K2⇒ [1 +NΓ(C)]ηzz = (ηC)zz.

Returning to the dimensional quantities, relations (45)–(47) and the corre-
sponding transformations (19) and (42) are giving

(48) [1 +NΓ(C)]
b

(12Ca)2/3
=

bC
(3Ca)2/3

.

Recall N < 0 - see the relations (1)-(2). We use the approximation

1

1 +NΓ(C)
≈ [1−NΓ(C)]

which holds iff NΓ(C) ≈ 0. Then we not only suppose a very small value of
the surfactant concentration Γ, but a very small value of the product NΓ(C).
In this case, from (48) it follows

(49) b ≈ 42/3[1−NΓ(C)]bC ,

then the new “thickening” factor 42/3[1−NΓ(C)] appears, as an effect of the
variable surface tension.
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4. CONCLUSIONS

In this paper, we improved the value of the thickening factor due to the
surfactant effects in the Landau-Levich problem, by using the flux method
and the surface velocity expression, without the scaling procedure. The new
element is the factor [1 − NΓ(C)] appearing in formula (49), where N,Γ are
given in relations (2) and C is the upward point of the meniscus BC. This
factor appears because, without the scaling procedure used in Park(1991),
the variable surface tension is still appearing in Laplace’s law. On the other
hand, without scaling procedure, we do not need only a very small surfactant
concentration Γ, but also a very small product MΓ, as is mentioned at the end
of Section 3.

In the papers of Ratulowski and Cang (1990) and Park (1991), the thick-
ening factor 42/3 is a maximum or a limit thickening effect. We have N < 0.
Moreover, we proved Γx > 0 – see equation (37) – then Γ is increasing and
we get Γ(C) < Γ(B) (recall the Ox axis is downward) because our analysis
holds only in the meniscus region. However, it is natural to consider that
Γ(B) < Γ(x = 0) and we have Γ(0) = 0 – recall the formula (2)2. Therefore we
can consider [1 − NΓ(C)] < 1 and our thickening factor is in agreement with
the results obtained in both the above cited papers.

We mention here the paper of Krechetnikov and Homsy (2006) where a
numeric method is used to integrate the full system of governing equations in
the Landau-Levich problem, including the dynamic meniscus; here is pointed
out that a pure hydrodynamic model of the surfactant effect is not enough
for understanding this phenomenon. In our paper, we supposed a monotonic
constitutive relation between the surface tension and surfactant concentration
– see relations (1) and (2). It seems that some fluids for which this assumption
is not verified do exist. In this case, the results of Krechetnikov and Homsy
(2006) suggest that it is possible to have a thinning effect due to a variable
surface tension on the fluid-air interface.
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