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In [15] and [16], the second author and Liu obtained some integral inequali-
ties of Simons’type and rigidity theorems for n-dimensional compact Willmore
Lagrangian submanifolds in the complex projective space CPn and complex Eu-
clidean space Cn. In this paper, we continue to study the interesting topic of
Willmore Lagrangian submanifold in the complex hyperbolic space CHn. Let
M be an n-dimensional compact Willmore Lagrangian submanifold in the com-
plex hyperbolic space CHn. Denote by ρ2 = S−nH2 the non-negative function
on M , where S and H are the square of the length of the second fundamental
form and the mean curvature of M . If K, Q is the function which assigns to
each point of M the infimum of the sectional curvature, Ricci curvature at the
point, we prove some integral inequalities of Simons’type and rigidity theorems
for n-dimensional compact Willmore Lagrangian submanifolds in CHn in terms
of ρ2,K,Q,H.
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1. INTRODUCTION

Let Nn+p be an oriented smooth Riemannian manifold of dimension
n + p and let ϕ : M → Nn+p be an n-dimensional compact submanifold of
Nn+p. Denote by hαij , S,

~H and H the second fundamental form, the square
of the length of the second fundamental form, the mean curvature vector
and the mean curvature of M . We define the following non-negative func-
tion on M by ρ2 = S − nH2, which vanishes exactly at the umbilical points
of M . The Willmore functional is the non-negative functional (see [3, 14, 17])
W (ϕ) =

∫
M (S − nH2)

n
2 dv, where dv is the volume element of M . From [3,

14] and [17], we know that W (ϕ) is an invariant under Moebius (or conformal)
transformations of Nn+p. The Willmore submanifold was defined by Li [11]
and Hu-Li [9, 10], that is, a submanifold is called a Willmore submanifold if
it is an extremal submanifold to the Willmore functional. When n = 2, the
functional essentially coincides with the well-known Willmore functional and its
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critical points are the Willmore surfaces. In [11] (also see [8, 14]), Li obtained
an Euler-Lagrange equation of Willmore functional in terms of Euclidean geom-
etry, which is very important to the study of rigidity and geometry of Willmore
submanifold in Nn+p.

Let CHn be the Complex hyperbolic space of constant holomorphic sec-
tional curvature −4,J the standard complex structure on CHn. Let ϕ : M →
CHn be an immersion of an n-dimensional manifold M in CHn. ϕ is called
Lagrangian if ϕ∗Ω ≡ 0, this means that the complex structure J of CHn car-
ries each tangent space of M into its corresponding normal space. The typical
examples of Lagrangian submanifolds of CHn are the Whitney spheres:

Example 1.1 ([1, 2, 4]). Whitney spheres in CHn. They are a one-
parameter family of Lagrangian spheres in CHn, given by Φθ : Sn → CHn,
θ > 0,

Φθ(x1, · · · , xn+1) = Π ◦ (
(x1, · · · , xn)

sθ + icθxn+1
;
sθcθ(1 + x2n+1)− ixn+1

s2θ + c2θx
2
n+1

),

where cθ = cosh θ, sθ = sinh θ,Π : H2n+1
1 → CHn is the Hopf projection. Φθ

are also embedding except in double points.

If the mean curvature vector of the immersion ϕ : M → CHn vanishes
identically, ϕ is called minimal. Minimality means that the submanifolds is
critical for compact supported variations of the volume functional. We notice
that in recent years, due to their backgrounds in mathematical physics, special
Lagrangian submanifolds have been extensively studied (see [1, 2, 10] and [12]).
In [10] Hu-Li obtained the following:

Theorem 1.2 ([10]). A Lagrangian submanifold ϕ : M → CHn is Will-
more submanifold if and only if for n+ 1 ≤ m∗, l∗ ≤ 2n

ρn−2
{ ∑
i,j,k,l∗

hl
∗
ijh

l∗
ikh

m∗
kj −

∑
i,j,l∗

H l∗hl
∗
ijh

m∗
ij − ρ2Hm∗ − 3(n− 1)Hm∗

}
(1.1)

+ (n− 1)ρn−2∆⊥Hm∗
+ 2(n− 1)

∑
i

(ρn−2)iH
m∗
,i

+ (n− 1)Hm∗
∆(ρn−2)−�m∗

(ρn−2) = 0,

where ∆(ρn−2) =
∑
i

(ρn−2)i,i, �m∗
(ρn−2) =

∑
i,j

(ρn−2)i,j(nH
m∗
δij − hm

∗
ij ),

∆⊥Hm∗
=
∑
i
Hm∗
,ii , and (ρn−2)i,j is the Hessian of ρn−2 with respect to the

induced metric dx·dx,Hm∗
,i and Hm∗

,ij are the components of the first and second

covariant derivative of the mean curvature vector field ~H.
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Remark 1.3. Fix the indexm∗ with n+1 ≤ m∗ ≤ 2n, define �m∗
: M → R

by

(1.2) �m∗
f =

∑
i,j

(nHm∗
δij − hm

∗
ij )fi,j ,

where f is any smooth function on M . We know that �m∗
is a self-adjoint

operator (see Cheng-Yau [6]). We can see that this operator naturally appears
in the Willmore equation (1.1) and will play an important role in the proofs of
our theorems.

From [13] and [10], the following results are well known:

Proposition 1.4 ([13]). Every minimal Lagrangian surface ϕ : M →
CH2 in a complex hyperbolic space CH2 is Willmore Lagrangian surface.

Proposition 1.5 ([10]). Every minimal and Einstein Lagrangian sub-
manifold ϕ : M → CHn in a complex hyperbolic space CHn is Willmore
Lagrangian submanifold.

From the above Propositions, we know that every minimal Lagrangian
surface, every minimal and Einstein Lagrangian submanifold is Willmore. But
we do not know whether every Willmore Lagrangian submanifold is minimal
or not.

We notice that in [15] and [16], the second author and Liu obtained some
integral inequalities of Simons’type and rigidity theorems for n-dimensional
compact Willmore Lagrangian submanifolds in the complex projective space
CPn and complex Euclidean space Cn. In this paper, we shall prove some
integral inequalities of Simons type and rigidity theorems for n-dimensional
compact Willmore Lagrangian submanifolds in the Complex hyperbolic space
CHn in terms of the scalar curvatures, sectional curvatures, Ricci curvatures
and mean curvatures of the submanifolds. More precisely, we obtain the fol-
lowing:

Theorem 1.6. Let ϕ : M → CHn be an n(n ≥ 2)-dimensional compact
Willmore Lagrangian submanifold in CHn. Then there holds the following

(1.3)

∫
M
ρn−2{( 1

n
− 2)ρ4 − (n+ 1)ρ2 + 4n(n− 1)H2}dv ≤ 0.

In particular, if ( 1
n − 2)ρ4− (n+ 1)ρ2 + 4n(n− 1)H2 ≥ 0 , then ϕ : M → CHn

is totally umbilical.

Theorem 1.7. Let ϕ : M → CHn be an n(n ≥ 2)-dimensional compact
Willmore Lagrangian submanifold in CHn. Then there holds the following

(1.4)

∫
M
ρn{(2n− 1)(K − n− 2√

n(n− 1)
Hρ−H2) + (n− 2)}dv ≤ 0.
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In particular, if K ≥ H2 + n−2√
n(n−1)

Hρ − n−2
2n−1 , then ϕ : M → CHn is totally

umbilical, or ϕ : M → CHn is a minimal Lagrangian submanifold in CHn

with parallel second fundamental form.

Theorem 1.8. Let ϕ : M → CHn be an n(n ≥ 2)-dimensional compact
Willmore Lagrangian submanifold in CHn. Then there holds the following

(1.5)

∫
M
ρn{( 4

n
− 1)ρ2 − 4(−3n− 5

4
+ (n− 2)Hρ+H2 −Q)}dv ≤ 0.

In particular, if Q ≥ n−4
4n ρ

2 + (n− 2)Hρ+H2 − 3n−5
4 , then ϕ : M → CHn is

totally umbilical.

2. BASIC FORMULAS AND LEMMAS

In this paper, we will agree with the following convention on the range of
indices: A,B,C, . . . = 1, . . . , n, 1∗, . . . , n∗; 1∗ = n+ 1, . . . , n∗ = 2n; i, j, k, . . . =
1, . . . , n. Let ϕ : M → CHn be an n-dimensional Lagrangian submanifold. We
choose a local field of orthonormal frames e1, . . . , en, e1∗ = Je1, . . . , en∗ = Jen
in CHn, such that, restricted to M , the vectors e1, . . . , en are tangent to M ,
where J is the complex structure of CHn. Let ω1, . . . , ω2n is the field of dual
frames, θA, θAB be the restriction of ωA, ωAB to M . Then θi∗ = 0, taking its
exterior derivative and making use of the structure equations of CHn and the
Cartan lemma we get

(2.1) θik∗ =
∑
j

hk
∗
ij θj , hk

∗
ij = hk

∗
ji ,

from which we can define the second fundamental form II =
∑
i,j,k∗

hk
∗
ij ωi

⊗
ωjek∗

and the mean curvature vector ~H of ϕ : M → CHn as follows: S =
∑
i,j,k∗

(hk
∗
ij )2,

~H =
∑
k∗
Hk∗ek∗ , Hk∗ = 1

n

∑
i
hk

∗
ii , H = | ~H|. Since ϕ : M → Cn is Lagrangian,

we have for any i, j

(2.2) 〈Jei, ej〉 = 0, 〈ei∗ , Jej〉 = δij .

Taking exterior derivative of (2.2), we get for any i, j, k

hk
∗
ij = hi

∗
jk = hj

∗

ik ,(2.3)

θi∗j∗ = θij .(2.4)

Denote by Rijkl the Riemannian curvature tensor of M , we get the Gauss
equations

Rijkl = −(δikδjl − δilδjk) +
∑
m∗

(hm
∗

ik h
m∗
jl − hm

∗
il h

m∗
jk ),(2.5)
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Rik = −(n− 1)δik + n
∑
m∗

Hm∗
hm

∗
ik −

∑
j,m∗

hm
∗

ij h
m∗
jk ,(2.6)

n(n− 1)R = −n(n− 1) + n2H2 − S,(2.7)

where R is the normalized scalar curvature of M .
The first covariant derivative {hm∗

ijk} and the second covariant derivative

{hm∗
ijkl} of hm

∗
ij are defined by

∑
k

hm
∗

ijkθk = dhm
∗

ij +
∑
k

hm
∗

kj θki +
∑
k

hm
∗

ik θkj +
∑
k∗

hk
∗
ij θk∗m∗ ,

(2.8)

∑
l

hm
∗

ijklθl = dhm
∗

ijk +
∑
l

hm
∗

ljkθli +
∑
l

hm
∗

ilk θlj +
∑
l

hm
∗

ijl θlk +
∑
l∗

hl
∗
ijkθβm∗ .

(2.9)

The Codazzi equations and the Ricci identities

hm
∗

ijk = hm
∗

ikj ,(2.10)

hm
∗

ijkl − hm
∗

ijlk =
∑
m

hm
∗

mjRmikl +
∑
m

hm
∗

imRmjkl +
∑
k∗

hk
∗
ij Rk∗m∗kl.(2.11)

The Ricci equations are

(2.12) Ri∗j∗kl = −(δjlδik − δjkδil) +
∑
m

(hi
∗
kmh

j∗

lm − h
j∗

kmh
i∗
lm).

Define the first, second covariant derivatives and Laplacian of the mean
curvature vector field ~H =

∑
m∗
Hm∗

em∗ in the normal bundle N(M) as follows∑
i

Hm∗
,i θi = dHm∗

+
∑
k∗

Hk∗θk∗m∗ ,(2.13) ∑
j

Hm∗
,ij θj = dHm∗

,i +
∑
j

Hm∗
,j θji +

∑
k∗

Hk∗
,i θk∗m∗ ,(2.14)

∆⊥Hm∗
=
∑
i

Hm∗
,ii , Hm∗

=
1

n

∑
k

hm
∗

kk .(2.15)

Let f be a smooth function on M . The first, second covariant derivatives
fi, fi,j and Laplacian of f are defined by

(2.16) df =
∑
i

fiθi,
∑
j

fi,jθj = dfi +
∑
j

fjθji, ∆f =
∑
i

fi,i.

For the fix index m∗(n+ 1 ≤ m∗ ≤ 2n), we introduce an operator �m∗
due to

Cheng-Yau [6] by

(2.17) �m∗
f =

∑
i,j

(nHm∗
δij − hm

∗
ij )fi,j .
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Since M is compact, the operator �m∗
is self-adjoint (see[6]) if and only if

(2.18)

∫
M

(�m∗
f)gdv =

∫
M
f(�m∗

g)dv,

where f and g are any smooth functions on M .

In general, for a matrix A = (aij) we denote by N(A) the square of the
norm of A, that is,

N(A) = trace(A ·At) =
∑
i,j

(aij)
2.

Clearly, N(A) = N(T tAT ) for any orthogonal matrix T .

We need the following Lemmas due to Chern-Do Carmo-Kobayashi [7],
Li [12] and Cheng [5].

Lemma 2.1 ([7]). Let A and B be symmetric (n× n)-matrices. Then

(2.19) N(AB −BA) ≤ 2N(A)N(B),

and the equality holds for nonzero matrices A and B if and only if A and B
can be transformed simultaneously by on orthogonal matrix into multiples of Ã
and B̃ respectively, where

Ã =


0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 B̃ =


1 0 0 · · · 0
0 −1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

Moreover, if A1, A2 and A3 are (n× n)-symmetric matrices and if

N(AαAβ −AβAα) = 2N(Aα)N(Aβ), 1 ≤ α, β ≤ 3

then at least one of the matrices Aα must be zero.

Lemma 2.2 ([12]). Let ϕ : M → CHn be an n-dimensional (n ≥ 2)
Lagrangian submanifold. Then we have

(2.20) |∇h|2 ≥ 3n2

n+ 2
|∇⊥ ~H|2,

where |∇h|2 =
∑

i,j,k,m∗
(hm

∗
ijk)2, |∇⊥ ~H|2 =

∑
i,m∗

(Hm∗
,i )2.



7 Willmore Lagrangian submanifolds 383

Lemma 2.3 ([5]). Let bi for i = 1, · · · , n be real numbers satisfying
n∑
i=1

bi =

0 and
n∑
i=1

b2i = B. Then

(2.21)

n∑
i=1

b4i −
B2

n
≤ (n− 2)2

n(n− 1)
B2.

Lemma 2.4 ([5]). Let ai and bi for i = 1, · · · , n be real numbers satisfying
n∑
i=1

ai = 0 and
n∑
i=1

a2i = a. Then

(2.22)

∣∣∣∣∣
n∑
i=1

aib
2
i

∣∣∣∣∣ ≤
√√√√√√ n∑

i=1

b4i −
(
n∑
i=1

b2i )
2

n

√
a.

3. INTEGRAL EQUALITIES AND PROPOSITIONS

In this section, we shall obtain some integral equalities of Willmore La-
grangian submanifolds ϕ : M → CHn. Defining tensors

(3.1) h̃m
∗

ij = hm
∗

ij −Hm∗
δij ,

(3.2) σ̃m∗l∗ =
∑
i,j

h̃m
∗

ij h̃
l∗
ij , σm∗l∗ =

∑
i,j

hm
∗

ij h
l∗
ij ,

we see that the (n × n)-matrix (σ̃αβ) is symmetric and can be assumed to be
diagonized for a suitable choice of e1∗ , . . . , en∗ and we set

(3.3) σ̃m∗l∗ = σ̃m∗δm∗l∗ .

By a direct calculation, we have

(3.4)
∑
k

h̃m
∗

kk = 0, σ̃m∗l∗ = σm∗l∗ − nHm∗
H l∗ , ρ2 =

∑
m∗

σ̃m∗ = S − nH2,

(3.5)∑
i,j,k,m∗

hl
∗
kjh

m∗
ij h

m∗
ik =

∑
i,j,k,m∗

h̃l
∗
kj h̃

m∗
ij h̃

m∗
ik +2

∑
i,j,m∗

Hm∗
h̃m

∗
ij h̃

l∗
ij +H l∗ρ2+nH2H l∗ .

From (3.1), (3.4) and (3.5), the Euler-Lagrange equation (1.1) can be rewritten
as follows:
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Proposition 3.1. A Lagrangian submanifold ϕ : M → CHn is Willmore
submanifold if and only if for n+ 1 ≤ m∗, l∗ ≤ 2n

�m∗
(ρn−2) =(n− 1)ρn−2∆⊥Hm∗

+ 2(n− 1)
∑
i

(ρn−2)iH
m∗
,i(3.6)

+ (n− 1)Hm∗
∆(ρn−2)− 3(n− 1)ρn−2Hm∗

+ ρn−2
(∑

l∗

H l∗ σ̃m∗l∗ +
∑
i,j,k,l∗

h̃m
∗

ij h̃
l∗
ikh̃

l∗
kj

)
.

Setting f = nHm∗
in (2.17), we have

�m∗
(nHm∗

) =
∑
i,j

(nHm∗
δij − hm

∗
ij )(nHm∗

)i,j(3.7)

=
∑
i

(nHm∗
)(nHm∗

)i,i −
∑
i,j

hm
∗

ij (nHm∗
)i,j .

We also have

1

2
∆(nH)2 =

1

2
∆
∑
m∗

(nHm∗
)2 =

1

2

∑
m∗

∆(nHm∗
)2(3.8)

=
1

2

∑
m∗,i

[(nHm∗
)2]i,i=

∑
m∗,i

[(nHm∗
),i]

2 +
∑
m∗,i

(nHm∗
)(nHm∗

)i,i

=n2|∇⊥ ~H|2+
∑
m∗,i

(nHm∗
)(nHm∗

)i,i.

Therefore, from (3.7) and (3.8), we get∑
m∗

�m∗
(nHm∗

) =
1

2
∆(nH)2 − n2|∇⊥ ~H|2 −

∑
i,j,m∗

hm
∗

ij (nHm∗
)i,j(3.9)

=
1

2
∆(n(n− 1)H2 − ρ2 + S)− n2|∇⊥ ~H|2 −

∑
i,j,m∗

hm
∗

ij (nHm∗
)i,j

=
1

2
∆S+

1

2
n(n−1)∆H2 − 1

2
∆ρ2 − n2|∇⊥ ~H|2 −

∑
i,j,m∗

hm
∗

ij (nHm∗
)i,j .

On the other hand, we have

1

2
∆S =

∑
i,j,k,m∗

(hm
∗

ijk)2 +
∑
i,j,m∗

hm
∗

ij ∆hm
∗

ij(3.10)

=|∇h|2+
∑
i,j,m∗

hm
∗

ij (nHm∗
)i,j+

∑
m∗

∑
i,j,k,l

hm
∗

ij (hm
∗

kl Rlijk + hm
∗

li Rlkjk)

+
∑
m∗,l∗

∑
i,j,k

hm
∗

ij h
l∗
kiRl∗m∗jk.
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Putting (3.10) into (3.9), we have∑
m∗

�m∗
(nHm∗

) = |∇h|2 − n2|∇⊥ ~H|2 +
1

2
n(n− 1)∆H2 − 1

2
∆ρ2(3.11)

+
∑
m∗

∑
i,j,k,l

hm
∗

ij (hm
∗

kl Rlijk+hm
∗

li Rlkjk) +
∑
m∗,l∗

∑
i,j,k

hm
∗

ij h
l∗
kiRl∗m∗jk.

Multiplying (3.11) by ρn−2 and taking integration, using (2.18), we have∑
m∗

∫
M

(nHm∗
)�m∗

(ρn−2)dv =

∫
M
ρn−2(|∇h|2 − n2|∇⊥ ~H|2)dv(3.12)

+
1

2
n(n− 1)

∫
M
ρn−2∆H2dv − 1

2

∫
M
ρn−2∆ρ2dv

+

∫
M
ρn−2

∑
m∗

∑
i,j,k,l

hm
∗

ij (hm
∗

kl Rlijk + hm
∗

li Rlkjk)dv

+

∫
M
ρn−2

∑
m∗,l∗

∑
i,j,k

hm
∗

ij h
l∗
kiRl∗m∗jkdv.

Taking the Euler-Lagrange equation (3.6) into (3.12) and making use of the
following∫

M
ρn−2

∑
m∗

Hm∗4⊥Hm∗
dv =

1

2

∫
M
ρn−2

∑
m∗

∆⊥(Hm∗
)2dv

−
∫
M
ρn−2

∑
i,m∗

(Hm∗
,i )2dv

=
1

2

∫
M
ρn−2∆H2dv −

∫
M
ρn−2|∇ ~H|2dv,

∫
M
H2∆(ρn−2)dv =

∫
M

∑
m∗

(Hm∗
)2
∑
i

(ρn−2)i,idv

=
∑
m∗,i

∫
M

(Hm∗
)2(ρn−2)i,idv

=−
∑
m∗,i

∫
M

(ρn−2)i((H
m∗

)2),idv

=− 2

∫
M

∑
m∗

Hm∗∑
i

(ρn−2)iH
m∗
,i dv,

−1

2

∫
M
ρn−2∆ρ2dv =− 1

2

∑
i

∫
M
ρn−2(ρ2)i,idv
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=
1

2

∑
i

∫
M

(ρ2)i(ρ
n−2)idv = (n− 2)

∫
M
ρn−2|∇ρ|2dv,

we have the following:

Proposition 3.2. For any n-dimensional compact Willmore Lagrangian
submanifold ϕ : M → CHn, there holds the following integral equality∫

M
ρn−2(|∇h|2 − n|∇⊥ ~H|2)dv + (n− 2)

∫
M
ρn−2|∇ρ|2dv(3.13)

+ 3n(n− 1)

∫
M
ρn−2H2dv

−
∫
M
ρn−2

∑
m∗,l∗

nHm∗
(H l∗ σ̃m∗l∗ +

∑
i,j,k

h̃m
∗

ij h̃
l∗
ikh̃

l∗
kj)dv

+

∫
M
ρn−2

∑
m∗

∑
i,j,k,l

hm
∗

ij (hm
∗

kl Rlijk + hm
∗

li Rlkjk)dv

+

∫
M
ρn−2

∑
m∗,l∗

∑
i,j,k

hm
∗

ij h
l∗
kiRl∗m∗jkdv = 0.

From (2.3), (2.12) and (3.1), we have∑
m∗,l∗

∑
i,j,k

hm
∗

ij h
l∗
kiRl∗m∗jk = −

∑
m∗,l∗

∑
i,j,k

hm
∗

ij h
l∗
ki(δljδmk − δlkδmj)(3.14)

+
∑
m∗,l∗

∑
i,j,k,p

hm
∗

ij h
l∗
ki(h

l∗
jph

m∗
pk − hl

∗
kph

m∗
pj )

=− ρ2 + n(n− 1)H2 − 1

2

∑
m∗,l∗,j,k

(
∑
p

hl
∗
jph

m∗
pk −

∑
p

hm
∗

jp h
l∗
pk)

2

=− ρ2 + n(n− 1)H2 − 1

2

∑
m∗,l∗,j,k

(
∑
p

h̃l
∗
jph̃

m∗
pk −

∑
p

h̃m
∗

jp h̃
l∗
pk)

2

=− ρ2 + n(n− 1)H2 − 1

2

∑
m∗,l∗

N(Ãm∗Ãl∗ − Ãl∗Ãm∗),

where Ãm∗ := (h̃m
∗

ij ) = (hm
∗

ij − Hm∗
δij). By use of (2.3), (2.5), (3.2), (3.4),

(3.5) and (3.14) we have

∑
m∗

∑
i,j,k,l

hm
∗

ij (hm
∗

kl Rlijk + hm
∗

li Rlkjk) = −nρ2 −
∑
m∗,l∗

∑
i,j,k,l

hm
∗

ij h
l∗
ijh

m∗
lk h

l∗
lk

(3.15)

+ n
∑
m∗,l∗

∑
i,j,k

H l∗hl
∗
kjh

m∗
ij h

m∗
ik +

∑
m∗,l∗

∑
i,j,k,l

hm
∗

ij h
l∗
ki(h

l∗
jlh

m∗
lk − hl

∗
klh

m∗
lj )
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=− nρ2 −
∑
m∗,l∗

σ2m∗l∗ + n
∑
m∗,l∗

∑
i,j,k

H l∗ h̃l
∗
kj h̃

m∗
ij h̃

m∗
ik

+ 2n
∑
m∗,l∗

∑
i,j

Hm∗
H l∗ h̃m

∗
ij h̃

l∗
ij

+ n
∑
l∗

(H l∗)2ρ2 + n2H2
∑
l∗

(H l∗)2 − 1

2

∑
m∗,l∗

N(Ãm∗Ãl∗ − Ãl∗Ãm∗)

=− nρ2 −
∑
m∗,l∗

σ̃2m∗l∗ + nH2ρ2 + n
∑
m∗,l∗

∑
i,j,k

H l∗ h̃l
∗
kj h̃

m∗
ij h̃

m∗
ik

− 1

2

∑
m∗,l∗

N(Ãm∗Ãl∗ − Ãl∗Ãm∗).

Putting (3.14) and (3.15) into (3.13), we have the following:

Proposition 3.3. For any n-dimensional compact Willmore Lagrangian
submanifold ϕ : M → CHn, there holds the following integral equality

∫
M
ρn−2(|∇h|2 − n|∇⊥ ~H|2)dv + (n− 2)

∫
M
ρn−2|∇ρ|2dv

(3.16)

+ 4n(n− 1)

∫
M
ρn−2H2dv + n

∫
M
ρn−2(H2ρ2 −

∑
m∗,l∗

Hm∗
H l∗ σ̃m∗l∗)dv

− (n+ 1)

∫
M
ρndv −

∫
M
ρn−2

∑
m∗,l∗

(N(Ãm∗Ãl∗ − Ãl∗Ãm∗) + σ̃2m∗l∗)dv = 0.

4. PROOFS OF THEOREMS

In this section, we shall give the proofs of Theorem 1.6–1.8.

Proof of Theorem 1.6. From Lemma 2.1, (3.2) and (3.3), we have

−
∑
m∗,l∗

N(Ãm∗Ãl∗ − Ãl∗Ãm∗)−
∑
m∗,l∗

σ̃2m∗l∗(4.1)

≥−
∑
m∗

σ̃2m∗ − 2
∑
m∗ 6=l∗

σ̃m∗ σ̃l∗ = −2(
∑
m∗

σ̃m∗)2 +
∑
m∗

σ̃2m∗

≥− 2ρ4 +
1

n
(
∑
m∗

σ̃m∗)2 = −(2− 1

n
)ρ4,

where, we used

(4.2)
∑
m∗

σ̃2m∗ ≥
1

n
(
∑
m∗

σ̃m∗)2.
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We also have

(4.3)
∑
m∗,l∗

Hm∗
H l∗ σ̃m∗l∗ =

∑
m∗

(Hm∗
)2σ̃m∗ ≤

∑
m∗

(Hm∗
)2
∑
l∗

σ̃l∗ = H2ρ2.

By making use of Lemma 2.2, (3.16), (4.1) and (4.3), we have

0 ≥
∫
M
ρn−2(|∇h|2 − 3n2

n+ 2
|∇⊥ ~H|2)dv +

∫
M
ρn−2(

3n2

n+ 2
− n)|∇⊥ ~H|2dv

(4.4)

+ 4n(n− 1)

∫
M
ρn−2H2dv − (n+ 1)

∫
M
ρndv −

∫
M
ρn−2(2− 1

n
)ρ4dv

≥
∫
M
ρn−2{( 1

n
− 2)ρ4 − (n+ 1)ρ2 + 4n(n− 1)H2}dv.

(i) If n = 2, from −3
2ρ

4 − 3ρ2 + 8H2 ≥ 0 and (4.4), we have 3
2ρ

4 + 3ρ2 −
8H2 = 0 on M . If ρ2 = 0 on M , then M is totally umbilical. If ρ2 6= 0 on M ,
from 3

2ρ
4 + 3ρ2− 8H2 = 0 we know that the equality in (4.4) holds. Therefore,

we have

N(Ã3Ã4 − Ã4Ã3) = 2N(Ã3)N(Ã4),(4.5)

2(σ̃23 + σ̃24) = (σ̃3 + σ̃4)
2,

that is

(4.6) σ̃3 = σ̃4.

We also have for m∗, l∗ = 3, 4,

(4.7)
∑
m∗,l∗

Hm∗
H l∗ σ̃m∗l∗ = H2ρ2.

From Lemma 2.1, we know that at most two of Ãm∗ = (h̃m
∗

ij ),m∗ = 3, 4, are

different from zero. If all of Ãm∗ = (h̃m
∗

ij ) are zero, which is a contradiction

with M , then it is not totally umbilical. If only one of them, say Ãm∗ , is
different from zero, it is a contradiction with (4.6). Therefore, we may assume
that

Ã3 = λÃ, Ã4 = µB̃, λ, µ 6= 0,

where Ã and B̃ are defined in Lemma 2.1.
From (4.7), we have

λ2(H3)2 + µ2(H4)2 = (λ2 + µ2)((H3)2 + (H4)2).

Since λ, µ 6= 0, we infer that H3 = H4 = 0, that is, ~H = 0, i.e., ϕ : M →
CH2 is a minimal Lagrangian submanifold in CH2. Therefore we know that
3
2ρ

4 + 3ρ2 = 0 on M and this is a contradiction with ρ2 6= 0.
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(ii) If n > 2, from ( 1
n − 2)ρ4− (n+ 1)ρ2 + 4n(n− 1)H2 ≥ 0 and (4.4), we

have ρ = 0 on M , that is, M is totally umbilical, or ( 1
n − 2)ρ4 − (n + 1)ρ2 +

4n(n − 1)H2 = 0. In the latter case, if ρ2 = 0 on M , we have M is totally
umbilical. If ρ2 6= 0 on M , we know that the equality in (4.4) holds. Therefore,
we have

∇⊥ ~H = 0, ∇h = 0,(4.8)

N(Ãm∗Ãl∗ − Ãl∗Ãm∗) = 2N(Ãm∗)N(Ãl∗), m∗ 6= l∗,

n
∑
m∗

σ̃2m∗ = (
∑
m∗

σ̃m∗)2,

that is

(4.9) σ̃n+1 = · · · = σ̃2n.

We also have

(4.10)
∑
m∗,l∗

Hm∗
H l∗ σ̃m∗l∗ = H2ρ2.

From Lemma 2.1, we know that at most two of Ãm∗ = (h̃m
∗

ij ),m∗ = n +

1, · · · , 2n, are different from zero. If all of Ãm∗ = (h̃m
∗

ij ) are zero, which is a
contradiction with M , then it is not totally umbilical. If only one of them, say
Ãm∗ , is different from zero, it is a contradiction with (4.9). Therefore, we may
assume that

Ãn+1 = λÃ, Ãn+2 = µB̃, λ, µ 6= 0,

Ãm∗ = 0, m∗ ≥ n+ 3,

where Ã and B̃ are defined in Lemma 2.1.
From (4.10), we have

λ2(Hn+1)2 + µ2(Hn+2)2 = (λ2 + µ2)
∑
m∗

(Hm∗
)2.

Since λ, µ 6= 0, we infer that Hm∗
= 0, n + 1 ≤ m∗ ≤ 2n, that is, ~H =

0, i.e., ϕ : M → CHn is a minimal Lagrangian submanifold in CHn and
(2− 1

n)ρ4 + (n+ 1)ρ2 = 0 on M , a contradiction with ρ2 6= 0. This completes
the proof of Theorem 1.6. �

Proof of Theorem 1.7. From (3.13), (3.14), (3.15) and (3.16), we know
that for any real number a, the following integral equality holds∫

M
ρn−2(|∇h|2 − n|∇⊥ ~H|2)dv + (n− 2)

∫
M
ρn−2|∇ρ|2dv(4.11)

+ 4n(n− 1)

∫
M
ρn−2H2dv
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+ n

∫
M
ρn−2(H2ρ2 −

∑
m∗,l∗

Hm∗
H l∗ σ̃m∗l∗)dv − (a+ 1)n

∫
M
H2ρndv

+ (1 + a)

∫
M
ρn−2

∑
m∗

∑
i,j,k,l

hm
∗

ij (hm
∗

kl Rlijk + hm
∗

li Rlkjk)dv

− (1 + a)n

∫
M
ρn−2

∑
m∗,l∗

∑
i,j,k

Hm∗
h̃m

∗
ij h̃

l∗
ikh̃

l∗
kjdv + (an− 1)

∫
M
ρndv

+ a

∫
M
ρn−2

∑
m∗,l∗

σ̃2m∗l∗dv − 1− a
2

∫
M
ρn−2

∑
m∗,l∗

N(Ãm∗Ãl∗ − Ãl∗Ãm∗)dv = 0.

For a fixed m∗, n + 1 ≤ m∗ ≤ 2n, we can take a local orthonormal frame
field {e1, · · · , en} such that hm

∗
ij = λm

∗
i δij , then, h̃m

∗
ij = µm

∗
i δij with µm

∗
i =

λm
∗

i −Hm∗
,
∑
i
µm

∗
i = 0. Thus

∑
m∗,i,j,k,l

hm
∗

ij (hm
∗

kl Rlijk + hm
∗

li Rlkjk) =
1

2

∑
m∗,i,j

(λm
∗

i − λm
∗

j )2Rijij

(4.12)

=
1

2

∑
m∗,i,j

(µm
∗

i − µm
∗

j )2Rijij ≥ nKρ2,

where K is the function which assigns to each point of M the infimum of the
sectional curvature at that point and the equality in (4.12) holds if and only if
Rijij = K for any i 6= j.

Let
∑
i

(h̃l
∗
ii )

2 = τl∗ . Then τl∗ ≤
∑
i,j

(h̃l
∗
ij)

2 = σ̃l∗ . Since
∑
i
h̃l

∗
ii = 0,

∑
i
µm

∗
i =

0 and
∑
i

(µm
∗

i )2 = σ̃m∗ . From Lemma 2.3 and Lemma 2.4, we have∑
m∗,l∗

∑
i,j,k

Hm∗
h̃m

∗
ij h̃

l∗
kj h̃

l∗
ik =

∑
l∗,m∗

∑
i,j,k

H l∗ h̃l
∗
ij h̃

m∗
kj h̃

m∗
ik(4.13)

=
∑
m∗,l∗

H l∗
∑
i

h̃l
∗
ii (µ

m∗
i )2 ≤ n− 2√

n(n− 1)

∑
m∗,l∗

|H l∗ |σ̃m∗
√
τl∗

≤ n− 2√
n(n− 1)

∑
m∗

σ̃m∗
∑
l∗

|H l∗ |
√
σ̃l∗

≤ n− 2√
n(n− 1)

ρ2
√∑

l∗

(H l∗)2
∑
l∗

σ̃l∗ =
n− 2√
n(n− 1)

Hρ3.

From (3.3), we get

(4.14)
∑
m∗,l∗

σ̃2m∗l∗ =
∑
m∗

σ̃2m∗ ≥
1

n
(
∑
m∗

σ̃m∗)2 =
1

n
ρ4.
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From Lemma 2.1, (3.2) and (3.3), we have∑
m∗,l∗

N(Ãm∗Ãl∗ − Ãl∗Ãm∗) ≤2
∑
m∗ 6=l∗

σ̃m∗ σ̃l∗ = 2(
∑
m∗

σ̃m∗)2 − 2
∑
m∗

σ̃2m∗(4.15)

≤2ρ4 − 2
1

n
(
∑
m∗

σ̃m∗)2 = 2
n− 1

n
ρ4.

Thus, from (4.3), (4.11), Lemma 2.2, (4.12)–(4.15), we obtain for 0 ≤ a ≤ 1

0 ≥
∫
M
ρn−2(|∇h|2 − 3n2

n+ 2
|∇⊥ ~H|2)dv +

∫
M
ρn−2(

3n2

n+ 2
− n)|∇⊥ ~H|2dv

+ (n− 2)

∫
M
ρn−2|∇ρ|2dv + 4n(n− 1)

∫
M
ρn−2H2dv(4.16)

+ n

∫
M
ρn−2(H2ρ2 −

∑
m∗,l∗

Hm∗
H l∗ σ̃m∗l∗)dv

− (1 + a)n

∫
M
H2ρndv + (1 + a)

∫
M
ρn−2nKρ2dv

− (1 + a)n

∫
M
ρn−2

n− 2√
n(n− 1)

Hρ3dv + (an− 1)

∫
M
ρndv

+ a

∫
M
ρn−2

1

n
ρ4dv − (1− a)

∫
M
ρn−2

n− 1

n
ρ4dv

≥(1 + a)n

∫
M
ρn(K − n− 2√

n(n− 1)
Hρ−H2)dv

+ (an− 1)

∫
M
ρndv + [

a

n
− (1− a)

n− 1

n
]

∫
M
ρn+2dv.

Putting a = n−1
n , we have

(4.17) 0 ≥
∫
M
ρn{(2n− 1)(K − n− 2√

n(n− 1)
Hρ−H2) + (n− 2)}dv.

From K ≥ H2 + n−2√
n(n−1)

Hρ − n−2
2n−1 and (4.17), we have ρ = 0, that is, M is

totally umbilical, or K = H2 + n−2√
n(n−1)

Hρ− n−2
2n−1 . In the latter case, if ρ2 = 0

on M , we have M is totally umbilical. If ρ2 6= 0 on M , then the equality in
(4.17) holds. Therefore, we know that the equalities in (4.16) hold, this implies
that

(4.18) ∇⊥ ~H = 0, ∇h = 0, H = 0.

Therefore we see that ϕ : M → CHn is a minimal Lagrangian submanifold
in CHn with parallel second fundamental form. This completes the proof of
Theorem 1.7. �
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In order to prove Theorem 1.8, we first prove the following:

Lemma 4.1. For any n-dimensional Lagrangian submanifold in CHn,
there holds the following

(4.19)
∑
m∗,l∗

N(Ãm∗Ãl∗−Ãl∗Ãm∗) ≤ 4{−(n−1)+(n−2)Hρ+H2−Q}ρ2− 4

n
ρ4,

where Q is the function which assigns to each point of M the infimum of the
Ricci curvature at that point.

Proof. From Gauss equation (2.6) and (3.1), we have

Rik = −(n− 1)δik + (n− 2)
∑
m∗

Hm∗
h̃m

∗
ik + (n− 1)H2δik −

∑
m∗,j

h̃m
∗

ij h̃
m∗
jk .

Thus, we get

(4.20) Rii = −(n− 1) + (n− 2)
∑
m∗

Hm∗
hm

∗
ii +H2 −

∑
m∗,j

(h̃m
∗

ij )2.

By Cauchy-Schwarz inequality, we have

(4.21)
∑
m∗

Hm∗
hm

∗
ii ≤

√∑
m∗

(Hm∗)2
√∑

m∗

(hm
∗

ii )2 ≤ Hρ.

From (4.20) and (4.21), we infer that

(4.22) Q ≤ −(n− 1) + (n− 2)Hρ+H2 −
∑
m∗,j

(h̃m
∗

ij )2.

Therefore, we have

(4.23)
∑

m∗ 6=l∗,i
(h̃m

∗
il )2 ≤ −(n− 1) + (n− 2)Hρ+H2 −Q− (h̃m

∗
il )2.

From (4.23) and h̃m
∗

ij = µm
∗

i δij , it is easy to see

∑
l∗

N(Ãm∗Ãl∗ − Ãl∗Ãm∗)

(4.24)

=
∑

l∗ 6=m∗,i,l

(h̃l
∗
il )

2(µm
∗

i − µm
∗

l )2 ≤ 4
∑

l∗ 6=m∗,i,l

(h̃l
∗
il )

2(µm
∗

l )2

≤4
∑
l

{−(n− 1) + (n− 2)Hρ+H2 −Q− (µm
∗

l )2}(µm∗
l )2

=4{−(n− 1) + (n− 2)Hρ+H2 −Q}
∑
l

(µm
∗

l )2 − 4
∑
l

(µm
∗

l )4
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≤4{−(n− 1) + (n− 2)Hρ+H2 −Q}
∑
l

(µm
∗

l )2 − 4

n
(
∑
l

(µm
∗

l )2)2.

Therefore, we know that (4.19) holds. This completes the proof of
Lemma 4.1. �

Proof of Theorem 1.8. From (3.16), Lemma 2.2, (3.3), (4.3) and Lemma
4.1, we have

0 ≥ 4n(n− 1)

∫
M
ρn−2H2dv − (n+ 1)

∫
M
ρndv

(4.25)

−
∫
M
ρn−2{4(−(n− 1) + (n− 2)Hρ+H2 −Q)ρ2 − 4

n
ρ4}dv −

∫
M
ρn−2ρ4dv

=

∫
M
ρn{( 4

n
− 1)ρ2 − 4(−3n− 5

4
+ (n− 2)Hρ+H2 −Q)}dv,

where we used

(4.26)
∑
m∗,l∗

σ̃2m∗l∗ =
∑
m∗

σ̃2m∗ ≤ (
∑
m∗

σ̃m∗)2 = ρ4.

From Q ≥ n−4
4n ρ

2 + (n− 2)Hρ+H2− 3n−5
4 and (4.25), we conclude ρ = 0, that

is M is totally umbilical, or

Q =
n− 4

4n
ρ2 + (n− 2)Hρ+H2 − 3n− 5

4
.

In the latter case, if ρ2 = 0, then M is totally umbilical; if ρ2 6= 0, we have
the equalities in (4.25) and (4.26) hold. From

∑
m∗
σ̃2m∗ = (

∑
m∗
σ̃m∗)2, we have∑

m∗ 6=l∗
σ̃m∗ σ̃l∗ = 0, this implies that (n − 1) of the σ̃m∗ must be zero. Since

ρ2 =
∑

m∗,i,j
(h̃m

∗
ij )2 6= 0 and σ̃m∗ =

∑
i,j

(h̃m
∗

ij )2, we infer that (n − 1) of the

Ãm∗ = (h̃m
∗

ij ) must be zero so that n = 1, a contradiction with the assumption
n ≥ 2. This completes the proof of Theorem 1.8. �
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