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The goal of this article is to investigate some of the arithmetical properties of
the sequence of balancing numbers using the elementary matrix algebra. The
purpose is to establish some important relations between period, rank and order
of the sequence of balancing numbers such as the period is equal to the product
of the rank and the order.
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1. INTRODUCTION

The balancing numbers and the balancers were introduced by Behera
et al. (1999), which were obtained from a simple diophantine equation [1].
The balancing numbers are defined recursively by Bn+1 = 6Bn − Bn−1 with
initials B0 = 0 and B1 = 1, where Bn denotes the nth balancing number, for
any natural number n. There is another way to represent balancing numbers
through matrices. In [7], Ray introduced balancing QB matrix as a second
order matrix whose entries are the first three balancing numbers 0, 1 and 6

and defined by QB =

[
6 −1
1 0

]
. The nth power of the QB matrix is given by

QnB =

[
Bn+1 −Bn
Bn −Bn−1

]
[7]. He has also shown that the sequence of balancing

matrices satisfies the same recurrence relation as that of balancing numbers,

that is, Qn+1
B = 6QnB − Q

n−1
B with initials Q0

B =

[
1 0
0 1

]
and Q1

B =

[
6 −1
1 0

]
.

Many interesting and important properties of balancing numbers, balancing
matrices and their related sequences were established by several authors. The
interested readers may refer to [2–10] for a detailed review.

In [11], Wall (1960) studied the periodicity of Fibonacci numbers mod-
ulo arbitrary natural numbers and established some interesting results about
the periodicity of Fibonacci numbers modulo primes [11]. In [6], Panda et al.

MATH. REPORTS 18(68), 3 (2016), 395–401



396 Bijan Kumar Patel and Prasanta Kumar Ray 2

(2014) studied the periodicity of balancing numbers modulo and any integer
which help to explore divisibility properties of these numbers. Some interesting
results about the periodicity of balancing numbers modulo primes and modulo
terms of certain sequences were also studied in [6]. They defined that a natural
number n is called the period of the balancing sequence modulo m, denoted by
π(m), if (Bn, Bn+1) ≡ (0, 1) (mod m), where m is any positive integer greater
than or equal to 2.

In this article, the authors define the rank r(m) and the order o(m) of
the sequence of balancing numbers modulo m and prove that the period π(m)
is equal to the product of the rank r(m) and the order o(m). Also, the authors
prove similar divisibility results for the rank as for the period and show that
the period is either equal to the rank or is twice the rank and characterize
when each happens.

The rank and the order of the sequence of balancing numbers are defined
as follows:

Definition 1.1. The rank of the sequence of balancing numbers modulo
m, denoted by r(m), is the smallest positive integer k such that m|Bk.

By virtue of Definition 1.1, mn|Br(mn) and therefore m|Br(mn), yielding
r(m)|r(mn). From the relationship (Br(m), Br(m)+1) ≡ t(0, 1) (mod m), it is
observed that for integers a and b, the terms of balancing numbers starting
with 0, t, at, (a2 + b)t, . . . are exactly the initial terms of balancing numbers
multiplied by a factor of some integer t. Further, the multiplier of the se-
quence of balancing numbers modulo m, denoted by t(m), is the least residue
of Br(m)+1 modulo m.

Definition 1.2. The order of the sequence of balancing numbers modulo
m, denoted by o(m) is defined by the order of the multiplier t(m) modulo m.

Keeping in mind that the determinant of the QB matrix is 1, we now
present the balancing matrix QB in a different way by interchanging the diag-

onal elements. That is, QB =

[
0 1
−1 6

]
. Then, for every positive integer n, QnB

will be QnB =

[
−Bn−1 Bn
−Bn Bn+1

]
. It is important to note that, the matrix QnB

is so formed that its determinant is invariant without loss of generality to the
Cassini formula for balancing numbers, that is, B2

n −Bn+1Bn−1 = 1 [5].

2. RELATIONS AMONG PERIOD, RANK AND ORDER
OF THE SEQUENCE OF BALANCING NUMBERS MODULO m

In this section, we establish some relations between the period, rank
and order of the sequence of balancing numbers modulo a positive integer
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m. We use balancing QB matrix to prove most of the results concerning these
relations.

It can be easily shown that, (Bn, Bn+1) ≡ (0, 1) (mod m) if and only
if QnB ≡ I (mod m). Therefore, the study of the period of the sequence of
balancing numbers modulo m is equivalent to the study of the period of the
sequence I,QB, Q

2
B, ..., Q

n
B, reduced modulom. Also the identityQl+nB ≡ QlB ≡

I (mod m) is valid, where l, n ∈ Z and l + n > l ≥ 0, as there are only a
finite number of matrices in the sequence of balancing numbers. Since the
determinant of QB = 1, there exist a least positive integer n such that QnB ≡
I (mod m) if and only if π(m)|n. Similarly, (Bn, Bn+1) ≡ t(0, 1) (mod m) if
and only if the exponents n for which QnB is congruent to a scalar multiple of
I modulo m. It follows that, QnB ≡ tI (mod m) if and only if r(m)|n.

The above discussion proves the following result.

Theorem 2.1. m|Bn if and only if r(m)|n and m|Bn, m|(Bn+1 − 1) if
and only if π(m)|n.

The following result shows an important relation among the period, rank
and order of the sequence of balancing numbers.

Theorem 2.2. The period of the sequence of balancing numbers is equal to
the product of the rank of apparition and the order of the sequence of balancing
numbers.

Proof. The zeros of the sequence of balancing numbers modulo m are
evenly spaced because of the identities Bk+l = BkBl+1 − Bk−1Bl and Bk−l =
Bk−1Bl−BkBl−1, for all integers k, l with the fact that, if Bk and Bl are congru-
ent to 0 modulo m, then so are Bk+l and Bk−l. Which implies that r(m)k1 =
π(m) for some positive integer k1, where r(m) is the index of the first zero.

Representing through matrices, it is observed that, Q
r(m)
B ≡ t(m)I (mod m),

where t(m) is the least residue of Br(m)+1 modulo m. Then,

Q
r(m)o(m)
B ≡ t(m)o(m)I ≡ I (mod m),

yielding π(m)|r(m)o(m). Conversely, it is observed that r(m)|π(m), by similar
idea that o(m)|π(m)/r(m) and the result follows. �

In [6], Panda et al. has shown the following result about the period of
the sequence of balancing numbers modulo m.

Theorem 2.3. If π(p2) 6= π(p), then π(pe) = pe−1π(p). Further, if l is
the largest integer such that π(pl) = π(p) and e > l, then π(pe) = pe−lπ(p).

Similar property satisfy for the rank of apparition of the sequence of
balancing numbers. We prove this result by using elementary matrix algebra.
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Theorem 2.4. If r(p2) 6= r(p), then r(pe) = pe−1r(p). Further, if l is the
largest integer such that r(pl) = r(p) and e > l, then r(pe) = pe−lr(p).

Proof. Clearly, Q
r(pe)
B ≡ tI (mod pe), where p be any prime and e be any

positive integer. Since Q
r(pe)
B = tI + peA for some matrix A,

Q
p r(pe)
B ≡ (tI + peA)p ≡ tpI (mod pe+1),

yielding r(pe+1)|p r(pe). Since r(pe)|r(pe+1), we conclude that r(pe+1) = r(pe)
or r(pe+1) = p r(pe). For e = 1, r(p2) 6= r(p), then r(p2) = p r(p). So, if
r(p2) 6= r(p), then r(p2) = p r(p). Further, if l is the largest integer such that
r(pl) = r(p), then r(pl+c) = p r(pl+c−1) = ... = pc r(pl) = pc r(p) for each
natural number c. �

The following is an interesting result for the order of the sequence of
balancing numbers for any prime p.

Theorem 2.5. For any prime p, o(pe) = o(p) where e is any positive
integer.

Proof. By virtue of THEOREM 2.4 and THEOREM 2.5, π(pe)
π(p) = pi and

r(pe)
r(p) = pj , where i and j are any positive integers. Clearly,

r(pe)

r(p)

π(pe)

r(pe)
=
π(p)

r(p)

π(pe)

π(p)
.

By THEOREM 2.2, π(pe)
r(pe) = o(pe) and π(p)

r(p) = o(p) and therefore pi(1 or 2) =

(1 or 2)pj . Hence the result follows. �

Lemma 2.6. Let p be any odd prime and let e be any positive integer.
Then

(i) o(pe) = 1 if 2 - π(pe),
(ii) o(pe) = 2 if 2|π(pe),

Proof. To prove (i), suppose m = pe. Therefore by THEOREM 2.2,
o(pe)r(pe) = π(pe). Since, pe > 2, o(pe) is either 1 or 2. Observe that if o(pe)
is 1, then r(pe) is even, for which 2 - π(pe). If o(pe) is 2, then 2 | π(pe). �

The following are some arithmetical properties involving the period, rank
and order of the sequence of balancing numbers.

Theorem 2.7. Let m be a positive integer, then π(m)=(2, o(m)) [r(m), 1],
where (a, b) and [a, b] denote the greatest common divisor and the least common
multiple of the integers a and b, respectively.
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Proof. It is known that Q
r(m)
B ≡ t(m)I modulo m. Comparing the deter-

minants, we get 1r(m) ≡ [t(m)]2 (mod m). So, we note that [t(m)]2 and 1r(m)

have the same order modulo m. Specifically:

o(m)

(2, o(m))
=

1

(r(m), 1)
.

Therefore,

π(m) = r(m)o(m) = r(m)
(2, o(m))

(r(m), 1)
= (2, o(m))[r(m), 1)],

which ends the proof. �

The following result is an immediate consequence of THEOREM 2.7.

Corollary 2.8. For m > 2, o(m) = 1 or 2.

Proof. By virtue of THEOREM 2.7, we have

π(m) = (2, o(m)).[r(m), 1]

= (1 or 2).r(m)

= r(m) or 2.r(m),

and the result follows from THEOREM 2.2. �

Theorem 2.9. Let m and n are positive integers, then r([m,n]) = [r(m),
r(n)] and π([m,n]) = [π(m), π(n)].

Proof. Since Br([m,n]) ≡ 0 (mod [m,n]), we have Br([m,n]) ≡ 0 (mod m)
and Br([m,n]) ≡ 0 (mod n). Therefore, both r(m) and r(n) divide r([m,n]), that
is [r(m), r(n)]| r([m,n]). On the other hand, since B[r(m),r(n)] ≡ 0 (mod m)
and B[r(m),r(n)] ≡ 0 (mod n), B[r(m),r(n)] ≡ 0 (mod [m,n]). It follows that
r([m,n])| [r(m), r(n)], which completes the proof of the first part.

In order to prove the second part, we use the balancing matrix as fol-

lows. Since Q
π([m,n])
B ≡ I (mod [m,n]), we have Q

π([m,n])
B ≡ I (mod m) and

Q
π([m,n])
B ≡ I (mod n). Therefore, both π(m) and π(n) divide π([m,n]), that

is [π(m), π(n)]| π([m,n]). On the other hand, suppose π(m) and π(n) both

divide [π(m), π(n)]. As Q
[π(m),π(n)]
B ≡ I (mod m) and Q

[π(m),π(n)]
B ≡ I (mod n),

we have Q
[π(m),π(n)]
B ≡ I (mod [m,n]). Therefore π([m,n])| [π(m), π(n)] and

the result follows. �

The following result is useful while proving the subsequent results.

Lemma 2.10. For any integers m and n, r(m)|n if and only if m|Bn.

Proof. Suppose r(m) divides n. Then for the least positive integer n,
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Bn ≡ 0 (mod m), which implies m|Bn. Conversely, for a least positive integer
n, suppose m|Bn. Then Bn ≡ 0(mod m) and the result follows. �

Theorem 2.11. If m has the prime factorization m = pe11 p
e2
2 ...p

en
n , then

r(m) is the lcm{r(peii )} and π(m) is the lcm{π(peii )} for i = 1, 2, 3, ..., n and e
be any positive integer.

Proof. Since peii are pairwise relatively prime, m|Bn is equivalent to
peii |Bn. By virtue of Lemma 2.10, which is equivalent to r(peii )|n. The least pos-
itive integer n which satisfies these conditions is n = lcm{r(peii )} for all i, which
completes the proof of the first part. Since peii |m for all i, then π(peii )|π(m)
and hence lcm{π(peii )}|π(m). On the other hand, since π(peii )| lcm{π(peii )},
Q
lcm{π(peii )}
B ≡ I (mod peii ), by Chinese remainder theorem, Q

lcm{π(peii )}
B ≡

I (mod m). Hence π(m)| lcm{π(peii )}, which follows the second part. �

Theorem 2.12. If p be any prime. Then

(i) π(p)|p− 1 if p ≡ ±1 (mod 8),
(ii) π(p)|p+ 1 if p ≡ ±3 (mod 8),
(iii) r(p)|p− 1 if p ≡ ±1 (mod 8),
(iv) r(p)|p+ 1 if p ≡ ±3 (mod 8).

Proof. In [6], Panda et al. show that, if p is a prime of the form 8x±1, then
Bp−1 ≡ 0(mod p), Bp ≡ 1(mod p). Again, for p = 8x± 3, Bp ≡ − 1(mod p),
Bp+1 ≡ 0(mod p), which follows (i) and (ii). By virtue of Lemma 2.10,
Bp−1 ≡ 0 (mod p) if and only if r(p)|p − 1 and Bp ≡ 1 (mod p) if and only
if r(p)|p, that is π(p)|Bp−1 if and only if r(p)|p − 1, which follows (iii) and
(iv). �
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