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In this paper, the notion of complete controllability for nonlinear stochastic
neutral impulsive integrodifferential systems in finite dimensional spaces is in-
troduced. Sufficient conditions ensuring the complete controllability of the non-
linear stochastic impulsive system are established. An example is provided to
illustrate the result.
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1. INTRODUCTION

The notion of controllability has played a central role throughout the
history of modern control theory. The problem of controllability is to show the
existence of a control function, which steers dynamical control systems from
its initial state to the final state, where the initial and final states may vary
over the entire space.

The problem of controllability of linear deterministic system is well doc-
umented. The controllability of nonlinear deterministic systems in a finite
dimensional space has been extensively studied [2,9]. The problem of control-
lability of the linear stochastic system of the form

(1)

{
dx(t) = [A(t)x(t) +B(t)u(t)] dt+ σ(t)dw(t), t ∈ [0, T ] ,
x(0) = x0,

has been studied by various authors [10, 17, 19] where σ : [0, T ] → Rn×n. In
Mahmudov [17], it is shown that complete controllability and approximate
controllability of the system (1) coincide. He establishes the equivalence be-
tween complete controllability of the linear stochastic system on [0, T ] and the
corresponding deterministic system on every [s, T ], 0 ≤ s ≤ T .

Controllability of non-linear stochastic systems in finite-dimensional
spaces has been investigated by many authors. Klamka and Socha [10] derived
sufficient conditions for the stochastic controllability of linear and nonlinear
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systems using a Lyapunov technique. Mahmudov and Zorlu [16] derived suf-
ficient conditions for complete and approximate controllability of semilinear
stochastic systems with non-Lipschitz coefficients via Picard-type iterations.
Balachandran et al. [3, 4] studied the controllability of semilinear stochastic
integrodifferential systems using the Banach fixed point theorem.

In recent years, many systems in physics and biology exhibit impulsive
dynamical behavior due to sudden jumps at certain instants in the evolution
process. Differential equations involving impulsive effects occur in many appli-
cations [1,6,12,14]. The presence of impulses implies that the trajectories of the
system do not necessarily preserve the basic properties of the non-impulsive dy-
namical systems. Yang, Xu and Xiang [21] established the exponential stability
of non-linear impulsive stochastic differential equations with delays. Liu and
Liao [13] studied the existence, uniqueness and stability of stochastic impul-
sive systems using Lyapunov-like functions. For the basic theory of impulsive
differential equations the reader can refer to [11].

A natural generalization of impulsive ordinary differential equations are
the impulsive neutral functional differential equations. Impulsive neutral func-
tional differential equations describe models of real processes and phenomena
where both dependence on the past and momentary disturbances are observed.
In recent years, the interest in impulsive neutral systems has been growing
rapidly due to their successful applications in practical fields such as circuit
theory, bioengineering, chemical technology, etc. [18, 20].

In this article, we investigate the controllability problem of a class of
nonlinear stochastic neutral impulsive systems. Further, we show the complete
controllability of nonlinear stochastic system under the natural assumption
that the associated linear impulsive stochastic control system is completely
controllable. Motivation for these kind of equations can be found in [3, 8].

The paper is organized as follows. In Section 2, some basic notations and
preliminary facts are recalled. In Section 3, we obtain the sufficient control-
lability conditions via one of the fixed point methods, in Section 4, we have
given an example to illustrate the result.

2. PROBLEM FORMULATION

In this paper, we consider the following nonlinear stochastic integrodif-
ferential impulsive systems of the form

(2)


d [x(t)−G(t, x(t), g(ηx(t))] = A(t)

[
x(t) +

∫ t
0 H(t, s)x(s)ds

]
dt

+ {B(t)u(t) + F1 (t, x(t), f1,1(ηx(t)), f1,2(δx(t)), f1,3(ξx(t)))} dt
+F2 (t, x(t), f2,1(ηx(t)), f2,2(δx(t)), f2,3(ξx(t)))dw(t), t∈ [0, T ], t 6= tk,

∆x(tk) = Ik(x(t−k )), t = tk, k = 1, 2, ..., r,
x(0) = x0 ∈ Rn,
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where, for i = 1, 2 :

fi,1(ηx(t)) =
∫ t
0 fi,1(t, s, x(s))ds, g(ηx(t)) =

∫ t
0 g(t, s, x(s))ds,

fi,2(δx(t)) =
∫ T
0 fi,2(t, s, x(s))ds, fi,3(ξx(t)) =

∫ t
0 fi,3(t, s, x(s))dw(s),

and A(t), B(t) are continuous matrices of dimensions n×n, n×m respectively,

F1 : [0, T ]×Rn ×Rn ×Rn ×Rn → Rn, fi,1 : [0, T ]× [0, T ]×Rn → Rn,
F2 : [0, T ]×Rn ×Rn ×Rn ×Rn → Rn×n, fi,2 : [0, T ]× [0, T ]×Rn → Rn,
G : [0, T ]×Rn ×Rn → Rn, fi,3 : [0, T ]× [0, T ]×Rn → Rn×n,
H : [0, T ]× [0, T ]→ Rn×n, g : [0, T ]× [0, T ]×Rn → Rn,

Ik ∈ C(Rn, Rn), u(t) is a feedback control and w is an n-dimensional
standard Brownian motion. Furthermore, 0 = t0 < t1 < ... < tr < tr+1 = T ,
x(t+k ) and x(t−k ) represent the right and left limits of x(t) at t = tk, respectively.
Also ∆x(tk) = x(t+k )− x(t−k ) = x(tk)− x(t−k ), represents the jump in the state
x at time tk with Ik determining the size of the jump, the initial value x0 is
F0-measurable with E ‖x0‖2 <∞.

This type of equations occur in population models [5,7] where the integral
term specifies how much weight is attached to the population at various past
times, in order to arrive at their present effect on the resources availability. The
complete controllability of such equations is of quite fundamental importance
biologically when the parameters are subject to some random disturbances,
like environmental factors, since it concerns the long time survival of species.
The study of this phenomenon has become an essential part of the qualitative
theory of stochastic differential equations.

We define the operator Ψ1 from H2 to H2 as follows:

(3)
(Ψ1x)(t) = (Ĝx)(t) +

∫ t
0

∂S(t−s)
∂s (Ĝx)(s)ds+

∫ t
0 S(t− s)(F̂1x)(s)ds

+
∫ t
0 S(t− s)(F̂2x)(s)dw(s) +

∑
0<tk<t

S(t− tk)Ik(x(t−k )),

where, for i = 1, 2

(F̂ix)(t) = Fi (t, x(t), fi,1(ηx(t)), fi,2(δx(t)), fi,3(ξx(t))) ,

(Ĝx)(t) = G (t, x(t), g(ηx(t))) ,

and S(t) is the resolvent matrix [5] which satisfies

(4)

{
∂S(T−s)

∂s + S(T − s)A(s) +
∫ T
s S(T − r)H(r, s)dr = 0,

S(0) = I, 0 ≤ s ≤ t ≤ T.
The solution of Eq (2) can be represented in the following integral form [18]:

x(t) = S(t) [x0 −G(0, x0, 0)] + (Ĝx)(t) +

∫ t

0

∂S(t− s)
∂s

(Ĝx)(s)ds

+

∫ t

0
S(t− s)

(
B(s)u(s) + (F̂1x)(s)

)
ds+

∫ t

0
S(t− s)(F̂2x)dw(s)
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+
∑

0<tk<t

S(t− tk)Ik(x(t−k )),

then, we can written

(5) x(t) = S(t) [x0 −G(0, x0, 0)] + (Ψ1x)(t) +

∫ t

0
S(t− s)B(s)u(s)ds.

Let L(X,Y ) the space of all linear bounded operators from a Banach
space X to a Banach space Y . Let (Ω,F , {Ft}t≥0,P) be a complete probability
space with a filtration {Ft}t≥0 generated by {w(s) : 0 ≤ s ≤ t} and F = FT .
Let L2(Ω,FT , R

n) be the Hilbert space of all FT -measurable square integrable
variables with values in Rn. Let Uad := LF2 ([0, T ], Rm) be the Hilbert space
of all square integrable and Ft-measurable processes with values in Rm. Let
PC([0;T ];Rn) be the space of function from [0;T ] into Rn such that x(t) is
continuous at t 6= tk and left continuous at t = tk and the right limit X(t+k )
exists for k = 1, 2, ...r. Further, let H2 := PCb

Ft
([0, T ], L2(Ω,Ft, R

n)) be the
Banach space of all bounded Ft-measurable, PC([0;T ];Rn) valued random
variables ϕ satisfying

‖ϕ‖2 = sup
t∈[0,T ]

E ‖ϕ(t)‖2 .

Now let us introduce the following operators and sets.

• The linear bounded operator LT
0 ∈ L

(
LF2 ([0, T ], Rm),L2(Ω,FT , R

n)
)

is
defined by

LT
0 =

∫ T

0
S(T − s)B(s)u(s)ds.

• The controllability operator ΠT
0 associated with (1) is

(6) ΠT
0 (.) =

∫ T

0
S(T − t)B(t)B∗(t)S∗(T − t)E(. | Ft)dt,

which belongs to L (L2(Ω,FT , R
n),L2(Ω,FT , R

n)), B∗(t) is the adjoint
operator of B(t), and the controllability matrix ΓT

s ∈ L(Rn, Rn)

ΓT
s =

∫ T

s
S(T − t)B(t)B∗(t)S∗(T − t)dt, 0 ≤ s ≤ t.

• The set of all states attainable from x0 in time T > 0 is

Rt(x0) = {x(t, x0, u) : u ∈ Uad} ,
where x(t, x0, u) is the solution of (2) corresponding to x0 ∈ Rn and
u(.) ∈ Uad.

Definition 1. The system (2) is completely controllable on [0, T ] if

RT (x0) = L2(Ω,FT , R
n),

that is, if all the points in L2(Ω,FT , R
n) can be reached from the point x0 at

time T.
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The following lemma gives a formula for a control steering the state x0
to an arbitrary final point xT .

Lemma 1. Assume the operator ΠT
0 is invertible, then for arbitrary xT ∈

L2(Ω,FT , R
n) the control

(7)
u(t) = B∗(t)S∗(T−t)E

{
(ΠT

0 )−1(xT − S(T )[x0 −G(0, x0, 0)]− (Ψ1x)(T )) | Ft

}
transfers the system (5) from x0 ∈ Rn to xT ∈ Rn at time T .

Proof. By substituting (7) in (5), we obtain

x(t) = S(t) [x0 −G(0, x0, 0)] + (Ψ1x)(t)(8)

+

∫ t

0
S(t− s)B(s)B∗(s)S∗(T − s)

×E
{

(ΠT
0 )−1 (xT − S(T )[x0 −G(0, x0, 0)]− (Ψ1x)(T )) | Fs

}
ds,

we have

S∗(T − s) = S∗ [(T − t) + (t− s)] = S∗(t− s)S∗(T − t),

then

x(t) = S(t) [x0 −G(0, x0, 0)] + (Ψ1x)(t)(9)

+

∫ t

0
S(t− s)B(s)B∗(s)S∗(t− s)S∗(T − t)

×E
{

(ΠT
0 )−1 (xT − S(T )[x0 −G(0, x0, 0)]− (Ψ1x)(T )) | Fs

}
ds,

from (6), we have

Πt
0(.) =

∫ t

0
S(t− s)B(s)B∗(s)S∗(t− s)E(. | Fs)ds,

then

x(t) = S(t) [x0 −G(0, x0, 0)] + (Ψ1x)(t) + Πt
0(S
∗(T − t)(ΠT

0 )−1

× (xT − S(T )[x0 −G(0, x0, 0)]− (Ψ1x)(T ))).(10)

Writing t = T in (10), we see that the control u(.) transfers the system (5)
from x0 to xT . �

3. CONTROLLABILITY RESULTS
FOR STOCHASTIC IMPULSIVE SYSTEMS

In this section, we derive controllability conditions for the nonlinear
stochastic integrodifferential impulsive system (2) using the contraction map-
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ping principle. For the study of this problem we hence introduce the following
hypotheses.

(A1) The functions Fi, fi,j , G, g, i = 1, 2, j = 1, 3 satisfies the Lipschitz
condition:
there are constants L1, N1, K1, C1, qk > 0 for xh, yh, vh, zh ∈ Rn,
h = 1, 2 and 0 ≤ s ≤ t ≤ T

‖Fi(t, x1, y1, v1, z1)− Fi(t, x2, y2, v2, z2)‖2

≤ L1

(
‖x1 − x2‖2 + ‖y1 − y2‖2 + ‖v1 − v2‖2 + ‖z1 − z2‖2

)
,

‖G(t, x1, y1)−G(t, x2, y2)‖2 ≤ N1

(
‖x1 − x2‖2 + ‖y1 − y2‖2

)
,

‖fi,j(t, s, x1(s))− fi,j(t, s, x2(s))‖2 ≤ K1 ‖x1 − x2‖2 ,
‖g(t, s, x1(s))− g(t, s, x2(s))‖2 ≤ C1 ‖x1 − x2‖2 ,
‖Ik(x)− Ik(y)‖2 ≤ qk ‖x− y‖2 , k ∈ {1, ..., r} .

(A2) The functions Fi, fi,j , G, g, i = 1, 2, j = 1, 3 are continuous and there
exist constants L2, N2, K2, C2, dk > 0 > 0 for x, y, v, z ∈ Rn and
0 ≤ t ≤ T

‖Fi(t, x, y, v, z)‖2 ≤ L2

(
1 + ‖x‖2 + ‖y‖2 + ‖v‖2 + ‖z‖2

)
,

‖G(t, x, y)‖2 ≤ N2

(
1 + ‖x‖2 + ‖y‖2

)
,

‖fi,j(t, s, x(s))‖2 ≤ K2

(
1 + ‖x‖2

)
,

‖g(t, s, x)‖2 ≤ C2

(
1 + ‖x‖2

)
,

‖Ik(x)‖2 ≤ dk
(

1 + ‖x‖2
)
, k ∈ {1, ..., r} .

(A3) The linear system (1) is completely controllable.

Now for convenience, let us introduce the following notations:

l1 = max
{
‖S(t)‖2 , t ∈ [0, T ]

}
, l2 = max

{∥∥∂S
∂t

∥∥2 , t ∈ [0, T ]
}

M = max
{∥∥ΓT

s

∥∥2 , s ∈ [0, T ]
}
.

Lemma 2 ([15]). For every z ∈ L2(Ω,FT , R
n), we have

1. E
∥∥Πt

0z
∥∥2 ≤ME ‖z‖2 .

2. If the linear system (1) is completely controllable, then there exist l3 > 0
such that

E
∥∥(ΠT

0 )−1
∥∥2 ≤ l3

Lemma 3. Under the condition (A1) and (A2), there exist a real constant
M1,M2 > 0 such that for x, y ∈ H2, we have

(11) E ‖(Ψ1x)(t)− (Ψ1y)(t)‖2 ≤M1

(
sup

s∈[0,T ]
E ‖x(s)− y(s)‖2

)
,
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(12) E ‖(Ψ1x)(t)‖2 ≤M2

(
1 + T sup

s∈[0,T ]
E ‖x(s)‖2

)
.

Proof. First, we will provide the proof of inequality (11), since (12) can
be established in a similar way. For i = 1, 2, let x, y ∈ H2.
It follows from condition (A1), Holder inequality and Ito isometry that∥∥∥(F̂ix)(t)− (F̂iy)(t)

∥∥∥2 ≤ L1

(
‖x(t))− y(t))‖2 + ‖fi,1(ηx(t))− fi,1(ηy(t))‖2

+ ‖fi,2(δx(t))− fi,2(δy(t))‖2 + ‖fi,3(ξx(t))− fi,3(ξy(t))‖2Q
)
,

≤ L1(1 + 2T 2K1 + TK1) sup
s∈[0,T ]

‖x(s)− y(s)‖2 ,

from which it follows that
(13)

E

(∫ t

0

∥∥∥(F̂ix)(s)−(F̂iy)(s)
∥∥∥2ds)≤ L1T (1+2T 2K1+TK1) sup

s∈[0,T ]
E‖x(s)− y(s)‖2.

We have∥∥∥(Ĝx)(t)− (Ĝy)(t)
∥∥∥2 ≤ N1

(
‖x(t)− y(t)‖2 + ‖g(ηx(t))− g(ηy(t))‖2

)
,

≤ N1(1 + T 2C1)

(
sup

s∈[0,T ]
‖x(s)− y(s)‖2

)
,

Then we obtain that
(14)

E

(∫ t

0

∥∥∥(Ĝx)(s)− (Ĝy)(s)
∥∥∥2 ds

)
≤ N1T (1+T 2C1)

(
sup

s∈[0,T ]
E ‖x(s)− y(s)‖2

)
.

It follows from the above inequality, Holder inequality and Ito isometry that

E ‖(Ψ1x)(t)− (Ψ1y)(t)‖2 ≤ 5E

∥∥∥∥∫ t

0

∂S(t− s)
∂s

[
(Ĝx)(s)− (Ĝy)(s)

]
ds

∥∥∥∥2
+5E

∥∥∥∥∫ t

0
S(t− s)

[
(F̂1x)(s)− (F̂1y)(s)

]
ds

∥∥∥∥2
+5E

∥∥∥∥∫ t

0
S(t− s)

[
(F̂2x)(s)− (F̂2y)(s)

]
dw(s)

∥∥∥∥2

+5E

∥∥∥∥∥∥
∑

0<tk<t

S(t− tk)
[
Ik(x(t−k ))− Ik(y(t−k ))

]∥∥∥∥∥∥
2

+5E
∥∥∥(Ĝx)(t)− (Ĝy)(t)

∥∥∥2 ,
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then, we have

E ‖(Ψ1x)(t)− (Ψ1y)(t)‖2 ≤ 5T l1l2E

∫ t

0

∥∥∥(Ĝx)(s)− (Ĝy)(s)
∥∥∥2 ds

+5T l1E

∫ t

0

∥∥∥(F̂1x)(s)− (F̂1y)(s)
∥∥∥2 ds

+5l1E

∫ t

0

∥∥∥(F̂2x)(s)− (F̂2y)(s)
∥∥∥2 ds

+5l1r
r∑

k=1

E
∥∥Ik(x(t−k ))− Ik(y(t−k ))

∥∥2
+5E

∥∥∥(Ĝx)(t)− (Ĝy)(t)
∥∥∥2 .

Thus we have

E ‖(Ψ1x)(t)− (Ψ1y)(t)‖2

≤
(
10T 2l1l2N1(1 + T 2C1) + 15l1(T + 1)L1T (1 + 2T 2K1 + TK1)

+5l1r

(
r∑

k=1

qk

)
+ 10N1(1 + T 2C1)

)
sup

s∈[0,T ]
E ‖x(s)− y(s)‖2

= M1 sup
s∈[0,T ]

E ‖x(s)− y(s)‖2 ,

where

M1 = 5T 2l1l2N1(1 + T 2C1) + 5l1r

(
r∑

k=1

qk

)
+5N1(1 + T 2C1) + 5l1(T + 1)L1T (1 + 2T 2K1 + TK1). �

Theorem 1. Assume that the conditions (A1), (A2) and (A3) hold. If
the inequality

(15) 2M1(1 +Ml1l3) < 1

hold, then the stochastic control system (2) is completely controllable on [0, T ] .

Proof. Define a nonlinear operator Ψ2 : H2 → H2 by

(Ψ2x)(t) = S(t) [x0 −G(0, x0, 0)] + (Ψ1x)(t) +

∫ t

0
S(t− s)B(s)u(s)ds

where
(16)
u(t)= B∗(t)S∗(T−t)E

{
(ΠT

0 )−1 (xT − S(T )[x0 −G(0, x0, 0)]− (Ψ1x)(T )) | Ft

}
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From Lemma (1), the control (16) transfers the system (5) from the initial state
x0 to the final state xT provided that the operator Ψ2 has a fixed point. So, if
the operator Ψ2 has a fixed point then the system (2) is completely controllable.
As mentioned above, to prove the complete controllability it is enough to show
that Ψ2 has a fixed point in H2. To do this, we use the contraction mapping
principle. To apply the contraction principle, first we show that Ψ2 maps H2

into itself.
In order to prove the complete controllability of the stochastic system (2)

it is enough to show that Ψ2 has a fixed point in H2. To apply the contraction
principle, first we show that Ψ2 maps H2 into itself.

Let x ∈ H2. Now by Lemma (1), we have for t ∈ [0, T ]

E ‖(Ψ2x)(t)‖2 = E ‖S(t) [x0 −G(0, x0, 0)] + (Ψ1x)(t)

+Πt
0S
∗(T − t)(ΠT

0 )−1 (xT − S(T )[x0 −G(0, x0, 0)]− (Ψ1x)(T ))
∥∥2 ,

≤ 3E ‖S(t) [x0 −G(0, x0, 0)]‖2 + 3E ‖(Ψ1x)(t)‖2

+3E
∥∥Πt

0S
∗(T − t)(ΠT

0 )−1 (xT − S(T )[x0 −G(0, x0, 0)]− (Ψ1x)(T ))
∥∥2 .

It follows from Lemma (2) that

E ‖(Ψ2x)(t)‖2 ≤ 6l1

(
‖x0‖2 + ‖G(0, x0, 0)‖2

)
+ 3E ‖(Ψ1x)(t)‖2

+9Ml1l3

(
E ‖xT ‖2 + 2l1

[
‖x0‖2 + ‖G(0, x0, 0)‖2

]
+ E ‖(Ψ1x)(T )‖2

)
,

≤ 6l1

(
‖x0‖2 + ‖G(0, x0, 0)‖2

)
+9Ml1l3

(
E ‖xT ‖2 + 2l1

[
‖x0‖2 + ‖G(0, x0, 0)‖2

])
+3(1 + 3Ml1l3)M2

(
1 + T sup

s∈[0,T ]
E ‖x(s))‖2

)
,

therefore, we obtain that ‖(Ψ2x)(t)‖2H2
<∞. Since Ψ2 maps H2 into itself.

Secondly, we show that Ψ2 is a contraction mapping. To see this let
x, y ∈ H2, so from Lemma (2) and inequality (11), we have

E ‖(Ψ2x)(t)− (Ψ2y)(t)‖2

= E
∥∥(Ψ1x)(t)− (Ψ1y)(t) + Πt

0S
∗(T − t)(ΠT

0 )−1 ((Ψ1x)(T )− (Ψ1y)(T ))
∥∥2 ,

≤ 2E ‖(Ψ1x)(t)− (Ψ1y)(t)‖2 + 2Ml1l3E ‖(Ψ1x)(T )− (Ψ1y)(T )‖2 ,
≤ 2(1 +Ml1l3) sup

s∈[0,T]
E ‖Ψ1(x(s))−Ψ1(y(s))‖2 ,

≤ 2(1 +Ml1l3)M1

(
sup

s∈[0,T ]
E ‖x(s)− y(s)‖2

)
.
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It result that

sup
s∈[0,T ]

E ‖(Ψ2x)(s)− (Ψ2y)(s)‖2 ≤ 2M1(1 +Ml1l3)

(
sup

s∈[0,T ]
E ‖x(s)− y(s)‖2

)
.

Therefore Ψ2 is contraction mapping if the inequality (15) holds. Then the
mapping Ψ2 has a unique fixed point x(.) in H2 which is the solution of the
equation (5). Thus the system (5) is completely controllable. �

4. EXAMPLE

Consider a scalar nonlinear stochastic integrodifferential control system

(17)


d
[
x(t)− (Ĝx)(t)

]
=
(
e−7(T−t) − 7

) [
x(t) +

∫ t
0 7e−13(t−s)x(s)ds

]
dt

+
{
e−2tu(t) + (F̂1x)(t)

}
dt+ (F̂2x)(t)dw(t), t ∈ [0, T ] , t 6= tk,

∆x(tk) = 0, 24e0,03(x(t−k )), t = tk,
x(0) = x0 ∈ Rn,

where tk = tk−1 + 0, 5 for k = 1, 2, ..., r. Here we have A(t) = e−7(T−t) −
7, H(t, s) = 7e−13(t−s), B(t) = e−2t

(F̂1x)(t) = 2x(t) + (2t2 + 1)e−t +

∫ t

0
2se−sx(s)ds

+

∫ T

0

1√
1 + |x(s)|

ds+

∫ t

0
cos(x(s))dw(s),

(F̂2x)(t) = e−t(x(t) + 1) +

∫ t

0
(2s2 + 3)x(s)ds

+

∫ T

0
sin(x(s))ds+

∫ t

0
log(1 + |x(s)|)dw(s),

(Ĝx)(t) = log

[
(3t+ e2t)

∣∣∣∣∫ t

0
e−s(x(s) + 3)ds

∣∣∣∣+ 1

]
.

Obviously S(t, s) = e−6(t−s) satisfies{
∂S(T,s)

∂s + S(T, s)A(s) +
∫ T
s S(T, r)H(r, s)dr = 0,

S(t, t) = I, 0 ≤ s ≤ t ≤ T.
So that

ΓT
0 =

∫ T

0
S(T − s)B(s)B∗(s)S∗(T − s)ds

=

∫ T

0
e−4Tds = Te−4T > 0, for some T > 0.
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It can be easily seen that F1, F2 and G satisfy the hypotheses (A1)–(A2)
of Theorem 1. Hence, the stochastic system (17) is completely controllable
on [0, T ] .
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