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We consider the aff(1)-module structure on the spaces of n-ary linear differential
operators acting on the spaces of weighted densities. We classify aff(1)-invariant
n-ary linear differential operators acting on the spaces of weighted densities. We
compute the first differential cohomology of the Lie algebra aff(1) with coef-
ficients in n-ary linear differential operators acting on the spaces of weighted
densities.
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1. INTRODUCTION

Deformation theory plays a crucial role in all branches of mathematics
and physics. In physics, the mathematical theory of deformations has proved
to be a powerful tool in modeling physical reality. The concepts symmetry and
deformations are considered to be two fundamental guiding principle for devel-
oping the physical theory further. Formal deformations of arbitrary rings and
associative algebras, and the related cohomology questions, were first investi-
gated by Gerstenhaber, in a series of articles [8-11]. The notion of deformation
was applied to Lie algebras by Nijenhuis and Richardson [12,13]. Recently, de-
formations of Lie algebras with multi-parameters were intensively studied (see,
e.g., [5,6]).

Let Vect(R) be the Lie algebra of vector fields on R. Denote by F) =
{fd:v)‘ | f € COO(R)} the space of weighted densities of weight A € R, i.e., the
space of sections of the line bundle (T*R)@‘, o its elements can be represented
as f(x)dz?, where f(z) is a function and daz* is a formal (for a time being)
symbol [2]. This space coincides with the space of vector fields, functions and
differential forms for A = —1, 0 and 1, respectively.
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The space F) is a Vect(R)-module for the action defined by
L2 o (fdz*) = (9f + Ag'f)da™.
dx

Denote by Dy ,,, where A = (A1,---, A,), the space of n-ary linear differ-
ential operators:
]:)\1 ®'--®]‘—>\n — ]:/M

n®

for any Ay,---, A\p, u € R. The Lie algebra Vect(R) acts on the space
D), := Homgig(F, @ -+ @ F,, Fu)

of these differential operators by:

— (A1, ,An)
(1.1) Xh.A—LﬁhoA—AoLX; ,
where Lg?; 1) is the Lie derivative on F N @ ®@F)y, defined by the Leibnitz
rule:

L) (fidaM @ - @ fuda™) = LY (1) @ -

h

® fuda + -+ frda™ @ - @ L (fuda™).

Thus the space of differential operators is a Vect(R)-module.

In [4], Bouarroudj computes the first differential cohomology of the Lie
algebra sl(2) with coefficients in bilinear differential operators acting on the
spaces of weighted densities and in [3], a super analogue of [4]. Now, we restrict
ourselves to the Lie algebra aff(1) which is isomorphic to the Lie subalgebra of
Vect(R) spanned by

{X1, X}

In this paper, we are interested in the study of the first cohomology
spaces HJ, r7(aff(1), Dy ) where Dy, is the space of n-ary linear differential
operators from Fy, ® --- ® Fy, to F, and we classify aff(1)-invariant n-ary
linear differential operators acting on the spaces of weighted densities.

2. DEFINITIONS AND NOTATIONS

2.1. COHOMOLOGY THEORY

Let us first recall some fundamental concepts from cohomology theory (see,
e.g., [7]). Let g be a Lie algebra acting on a vector space V. The space of n-
cochains of g with values in V' is the g-module

C"(g,V) := Hom(A"g; V).
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The coboundary operator &, : C™(g,V) — C"Tl(g,V) is a g-map satisfying
Op © 0p—1 = 0. The kernel of §,,, denoted Z™(g, V), is the space of n-cocycles,
among them, the elements in the range of §,,—1 are called n-coboundaries. We
denote B™(g, V') the space of n-coboundaries.

By definition, the n* cohomology space is the quotient space

H"(g,V) = 2"(g,V)/B"(g,V).

We will only need the formula of §,, (which will be simply denoted d) in degrees
0 and 1: for 2€ C%g, V) =V, 0Z(g) :=g-Z, and for A € C'(g,V),

(2.2) 5(A)(g, h):=g-A(h) —h-A(g) — A([g, h]) for any g,h€g.

2.2. LIE ALGEBRA aff(1)

The Lie algebra aff(1) is realized as subalgebra of the Lie algebra
Vect(R) [1]:

d d
1) = Xi=—,X,=2—).
aff(1) = Span(Xy = -, X, = o)
The commutation relations are
(X1, Xz] = X1, Xz, X.] =0, (X1, X1] = 0.

2.3. THE SPACE OF TENSOR DENSITIES ON R

The Lie algebra, Vect(R), of vector fields on R naturally acts, by the Lie
derivative, on the space

Fa={faz* : fec=sh},
of weighted densities of degree A\. The Lie derivative L3\( of the space F), along
the vector field X % is defined by
(2.3) Ly = X0, + \X,

where X, f € C*°(R) and X' := %. More precisely, for all fdz* € Fy, we
have
LA (fdz) = (X f + AfX")da™.

In the paper, we restrict ourselves to the Lie algebra aff(1) which is isomorphic
to the Lie subalgebra of Vect(R) spanned by

{X1, X}



560 Basdouri Okba and Nasri Elamine 4

2.4. THE SPACE OF n-ARY LINEAR DIFFERENTIAL OPERATORS
AS A aff(1)-module

The space of n-ary linear differential operators is a Vect(R)-module, de-
noted

DA,H = Homdiff(f)\l - Q& .F)\n,f,).
The Vect(R) action is:

(2.4) IAM(A) = L% 0 A— Ao L4,

where A = (A1,---,\,) and Lg?l"" *n) is the Lie derivative on Fr, @@ Fa,
defined by the Leibnitz rule:

LY A (fdaM @@ fuda?™) = LN (1) ®- @ foda™ +- -+ frdaM @ - - -
® Ly (fuda™).

3. aff(1)-INVARIANT n-ARY LINEAR DIFFERENTIAL OPERATORS

In this section, we will investigate differential operators on tensor densities
that are aff(1)- invariant.

For A= (A1, .., ) €ER" and p € R, wepose 0 = u— A1 — Aa — ... — A\
and we are interested in the space Iﬁf of the n-ary linear differential operators
who are aff(1)-invariant. The elements of Z}' are described as follows:

THEOREM 3.1. (a)If 0 ¢ N, then I} = {0}.
(b) There ezist aff(1)-invariant n-ary linear differential operators
IV Fay @ @ Fa, — Faytdodtotantk
given by
IV Fa @ @ Fn, — Fatrottinth

§ : (i1) 4 (i2) ‘

P1® @ Pn — iy ig, oo in D1 P2 '--gbgf"),’
i1+ig++in=k

where a;, ... 5, are constants.

n

Proof. Let A be an n-ary linear differential operator

A:fA1®"'®‘F)\n — .7'—#,

G090 — 3 D auen oo,

k=0i1+4...+in=k
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where a;, ... 4, are, a priori, functions. A is aff(1)-invariant if and only if for all
X € aff(1):

XA=0= LY A (61 @ b2 @ - @ ) =0,
for all (¢1,- -+, én) € Fa; X Fag X -+ X Fi,.

e The invariance with respect to X7 is reflected in:

m .
5% e 6 e =0
k=011 +io+-+in=~k

hence, a;, ... ;, is a constant Viy,-- -, iy.

Now Ap(p1 ® - ® ¢p) = Z (i o, in ﬁ“) .- ¢lim) | denotes the
homogeneous component of A of order k. We see that A is aff(1)-invariant if
and only if each of its homogeneous components is aff(1)-invariant. So we can
without loss of generality, assume that A is homogeneous of order k.

The aff(1)-invariance of A is reflected in:

LY (A) (91 ® - ® én) = 0,

for all X € lef(l), ((251, s ,¢n) < f)\l X f,\Q X e X f)m.
A direct computation proves that

LA (019 @ bn) = (= h = Do == h = k) X
Z Wiy i P10 O™
i1t +in=k

So to examine the aff(1)-invariance of A we distinguish the following two cases:
o If o # Kk, then A=0.
o If 0 = k, then

A= Z iy e i (bgzl)qﬁgm) e (ngln)’
i1+ tin=k
where a;, ;, ... ;, are constants.
Hence the result. [

4. THE SPACE H};;(aff(1), Da,u)

In this section, we will compute the differentiable cohomology of the Lie
algebra aff(1) with coefficients in the space of n-ary linear differential operators
Dy where A = (A1 --+, A,). Namely, we consider only cochains that are given
by differentiable maps.
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Any 1-cochain ¢ € Z}, 77(aff(1),Dy,,) has the following general form:
(X, 61, b)) =X Z iy SV - S X Z Biy i O - i),

11, 11, ,in
where o, iy, 4, and ﬂi1,i2,~~-,in are, a priori, functions.
So, for any integer k > 0, we define the k-homogeneous component of ¢ by

(X, 01, b)) =X D e, Y gl

t1+-+in=k
XN B o .
i1+ in=k—1
Of course, we suppose that 3;, i,,... ;, = 0if £ =0.

LEMMA 4.1. Any I-cochain ¢ € Clg(aff(1),Dy ) is a 1-cocycle if and
only if each of its homogeneous components is a 1-cocycle.

The following lemma gives the general form of any homogeneous 1-cocycle.

LEMMA 4.2. Up to a coboundary, any k-homogeneous 1-cocycle ¢ € Z(lh.ff
(aff(1),Dy ) can be expressed as follows. For all (¢1,--- ,¢n) € Fa, X X -+ %
Fy, and for all X € aff(1):

C(Xa ¢17 Tt ’¢n) = X/ Z /67;177;27... Jin EZI) .. ¢£LG)’
i1+i2+Fin=k—1

where Bi, ... i, are constants.

7in

Proof. Any k-homogeneous 1-cocycle on aff(1) has the following general
form:

C(X7 ¢17"' 7¢n) = X Z ail,“',in (z)g“) ’glln)
i1+ tin=k . ‘
XY B 0,
i1+ Hin=k—1

where «;, ... ;, and 3;, .. ;. are, a priori, functions. First, we prove that the
terms in X can be annihilated by adding a coboundary. Let b : F), ® --- ®
F, — Fu be a n-ary linear differential operator defined by

b(¢17 ¢27 Tty ¢n) = Z bi1,~ (Zl QS(ZTL

7in

where bil,i%... Jin

satisfying

are, a priori, functions and the coefficients b;, ... ;, are functions

%(b217 71;71) - ai17... 77:”
Then, for all X € aff(1), we have
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Ob(X, 61, da) =X D B o gl
XS i (= A= Ao == A = R) O ),
We replace ¢ by ¢ = ¢—9b and then we see that the 1-cocycle ¢ does not contain

terms in X. So, up to a coboundary, any k-homogeneous 1-cocycle on aff(1)
can be expressed as follows:

C(Xa(blu'” 7(2571) :X/ Z /Bil,"';in g’Ll) (ZS’SZ”)
i1+ Fin=k—1

Now, consider the 1-cocycle condition:
X 'C(Yv¢la"' 7¢n) _Y'C(X7¢17"' 7¢TL> _C([X7Y]7¢17"' 7¢n) = 07

where X, Y € aff(1) and (¢1,- -+, ¢n) € Fay, X -+ X Fy,. A direct computation
proves that we have

X-o(Yipr, b)) = XY S B el gl

i1+ tin=k—1

XYY Biedn (B A= = A — K) (). glin),
i1+ Fin=k—1

YoelX o1, dn) = XY S B ol )

i1+ Fin=k—1
+ XY Z Bityoesin (= A1 === Ay — k) gil)... ¢>$f")
Zl++1n:k—1
C([X> Y]7 ¢17 T ,qbn) =0.
X oY, o1, ) =Y (X, b1, bn) —c([X,Y], b1, , ) =
(XY’ _ X'Y) Z 521,---,% §i1) o ¢§Z")
i14ein=k—1

So, ¢ is a 1-cocycle if and only if each of its 3;, ... ;, are constants. [

n

THEOREM 4.3.
Rf"(k) Zf M—)\l—)\Q—"'_)\n:kjeN7
0 otherwise.

Hy, ;7 (aff(1), Dap) ~ {

where
k+1

Falk) =3 faca(i—1), fi(k) = 1.
=1
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Proof. By using Lemma 4.1 and Lemma 4.2 any 1-cocycle on aff(1) has
the following general form:

(4.5) (X hree dn) = X D B 01 B,

7/1++Zn:k;

where 3, ... ;, are constants.

77;71
Now we are going to deal with trivial 1-cocycles, and show how the general
1-cocycles (4.5) can be eventually trivial. Any trivial 1-cocycle should be of

the form:
A2, A0,
LAt (),
where
B(¢1) ¢2) R} ¢n) = Z 6i1,~~~ Jin Zl) : qb(ln
7/1++Zn:k
iy .. i,, are constants.
By a direct computation we have

Lg\(l,w ’)‘”’”(B)(¢1> )
- X/ Z 5i17i27"'7in (ILL - )\1 - )\2 — )\n — k‘) :(L’Ll) .o (nglzn)
i14Fin=k

Then to determine our space ng 7(aff(1), Dy ) we distinguish the following
two cases:

oif u— XAy —Xo—---— Ay, €N then c is trivial.

eif u—XA\—Xo—--- =X, =k €N, then

L))\{l)\z,.u ’/\"’”(B)(qbl, by, ¢n) =0.

Thus the dimensions of thff(aff( ), Da,u) and Zghff(aff(l),DA’M) are equal.
Now we are going to determine the dimension of Zdsz(aff(l), D) p1)-
Let d be a 1-cocycle on aff(1), then d has the following general form:

d(Xv ¢17 e a¢n) = X/ Z K’Z'LZ'Q,"‘ Jin Zl) ¢(ln

where Kiy - i, are constants.
So Zéiff(aff(l),DA’...)WM) is generated by the family

(X'B 052 )i pin i

And consequently the dimension of Zdlff(aff(l),D,\h.‘.,)\m#) is the number of
the constants k;, 4,.... 4, such that i1 +i9 +--- 4+, = k.

7in
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The number of the constants s;, j,.... ;

such that i1 +io +--- 4+ 1, = k is

n

determined by iteration and is equal to f,(k), where

(1]

2]

3]

[10]
(11]
[12]

[13]

k+1

Falk) =3 faca(i—1), fi(k)=1. O
i=1
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