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In this note, we show that the equation

m∑
k=0

[
2m+ 1

k

]
F

± 1 = Fn

has no solution except that (m,n) = (1, 3) , (3, 14) where
[
m
k

]
F

is Fibonomial
coefficient.
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1. INTRODUCTION

The Fibonacci sequence {Fn}n≥2 is given by the following recurrence
relation

Fn+2 = Fn+1 + Fn

with initial conditions F0 = 0, F1 = 1. For 1 ≤ k ≤ m, the Fibonomial
coefficient

[
m
k

]
F

is defined by

(1.1)

[
m

k

]
F

=
FmFm−1Fm−2 . . . Fm−k+1

F1F2 . . . Fk
.

It is surprising that the equation (1.1) always takes integer values.
There are some diophantine equations involving the Fibonomial coeffi-

cients and Fibonacci numbers. For example, Marques [5] investigated the solu-
tions of the Fibonacci version of the Brocard-Ramanujan Diophantine equation
and showed that the diophantine equation

(1.2) FnFn+1 . . . Fn+k−1 + 1 = F 2
m

has no solution in positive integer m and n. Although the idea of the proof is
clear and correct, the solutions F4 + 1 = F 2

3 and F6 + 1 = F 2
4 were not ob-

served because of some inaccuracy in the evaluation which is noted in [7]. Then,
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Marques [4] generalized the equation (1.2) one step more and showed that the
equation

(1.3) FnFn−1 . . . F1 + 1 = F t
m

has at most finitely many solutions in positive integers n,m, where t is pre-
viously fixed. Moreover, it is proven that there is no solution of the equation
(1.3) in the same paper. Afterwards, Szalay [7] generalized the diophantine
equation (1.2) as

Gn1Gn2 . . . Gnk
+ 1 = G2

m

where the binary recurrence {Gn} is the Fibonacci sequence, the Lucas se-
quence, the sequence of Balancing numbers, respectively. In [3], Marques fo-
cused on the following diophantine equation

(1.4)

[
m

k

]
F

± 1 = Fn

and proved that there is no solution of the equation (1.4) without (m, k, n) =
(3, 2, 4) and (m, k, n) = (3, 2, 1) , (3, 2, 2) according to sign + and −, respec-
tively.

In this paper, we prove the following theorem.

Theorem 1. Let m and n are positive integers. Then the solutions of the
Diophantine equation

(1.5)
m∑
k=0

[
2m+ 1

k

]
F

± 1 = Fn

are (m,n) = (1, 3) , (3, 14) according to the sign −. If the sign is +, then there
is no solution.

2. THE PROOF OF THE THEOREM

2.1. AUXILIARY RESULTS

Before proceeding further, some results will be needed in order to prove
Theorem 1. The sequence of the Lucas numbers is given by the following
recurrence

Ln+2 = Ln+1 + Ln

with the initial conditions L0 = 2 and L1 = 1 for n ≥ 2.
The another important item for this paper is about the half sum of Fi-

bonomial coefficients. Kılıç, Akkuş and Ohtsuka [6] showed that

(2.1)
m∑
k=0

[
2m+ 1

k

]
F

=
m∏
k=1

L2k
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for positive integer m.
For all n ≥ 1, we have

(1)

(2.2) F2n = LnFn

(2) (Binet formulae)

Fn =
αn − βn

α− β
and Ln = αn + βn, where α = 1+

√
5

2 and β = 1−
√
5

2 .

(3) αn−2 ≤ Fn ≤ αn−1 where α = 1+
√
5

2 .

(4) (Primitive Divisor Theorem) A primitive divisor p of Fn is a prime

factor of Fn which does not divide
n−1∏
j=1

Fj . It is known that a primitive

divisor p of Fn exists whenever n ≥ 13 (for more details, see [2]).

(5) The factorization of the Fn±1 depends on the class of n modul 4, namely,
the identities for the case sign +

F4l + 1 = F2l−1L2l+1

F4l+1 + 1 = F2l+1L2l

F4l+2 + 1 = F2l+2L2l

F4l+3 + 1 = F2l+1L2l+2

hold. Similarly, the identities

F4l − 1 = F2l+1L2l−1

F4l+1 − 1 = F2lL2l+1

F4l+2 − 1 = F2lL2l+2

F4l+3 − 1 = F2l+2L2l+1

hold for the case −. The above identities can be proven by using Binet
formulas for Fibonacci and Lucas numbers.

Now, we are ready to prove Theorem 1.

2.2. PROOF

We focus on the diophantine equation (2.3) with the case −. Let m ≥
4. Using identity 5, we have only four possibilities for this diophantine equation.

m∑
k=0

[
2m+ 1

k

]
F

= F2l−1L2l+1
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m∑
k=0

[
2m+ 1

k

]
F

= F2l+1L2l

m∑
k=0

[
2m+ 1

k

]
F

= F2l+2L2l

m∑
k=0

[
2m+ 1

k

]
F

= F2l+1L2l+2

We shall work only with the first equation. The equation (2.1) yields that

L2L4 . . . L2m = F2l−1L2l+1.

together with the equation (2.1). When we multiply both sides of the equation
above with F2F4 . . . F2m and F2l+1, we obtain

(2.3) F4F8 . . . F4mF2l+1 = F2l−1F4l+2F2F4 . . . F2m

by identity (2.2).
If m is even integer, we get the followings after simplifying the common

terms.

(2.4) F2l−1F4l+2F2F6F10 . . . F2m−2 = F2m+4F2m+8 . . . F4mF2l+1

Since 4m ≥ 16, the Primitive Divisor Theorem yields 4m = 4l+ 2, which gives
the equations 2l− 1 = 2m− 2 and 2l+ 1 = 2m. So, the equation (2.4) turns to

(2.5) F2F6F10 . . . F2m−6F
2
2m−2 = F2mF2m+4F2m+8 . . . F4m−4

which is impossible since the left hand side of the equation (2.5) is greater than
the right hand side for m ≥ 4.

If m is odd integer, we have

F2l−1F4l+2F2F6F10 . . . F2m−2 = F2m+2F2m+6 . . . F4mF2l+1

after simplifying the equation (2.3). The Primitive Divisor Theorem yields that
4m = 4l − 2. So, we have

(2.6) F2F6F10 . . . F
2
2m−2 = F2mF2m+2F2m+6 . . . F4m−4.

It is obvious that the equation (2.6) does not hold for m ≥ 4.
Therefore, we only need to consider the case 1 ≤ m ≤ 3. When we put

m = 1, 2 and 3 in equation (2.3) for the sign −, we obtain that

1∑
k=0

[
3

k

]
F

− 1 = 2 = F3

2∑
k=0

[
5

k

]
F

− 1 = 20
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3∑
k=0

[
7

k

]
F

− 1 = 377 = F14

which means that the solutions of the equation are (m,n) = (1, 3) and (3, 14).
In order to prove the remaining cases, we can follow the above similar ways .
To cut the unnecessary repetitions, we do not give them.

Hence, we prove Theorem 1.
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