
A VARIATIONAL APPROACH TO PERTURBED ELASTIC BEAM
PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS

SHAPOUR HEIDARKHANI, MASSIMILIANO FERRARA, AMJAD SALARI
and MEHRAN AZIMBAGIRAD

Communicated by Gabriela Marinoschi

The existence of infinitely many generalized solutions for perturbed fourth-order
nonlinear boundary value problems with nonlinear boundary conditions is in-
vestigated. The approach is based on variational methods and critical point
theory.

AMS 2010 Subject Classification: 35B10, 58E05.

Key words: infinitely many solutions, perturbed differential equation, fourth-
order problem, elastic beam equation, critical point theory, varia-
tional methods.

1. INTRODUCTION

The aim of this paper is to ensure the existence of infinitely many gener-
alized solutions for the following perturbed problem

(1.1)


u(4)(t) = λf(t, u(t)) + µg(t, u(t)) + p(u(t)), 0 < t < 1,
u(0) = u′(0) = 0,
u′′(1) = 0, u′′′(1) = h(u(1))

where λ > 0, µ ≥ 0 are two parameters, f, g are two L2-Carathéodory func-
tions, and p, h : R → R are Lipschitz continuous functions with the Lipschitz
constants L1 > 0 and L2 > 0, respectively, i.e.

|p(ξ1)− p(ξ2)| ≤ L1|ξ1 − ξ2| and |h(ξ1)− h(ξ2)| ≤ L2|ξ1 − ξ2|

for every ξ1, ξ2 ∈ R such that p(0) = h(0) = 0.
This kind of problems arises in the study of deflections of elastic beams

on nonlinear elastic foundations. The problem (1.1) has the following physical
descriptions: a thin flexible elastic beam of length 1 is clamped at its left end
t = 0 and resting on an elastic device at its right end t = 1, which is given by
h. Then the problem models the static equilibrium of the beam under a load,
along its length, characterized by f, g, p and h. The derivation of the model
can be found in [3, 20].
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In recent years, fourth-order boundary value problems modeling bending
equilibria of elastic beams have been extensively studied by many researchers.
We refer the reader to [1–8,11,13,14,17–20,22–24]. For example, in [4] the au-
thors using a fixed-point theorem and degree theory discussed the existence of
one or two positive solutions for nonlinear fourth-order beam equations. More-
over, under the assumption that the nonlinear term is monotone increasing
respect to the second variable, they got the uniqueness result and the result
of the existence of infinitely many positive solutions for the problem. In [17]
Li based on the fixed point index theory in cones discussed the existence of
positive solutions for fourth-order periodic boundary value problems. In [20],
Ma using variational methods and a maximum principle for fourth-order equa-
tions discussed the existence of positive solutions for the problem (1.1), in the
case λ = 1, µ = 0 and p ≡ 0. In [18], by using monotone operator theory
and critical point theory, Li et al. established some sufficient conditions for
the nonlinear term to guarantee that a class of fourth-order boundary value
problems has an unique solution, at least one nonzero solution, or infinitely
many solutions. In a later paper [13], employing the critical point theory and
the subsolution and supersolution method studied some fourth-order boundary
value problems, and obtained several new existence theorems on multiple pos-
itive, negative and sign-changing solutions for the problems. In [14] Han and
Xu employing the Morse theory obtained some existence theorems on three
solutions and infinitely many solutions for a fourth-order beam equation. Bo-
nanno and Di Bella in [7] using an infinitely many critical points theorem,
without symmetric condition on the nonlinear term established existence re-
sults of infinitely many solutions for a fourth-order nonlinear boundary value
problem. In [8] the authors employing a local minimum theorem for differen-
tiable functionals investigated the existence of at least one non-trivial solution
to a boundary value problem for fourth order elastic beam equations, under a
non-standard growth condition of the nonlinear term. In [2,6] based on varia-
tional methods and critical point theory the existence of at least three solutions
for fourth-order elastic beam equations was discussed. Yang et al. in [23] by
using variational methods and a three-critical-point theorem, established suf-
ficient conditions under which the problem (1.1), in the case µ = 0 and p ≡ 0
possesses two solutions generated from the boundary condition h. Recently,
Gao in [11] based on variational methods and critical point theory established
some existence results of three solutions for the problem (1.1), in the case p ≡ 0.
Song in [22] by using the smooth version of [10, Theorem 2.1] established in-
finitely many solutions for the problem (1.1), in the case p ≡ 0. Very recently,
in [5] the authors based on variational methods studied the existence of non-
zero solutions for a fourth-order differential equation with nonlinear boundary
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conditions. In [1] based on recent variational methods for smooth functionals
defined on reflexive Banach spaces, the existence of three distinct generalized
solutions for the problem (1.1) under suitable assumptions on the nonlinear
terms was established.

Motivated by the above works, in the present paper, by employing a
smooth version of [10, Theorem 2.1], which is a more precise version of Ric-
ceri’s Variational Principle [21, Theorem 2.5] under some hypotheses on the
behavior of the nonlinear terms at infinity, under conditions on f and g we
prove the existence of a definite interval about λ and µ in which the problem
(1.1) admits a sequence of solutions which is unbounded in the space E which
will be introduced later (Theorem 3.1). Furthermore, some consequences of
Theorem 3.1 are listed. Replacing the conditions at infinity of the nonlinear
terms, by a similar one at zero, we obtain a sequence of solutions strongly
converging to zero; see Theorem 3.4. At the end, two examples of applications
are pointed out (see Examples 3.1 and 3.2).

2. PRELIMINARIES

Our main tool to ensure the existence of infinitely many solutions for the
problem (1.1) is a smooth version of Theorem 2.1 of [10] which is a more precise
version of Ricceri’s Variational Principle [21] that we now recall here.

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R
be two Gâteaux differentiable functionals such that Φ is sequentially weakly
lower semicontinuous, strongly continuous, and coercive and Ψ is sequentially
weakly upper semicontinuous. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)−Ψ(u)

r − Φ(u)

and

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈]0, 1
ϕ(r) [, the restriction of the

functional Iλ = Φ − λΨ to Φ−1(] −∞, r[) admits a global minimum, which is
a critical point (local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈]0, 1
γ [, the following alternative holds:

either

(b1) Iλ possesses a global minimum,

or
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(b2) there is a sequence {un} of critical points (local minima) of Iλ
such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈]0, 1
δ [, the following alternative holds:

either

(c1) there is a global minimum of Φ which is a local minimum of Iλ,

or

(c2) there is a sequence of pairwise distinct critical points (local min-
ima) of Iλ which weakly converges to a global minimum of Φ.

Denote

E =
{
u ∈ H2(0, 1); u(0) = u′(0) = 0

}
,

where H2(0, 1) is the Sobolev space of all functions u : [0, 1] → R such that u
and its distributional derivative u′ are absolutely continuous and u′′ belongs to
L2(0, 1). Then E is a Hilbert space equipped with the following inner product

〈u, v〉 =

∫ 1

0
u′′(t)v′′(t)dt, for allu, v ∈ E,

and its corresponding norm is defined by

‖u‖ = ‖u′′‖2 =

(∫ 1

0
(|u′′(t)|2dt

) 1
2

for allu ∈ E.

Obviously, E is a separable and uniformly convex Banach space. In addition,
(E, ‖ · ‖) is compactly embedded in the space C([0, 1]), therefore, there exists
a constant S such that

(2.1) ‖u‖∞ ≤ S‖u‖,

where ‖u‖∞ = maxt∈[0,1] |u(t)| for all u ∈ E. Now, we put

(2.2)
C1 := 1

2(1− L1S
2 − L2S

2),
C2 := 1

2(1 + L1S
2 + L2S

2).

To state our results concisely we introduce the following assumption:

(A1) there exist two constants t̄ and t̃ with 0 < t̄ < t̃ < 1 such that there
exist two functions d ∈ C2([0, t̄]) and e ∈ C2([t̃, 1]) satisfying

(2.3) d(0) = d′(0) = 0, d(t̄) = e(t̃) = 1, d′(t̄) = e′(t̃) = 0

and D :=

√∫ t̄
0 |d′′(t)|2dt+

∫ 1
t̃ |e′′(t)|2dt 6= 0.
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Corresponding to the functions f and p we introduce the functions

F (t, x) =

∫ x

0
f(t, ξ)dξ and P (x) =

∫ x

0
p(ξ)dξ

for all t ∈ [0, 1] and x ∈ R.

Let us recall that a weak solution of the problem (1.1) is a function u ∈ E
if

(2.4)

∫ 1

0
(u′′(t)v′′(t)− p(u(t))v(t))dt+ h(u(1))v(1)− λ

∫ 1

0
f(t, u(t))v(t)dt

− µ
∫ 1

0
g(t, u(t))v(t)dt = 0

for every v ∈ E.

A function u : [0, 1]→ R is a generalized solution to the problem (1.1) if
u ∈ C3([0, 1]), u′′′ ∈ AC([0, 1]), u(0) = u′(0) = u′′(1) = 0, u′′′(1) = h(u(1)),
and u(4)(t) = λf(t, u(t)) + µg(t, u(t)) + p(u(t)) for almost every t ∈ (0, 1). If
f and g are continuous in [0, 1]× R, therefore each generalized solution u is a
classical solution.

Standard methods (see [6, Proposition 2.2]) show that a weak solution to
(1.1) is a generalized one when f, g are L2-Carathéodory functions.

We suppose that S2(L1 + L2) < 1.

A special case of our main result is the following theorem.

Theorem 2.2. Suppose that (A1) holds. Let f : R −→ R is a nonnegative
function and let F (x) =

∫ x
0 f(ξ)dξ for all x ∈ R. Assume that

lim inf
ξ−→+∞

F (ξ)

ξ2
= 0 and lim sup

ξ−→+∞

F (ξ)

ξ2
= +∞.

Then, for every continuous function g : R −→ R whose G(x) =
∫ x

0 g(ξ)dξ for
every x ∈ R, is a nonnegative function satisfying the condition

(2.5) g? := lim
ξ−→∞

sup|x|≤ξ G(x)

C1ξ2

S2

< +∞

and for every µ ∈ [0, µ?,λ[ where µ?,λ := 1
g?

(
1− λS2 lim infξ→+∞

F (ξ)
C1ξ2

)
, the

problem 
u(4)(t) = f(u(t)) + µg(u(t)) + p(u(t)), 0 < t < 1,
u(0) = u′(0) = 0,
u′′(1) = 0, u′′′(1) = h(u(1))

has an unbounded sequence of generalized solutions.
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3. MAIN RESULTS

We present our main result as follows.

Theorem 3.1. Suppose that (A1) holds. Assume that

(A2) F (t, x) ≥ 0 for all t ∈ [0, t̄] ∪ [t̄, t̃] and x ∈ R;

(A3) lim infξ−→+∞

∫ 1
0 sup|x|≤ξ F (t,x)dt

ξ2 < C1
D2S2C2

lim supξ−→+∞

∫ t̃
t̄ F (t,ξ)dt

ξ2 .

Then, for each λ ∈]λ1, λ2[ where

λ1 :=
1

lim supξ−→+∞

∫ t̃
t̄ F (t,ξ)dt

D2C2ξ2

and λ2 :=
1

lim infξ−→+∞

∫ 1
0 sup|x|≤ξ F (t,x)dt

C1ξ
2

S2

,

for every L2-Carathéodory function g : [0, 1] × R −→ R whose G(t, x) =∫ x
0 g(t, ξ)dξ for every (t, x) ∈ [0, 1] × R, is a nonnegative function satisfying

the condition

(3.1) g∞ := lim
ξ−→∞

∫ 1
0 sup|x|≤ξ G(t, x)dt

C1ξ2

S2

<∞

and for every µ ∈ [0, µg,λ[ where

µg,λ :=
1

g∞

(
1− λS2 lim inf

ξ→+∞

∫ 1
0 sup|x|≤ξ F (t, x)dt

C1ξ2

)
,

the problem (1.1) has an unbounded sequence of generalized solutions.

Proof. Fix λ ∈]λ1, λ2[ and let g be a function satisfying the condition
(3.1). Since, λ < λ2, one has µg,λ > 0. Fix µ ∈ [0, µg,λ[ and put ν1 := λ1

and ν2 := λ2

1+µ

λ
λ2g∞

. If g∞ = 0, clearly, ν1 = λ1, ν2 = λ2 and λ ∈]ν1, ν2[.

If g∞ 6= 0, since µ < µg,λ, we obtain λ
λ2

+ µg∞ < 1, and so λ2

1+µ

λ
λ2g∞

> λ,

namely, λ < ν2. Hence, since λ > λ1 = ν1, one has λ ∈]ν1, ν2[. Now, set
Q(t, x) = F (t, x) + µ

λ
G(t, x) for all (t, x) ∈ [0, 1] × R. Take X = E and define

in X two functionals Φ and Ψ by setting, for each u ∈ X, as follows

Φ(u) =
1

2
‖u‖2 +

∫ u(1)

0
h(s)ds−

∫ 1

0
P (u(t))dt = φ1(u) + φ2(u)− φ3(u)

and

Ψ(u) =

∫ 1

0
F (t, u(t))dt+

µ

λ

∫ 1

0
G(t, u(t))dt

where

φ1(u) =
1

2
‖u‖2, φ2(u) =

∫ u(1)

0
h(s)ds and φ3(u) =

∫ 1

0
P (u(t))dt.
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It is well known that Ψ is a Gâteaux differentiable functional and sequentially
weakly upper semi-continuous whose Gâteaux derivative at the point u ∈ X is
the functional Ψ′(u) ∈ X∗, given by

Ψ′(u)v =

∫ 1

0
f(t, u(t))v(t)dt+

µ

λ

∫ 1

0
g(t, u(t))v(t)dt

for every v ∈ X, and Ψ′ : X → X∗ is a compact operator. Moreover, Φ is a
Gâteaux differentiable functional which Gâteaux derivative at the point u ∈ X
is the functional Φ′(u) ∈ X∗, given by

Φ′(u)v =

∫ 1

0
u′′(t)v′′(t)dt−

∫ 1

0
p(u(t))v(t)dt+ h(u(1))v(1)

for every v ∈ X. Furthermore, Φ is sequentially weakly lower semi-continuous.
Indeed, obviously φ1 is weakly lower semi-continuous in X. Therefore, by
continuity of P it suffices to show that φ2 is sequentially weakly continuous in
X. In fact, if {un} ⊂ X and un ⇀ u in X, {un} converges uniformly to u on
[0, 1]. Then, there exists M > 0 such that

‖un‖∞ ≤M, for alln ∈ N.

Therefore, we have

|φ2(un)− φ2(u)| =
∣∣∣ ∫ un(1)

0
h(t)dt−

∫ u(1)

0
h(t)dt

∣∣∣
=
∣∣∣ ∫ un(1)

u(1)
h(t)dt

∣∣∣
≤ max{M,u(1)}L2‖un − u‖∞ → 0 as n→∞.

Thus φ2 is sequentially weakly continuous. So, Φ is sequentially weakly lower
semi-continuous in X. Now from the facts −L1|ξ| ≤ p(ξ) ≤ L1|ξ| and −L2|ξ| ≤
h(ξ) ≤ L2|ξ| for every ξ ∈ R, and taking (2.1) into account, for every u ∈ X
we have

(3.2) C1‖u‖2 ≤ Φ(u) ≤ C2‖u‖2.

Put Iλ := Φ−λΨ. Similar to the proof of Lemma 1 of [11], we observe that the
weak solutions of the problem (1.1) are exactly the solutions of the equation
I ′
λ
(u) = 0 and they are also generalized solutions. So, our goal is to apply

Theorem 2.1 to Φ and Ψ. Now, we wish to prove that γ < +∞, where γ is
defined in Theorem 2.1. Let {ξn} be a real sequence such that ξn > 0 for all
n ∈ N and ξn → +∞ as n→∞ and

lim
n→∞

∫ 1
0 sup|x|≤ξn Q(t, x)dt

ξ2
n

= lim inf
ξ→+∞

∫ 1
0 sup|x|≤ξ Q(t, x)dt

ξ2
.
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Put rn = C1ξ2
n

S2 for all n ∈ N. Since {ξn} is a positive sequence, rn > 0 for all
n ∈ N. Now let u ∈ Φ−1(]−∞, rn]), owing to (3.2), we have that

(3.3) C1‖u‖2 ≤ Φ(u) ≤ rn.

Combining (3.3) with (2.1) yields ‖u‖∞ ≤ ξn. Thus

(3.4) Φ−1(]−∞, rn[) ⊆ {u : ‖u‖∞ ≤ ξn}.

Hence, taking into account that Φ(0) = Ψ(0) = 0, for every n large enough,
one has

ϕ(rn) = inf
u∈Φ−1(]−∞,rn[)

(supv∈Φ−1(]−∞,rn[) Ψ(v))−Ψ(u)

rn − Φ(u)

≤
supv∈Φ−1(]−∞,rn[) Ψ(v)

rn

≤
∫ 1

0 sup|x|≤ξn Q(t, x)dt

C1ξ2
n

S2

=

∫ 1
0 sup|x|≤ξn F (t, x) + µ

λ
G(t, x)dt

C1ξ2
n

S2

≤
∫ 1

0 sup|x|≤ξn F (t, x)dt

C1ξ2
n

S2

+
µ

λ

∫ 1
0 sup|x|≤ξn G(t, x)dt

C1ξ2
n

S2

.

Moreover, it follows from Assumption (A3) that

lim inf
ξ−→+∞

∫ 1
0 sup|x|≤ξ F (t, x)dt

C1ξ2

S2

< +∞,

which concludes

(3.5) lim
n→∞

∫ 1
0 sup|x|≤ξn F (t, x)dt

C1ξ2
n

S2

< +∞.

Then, in view of (3.1) and (3.5), we have

lim
n→∞

∫ 1
0 sup|x|≤ξn F (t, x)dt

C1ξ2
n

S2

+ lim
n→∞

µ

λ

∫ 1
0 sup|x|≤ξn G(t, x)dt

C1ξ2
n

S2

< +∞,

which follows

lim
n→∞

∫ 1
0 sup|x|≤ξn F (t, x) + µ

λ
G(t, x)dt

C1ξ2
n

S2

< +∞.

Therefore,

(3.6) γ ≤ lim inf
n→+∞

ϕ(rn) ≤ lim
n→∞

∫ 1
0 sup|x|≤ξn F (t, x) + µ

λ
G(t, x)dt

C1ξ2
n

S2

< +∞.
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Since∫ 1
0 sup|x|≤ξn Q(t, x)dt

C1ξ2
n

S2

≤
∫ 1

0 sup|x|≤ξn F (t, x)dt

C1ξ2
n

S2

+
µ

λ

∫ 1
0 sup|x|≤ξn G(t, x)dt

C1ξ2
n

S2

,

taking (3.1) into account, one has

(3.7) lim inf
ξ→+∞

∫ 1
0 sup|x|≤ξ Q(t, x)dt

C1ξ2

S2

≤ lim inf
ξ→+∞

∫ 1
0 sup|x|≤ξ F (t, x)dt

C1ξ2

S2

+
µ

λ
g∞.

Moreover, since G is nonnegative, we have

(3.8) lim sup
|ξ|→+∞

∫ t̃
t̄ Q(t, ξ)dt

D2C2ξ2
≥ lim sup
|ξ|→+∞

∫ t̃
t̄ F (t, ξ)dt

D2C2ξ2
.

Therefore, from (3.7) and (3.8), and from Assumption (A3) and (3.6) one has

(3.9)

λ ∈]ν1, ν2[⊆

]
1

lim sup|ξ|−→+∞

∫ t̃
t̄ Q(t,ξ)dt

D2C2ξ2

,
1

S2 lim infξ−→+∞

∫ 1
0 sup|x|≤ξ Q(t,x)dt

C1ξ2

[

⊆
]
0,

1

γ

[
.

For the fixed λ, the inequality (3.6) assures that the condition (b) of Theorem
2.1 can be used and either Iλ has a global minimum or there exists a sequence
{un} of solutions of the problem (1.1) such that limn→∞ ‖u‖ = +∞.
The other step is to verify that the functional Iλ has no global minimum. Since

1

λ
< lim sup
|ξ|→+∞

∫ t̃
t̄ F (t, ξ)dt

D2C2ξ2
,

we can consider a real sequence {γn} and a positive constant τ such that
γn → +∞ as n→∞ and

(3.10)
1

λ
< τ <

∫ t̃
t̄ F (t, γn)dt

D2C2γ2
n

for each n ∈ N large enough. Thus, if we consider a sequence {wn} in X defined
by setting

(3.11) wn(t) =


d(t)γn if t ∈ [0, t̄),
γn if t ∈ [t̄, t̃],
e(t)γn if t ∈ (t̃, 1],
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one has

||wn||2 = γ2
n

[∫ t̄

0
|d′′(t)|2dt+

∫ 1

t̃
|e′′(t)|2dt

]
= D2γ2

n,

and in particular, taking (3.2) into account, it follows

(3.12) Φ(wn) ≤ D2C2γ
2
n.

On the other hand, since G is nonnegative, we observe

(3.13) Ψ(wn) ≥
∫ t̃

t̄
F (t, γn)dt.

So, from (3.10), (3.12) and (3.13) we conclude

Iλ(wn) = Φ(wn)− λΨ(wn) ≤ D2C2γ
2
n − λ(

∫ t̃

t̄
F (t, γn)dt) < (1− λτ)D2C2γ

2
n,

for every n ∈ N large enough. Hence, the functional Iλ is unbounded from
below, and it follows that Iλ has no global minimum. Therefore, Theorem 2.1
assures that there is a sequence {un} ⊂ X of critical points of Iλ such that
limn→∞Φ(un) = +∞, which from (3.2) it follows that limn→∞ ‖un‖ = +∞.
Hence, we have the conclusion. �

Remark 3.1. Under the conditions

lim inf
ξ−→+∞

∫ 1
0 sup|x|≤ξ F (t, x)dt

ξ2
= 0 and lim sup

ξ−→+∞

∫ t̃
t̄ F (t, ξ)dt

ξ2
=∞,

Theorem 3.1 assures that for every λ > 0 and for each µ ∈ [0, 1
g∞

[ the problem
(1.1) admits infinitely many generalized solutions. Moreover, if g∞ = 0, the
result holds for every λ > 0 and µ ≥ 0.

Now, we give an application of Theorem 3.1.

Example 3.1. Let f : [0, 1]× R −→ R be the function defined by

f(t, x)

=

{
f∗(t)xex(2+x−cos(ln(|x|))−(2 + x) sin(ln(|x|))) if (t, x)∈ [0, 1]×(R\{0}),
0 if (t, x)∈ [0, 1]×{0},

where f∗ : [0, 1] −→ R is a non-negative continuous function, and let p(x) =
1

2S2 arctanx , h(x) = 1
3S2 sinx for each x ∈ R. A direct calculation shows

F (t, x) =

{
f∗(t)x2ex(1− sin(ln(|x|))) if (t, x) ∈ [0, 1]× (R \ {0}),
0 if (t, x) ∈ [0, 1]× {0}.
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Now by t̄ = 1
4 , t̃ = 3

4 , d(t) = 48t2 − 128t3 and e(t) = 8
3 t −

16
9 t

2 we have

D = 25
√

61
9 , and since S,C1, C2, <∞, we have

lim inf
ξ−→+∞

∫ 1
0 sup|x|≤ξ F (t, x)dt

ξ2
= 0 and lim sup

ξ−→+∞

∫ 3
4

1
4

F (t, ξ)dt

ξ2
=∞.

Hence, note that L1 = 1
2S2 and L2 = 1

3S2 using Theorem 3.1, the problem (1.1)

in this case with g(t, x) = et−x
+

(x+)ω for all (t, x) ∈ [0, 1] × R where x+ =
max{x, 0} and ω is a positive real number, for every (λ, µ) ∈]0,+∞[×[0,+∞[
has an unbounded sequence of generalized solutions.

Remark 3.2. Assumption (A3) in Theorem 3.1 could be replaced by the
following more general condition

(A′3) there exist two sequence {θn} and {ηn} with ηn > 0 for every n ∈ N
and D2C2θ

2
n <

C1
S2 η

2
n for all n ∈ N and limn→+∞ ηn = +∞ such that

lim
n→+∞

∫ 1
0 sup|x|≤ηn F (t, x)dt−

∫ t̃
t̄ F (t, θn)dt

C1
S2 η2

n −D2C2θ2
n

< lim sup
ξ−→+∞

∫ t̃
t̄ F (t, ξ)dt

D2C2ξ2
.

Indeed, clearly, by choosing θn = 0 for all n ∈ N from (A′3) we obtain (A3).

Moreover, if we assume (A′3) instead of (A3) and we choose rn = C1η2
n

S2 for all
n ∈ N, by the same arguments as in Theorem 3.1, we obtain

ϕ(rn) ≤
supv∈Φ−1(]−∞,rn]) Ψ(v)−

∫ 1
0 F (t, wn(t))dt

rn −
∫ 1

0
1
2 |w′n(t)|2dt−

∫ wn(1)
0 h(t)dt+

∫ 1
0 P (wn(t))dt

≤
∫ 1

0 sup|x|≤ηn F (t, x)dt−
∫ t̃
t̄ F (t, θn)dt

C1
S2 η2

n −D2C2θ2
n

where wn(t) is the same as (3.11) but γn replaced by θn. We have the same
conclusion as in Theorem 3.1 with the interval ]λ1, λ2[ replaced by the interval

Λ′ =

]
1

lim supξ−→+∞

∫ t̃
t̄ F (t,ξ)dt

D2C2ξ2

,
1

S2 limn→+∞

∫ 1
0 sup|x|≤ηn F (t,x)dt−

∫ t̃
t̄ F (t,θn)dt

C1η2
n−D2S2C2θ2

n

[
.

Here, we point out a simple consequence of Theorem 3.1.

Corollary 3.2. Assume that Assumptions (A1) and (A2) hold. Fur-
thermore, suppose that

(B1) lim infξ−→+∞

∫ 1
0 sup|x|≤ξ F (t,x)dt

ξ2 < C1
S2

(B2) lim supξ−→+∞

∫ t̃
t̄ F (t,ξ)dt

ξ2 > D2C2.
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Then, for every arbitrary L2-Carathéodory function g : [0, 1]× R −→ R whose
G(t, x) =

∫ x
0 g(t, ξ)dξ for every (t, x) ∈ [0, 1] × R is a nonnegative function

satisfying the condition (3.1) and for every µ ∈ [0, µg,1[ where µg,1 := 1
g∞

(
1−

S2 lim infξ→+∞

∫ 1
0 sup|x|≤ξ F (t,x)dt

C1ξ2

)
, the problem

u(4)(t) = f(t, u(t)) + µg(t, u(t)) + p(u(t)), 0 < t < 1,
u(0) = u′(0) = 0,
u′′(1) = 0, u′′′(1) = h(u(1)),

has an unbounded sequence of generalized solutions.

Remark 3.3. Theorem 2.2 is an immediate consequence of Corollary 3.2
when µ = 0.

We here give the following consequence of the main result.

Corollary 3.3. Let f1 : [0, 1]×R −→ R be an L2-Carathéodory function
and let F1(t, x) =

∫ x
0 f1(t, ξ)dξ for all x ∈ R. Assume that

(D1) lim infξ−→+∞

∫ 1
0 sup|x|≤ξ F1(t,x)dt

ξ2 < +∞;

(D2) lim supξ−→+∞

∫ t̃
t̄ F1(t,ξ)dt

ξ2 = +∞.

Then, for every L2-Carathéodory function fi : [0, 1] × R −→ R, denoting
Fi(t, x) =

∫ x
0 fi(t, ξ)dξ for all x ∈ R for 2 ≤ i ≤ n, satisfying

min
{

inf
(t,ξ)∈([0,t̄]∪[t̃,1])×R

Fi(t, ξ); 2 ≤ i ≤ n
}
≥ 0

and

min
{

lim inf
ξ→+∞

Fi(t, ξ)

ξ2
; 2 ≤ i ≤ n

}
< +∞,

for each

λ ∈

0,
1

S2 lim infξ→+∞
F1(t,ξ)
C1ξ2

 ,
for every arbitrary L2-Carathéodory function g : [0, 1]×R −→ R whose G(t, x) =∫ x

0 g(t, ξ)dξ for every (t, x) ∈ [0, 1] × R, is a non-negative function satis-

fying the condition (3.1) and for every µ ∈ [0, µg,λ[ whereµg,λ := 1
g∞

(
1 −

λS2 lim infξ→+∞

∫ 1
0 sup|x|≤ξ F1(t,x)dt

C1ξ2

)
, the problem

u(4)(t) = λ
∑n

i=1 fi(t, u(t)) + µg(t, u(t)) + p(u(t)), 0 < t < 1,
u(0) = u′(0) = 0,
u′′(1) = 0, u′′′(1) = h(u(1)),

has an unbounded sequence of generalized solutions.
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Proof. Set F (t, ξ) =
∑n

i=1 Fi(t, ξ) for all ξ ∈ R. From the assumption
(D2) and the condition

min
{

inf
(t,ξ)∈([0,t̄]∪[t̃,1])×R

Fi(t, ξ); 2 ≤ i ≤ n
}
≥ 0

we conclude

lim sup
ξ−→+∞

∫ t̃
t̄ F (t, ξ)dt

D2C2ξ2
= lim sup

ξ→+∞

∑n
i=1

∫ t̃
t̄ Fi(t, ξ)dt

D2C2ξ2
= +∞.

Moreover, from the assumption (D1) and the condition

min
{

lim inf
ξ→+∞

Fi(t, ξ)

ξ2
; 2 ≤ i ≤ n

}
< +∞,

we obtain

lim inf
ξ−→+∞

∫ 1
0 sup|x|≤ξ F (t, x)dt

ξ2
≤ lim inf

ξ−→+∞

∫ 1
0 sup|x|≤ξ F1(t, x)dt

ξ2
< +∞.

Hence, the conclusion follows from Theorem 3.1. �

Arguing as in the proof of Theorem 3.1, but using conclusion (c) of The-
orem 2.1 instead of (b), one establishes the following result.

Theorem 3.4. Assume that Assumptions (A1) and (A2) hold. Further-
more, suppose that

(E1) lim infξ−→0+

∫ 1
0 sup|x|≤ξ F (t,x)dt

ξ2 < C1
D2S2C2

lim supξ−→0+

∫ t̃
t̄ F (t,ξ)dt

ξ2 .

Then, for each λ ∈]λ3, λ4[ where

λ3 :=
1

lim supξ−→0+

∫ t̃
t̄ F (t,ξ)dt

D2C2ξ2

and λ4 :=
1

lim infξ−→0+

∫ 1
0 sup|x|≤ξ F (t,x)dt

C1ξ
2

S2

,

for every arbitrary L2-Carathéodory function g : [0, 1]×R −→ R whose G(t, x) =∫ x
0 g(t, ξ)dξ for every (t, x) ∈ [0, 1]×R is a nonnegative function satisfying the

condition

(3.14) g0 := lim
ξ−→0+

∫ 1
0 sup|x|≤ξ G(t, x)dt

C1ξ2

S

2 < +∞

and for every µ ∈ [0, µg,λ[ where µg,λ := 1
g0

(
1−λS2 lim infξ→0+

∫ 1
0 sup|x|≤ξ F (t,x)dt

C1ξ2

)
,

the problem (1.1) has a sequence of pairwise distinct generalized solutions,
which strongly converges to 0 in E.
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Proof. Fix λ ∈]λ3, λ4[ and let g is the function satisfying the condition
(3.14). Since, λ < λ2, one has µg,λ > 0. Fix µ ∈]0, µg,λ[ and set ν3 := λ3 and

ν4 := λ4

1+µ

λ
λ4g0

. If g0 = 0, clearly, ν3 = λ3, ν4 = λ4 and λ ∈]ν3, ν4[. If g0 6= 0,

since µ < µg,λ, one has

λ

λ4
+ µg0 < 1,

and so
λ4

1 + µ

λ
λ4g0

> λ,

namely, λ < ν4. Hence, recalling that λ > λ3 = ν3, one has λ ∈]ν3, ν4[.
Now, put Q(t, u) = F (t, u) + µ

λ
G(t, u) for all u ∈ R and t ∈ [0, 1]. Since∫ 1

0 sup|x|≤ξ Q(t, x)dt

C1ξ2

S2

≤
∫ 1

0 sup|x|≤ξ F (t, x)dt

C1ξ2

S2

+
µ

λ

∫ 1
0 sup|x|≤ξ G(t, x)dt

C1ξ2

S2

,

taking (3.14) into account, one has

(3.15) lim inf
ξ→0+

∫ 1
0 sup|x|≤ξ Q(t, x)dt

C1ξ2

S2

≤ lim inf
ξ→0+

∫ 1
0 sup|x|≤ξ F (t, x)dt

C1ξ2

S2

+
µ

λ
g0.

Moreover, since G is nonnegative, from Assumption (E1) we have

(3.16) lim sup
ξ−→0+

∫ t̃
t̄ Q(t, ξ)dt

D2C2ξ2
≥ lim sup

ξ−→0+

∫ t̃
t̄ F (t, ξ)dt

D2C2ξ2
.

Therefore, from (3.15) and (3.16), we obtain

λ ∈]ν3, ν4[

⊆

]
1

lim sup|ξ|−→0+

∫ t̃
t̄ Q(t,ξ)dt

D2C2ξ2

,
1

S2 lim infξ−→0+

∫ 1
0 sup|x|≤ξ Q(t,x)dt

C1ξ2

[
⊆ ]λ3, λ4[ .

We take X, Φ, Ψ and Iλ as in the proof of Theorem 3.1. We prove
that δ < +∞. For this, let {ξn} be a sequence of positive numbers such that
ξn → 0+ as n→ +∞ and

lim
n→∞

∫ 1
0 sup|x|≤ξn F (t, x)dt

ξ2
n

< +∞.

Put rn = C1ξ2
n

S2 for all n ∈ N. Let us show that the functional Iλ has not a local
minimum at zero. For this, let {γn} be a sequence of positive numbers and
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τ > 0 such that γn → 0+ as n→∞ and

(3.17)
1

λ
< τ <

∫ t̃
t̄ F (t, γn)dt

D2C2γ2
n

for each n ∈ N large enough. Let {wn} be a sequence in X defined by (3.11).
So, owing to (3.12), (3.13) and (3.17) we obtain

Iλ(wn) = Φ(wn)− λΨ(wn) ≤ D2C2γ
2
nλ

∫ t̃

t̄
F (t, γn)dt < (1− λτ)D2C2γ

2
n < 0

for every n ∈ N large enough. Since Iλ(0) = 0, that means that 0 is not a local
minimum of the functional Iλ. Hence, the part (c) of Theorem 2.1 ensures that
there exists a sequence {un} in X of critical points of Iλ such that ‖un‖ → 0
as n→∞, and the proof is complete. �

Remark 3.4. Applying Theorem 3.4, results similar to Remark 3.2, Corol-
laries 3.2 and 3.3 can be obtained.

We end this paper by giving the following example as an application of
Theorem 3.4.

Example 3.2. Let f : [0, 1]× R −→ R be the function defined by

f(t, x) =

{
f∗(t)

(
1− cos(ln(|x|))− sin(ln(|x|))

)
if (t, x) ∈ [0, 1]× (R \ {0}),

0 if (t, x) ∈ [0, 1]× {0},

where f∗ : [0, 1] −→ R is a non-negative continuous function, and let p(x) =
ln(1 + x2)1/4S2

, h(x) = 1
5S2 |x| for each x ∈ R. A direct calculation shows

F (t, x) =

{
f∗(t)x

(
1− sin(ln(|x|))

)
if (t, x) ∈ [0, 1]× (R \ {0}),

0 if (t, x) ∈ [0, 1]× {0}.

Now by t̄ = 8
10 , t̃ = 9

10 , d(t) = 75
16 t

2 − 375
96 t

3 and e(t) = 29
9 t −

100
81 t

2 we have

D = 25
√

4039
324 , and since S,C1, C2 <∞, we have

lim inf
ξ−→0+

∫ 1
0 sup|x|≤ξ F (t, x)dt

ξ2
= 0 and lim sup

ξ−→0+

∫ 9
10
8
10

F (t, ξ)dt

ξ2
= +∞.

Hence, note that L1 = 1
2S2 and L2 = 2

5S2 using Theorem 3.4 the problem
(1.1) in this case, with g(t, x) = tx for all (t, x) ∈ [0, 1]× R, for every (λ, µ) ∈
]0,+∞[×[0, 4C1

S2 [ has an unbounded sequence of generalized solutions.
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