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In this paper, we introduce the notion of pseudo-prime submodules of modules as
a generalization of the prime ideal of commutative rings. We introduce a Zariski
topology on the spectrum of pseudo-prime submodules of certain modules. We
investigate this topology and clarify the interplay between the properties of this
topological space and the algebraic properties of the module under consideration.
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1. INTRODUCTION

Inspired by the interplay between the Zariski topology defined on the
prime spectrum of a commutative ring R and the ring theoretic properties
of R in [3, 8, 18, 23, 25], we introduce in this paper a Zariski topology on the
pseudo-prime spectrum XM of pseudo-prime submodules of a certain module
M over a commutative ring R and study the interplay between the properties
of M and the topological space that we obtain.

We are going to show that the topological conditions on the pseudo-prime
spectrum of modules such as connectedness, Noetherianness and irreducibility
give more information about the algebraic structure of those modules. For
example, we show that if the topology on the pseudo-prime spectrum of a
Noetherian module is a T1-space, then this module must be Artinian. Also,
we study this topological space from the point of view of spectral spaces (a
topological space which is homeomorphic to Spec(S) for some ring S).

Throughout the paper, all rings are commutative with identity and all
modules are unital. For a submodule N of an R-module M , (N :R M) denotes
the ideal {r ∈ R | rM ⊆ N} and annihilator of M , denoted by AnnR(M),
is the ideal (0 :R M). If there is no ambiguity we will write (N : M) (resp.
Ann(M)) instead of (N :R M) (resp. AnnR(M)).
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2. PSEUDO-PRIME SUBMODULES

Definition 2.1. Let M be an R-module.

(1) A proper submodule N of M is called pseudo-prime if (N :R M) is a
prime ideal of R.

(2) We define the pseudo-prime spectrum of M to be the set of all pseudo-
prime submodules of M and denote it by XR

M . If there is no ambiguity we
write only XM instead of XR

M . For any prime ideal I ∈ XR = Spec(R),
the collection of all pseudo-prime submodules N of M with (N : M) = I
is designated by XM,I .

(3) For a submodule N of M we define VM (N) = {L ∈ XM | L ⊇ N}. If
there is no ambiguity we write V (N) instead of VM (N).

(4) When XM 6= ∅, the map ψ : XM → Spec(R/Ann(M)) defined by ψ(L) =
(L : M)/Ann(M) for every L ∈ XM , will be called the natural map of
XM . An R-module M is called pseudo-primeful if either M = (0) or
M 6= (0) and the natural map of XM is surjective.

(5) M is called pseudo-injective if the natural map of XM is injective.

By our definition, the prime ideals of the ring R and pseudo-prime sub-
modules of the R-module R are the same. This shows that pseudo-prime
submodule is a generalization of the notion of prime ideal to the modules.

We recall that a proper submodule N of an R-module M is said to be
prime if M/N is a torsion-free R/(N : M)-module. The theory of prime
submodules and Zariski topology on the prime spectrum of modules is studied
by many algebraist (see [1,6,7,9,11,14,17,19,20]). Every prime submodule P
of R-module M is pseudo-prime, because (P : M) ∈ Spec(R). However, the
converse is not true in general.

Example 2.2. Consider M = Z⊕Z as a Z-module and N = (2, 0)Z is the
submodule of M generated by (2, 0) ∈M . Then (N : M) = (0) ∈ Spec(Z), i.e.,
N ∈ XM though N is not a prime submodule of M . Thus in general, a pseudo-
prime submodule need not be a prime submodule, i.e., Spec(M) $ XM , here
Spec(M) is the set of all prime submodules of M .

This example shows that the theory of pseudo-prime submodule and the
theory of prime submodule are not the same. Indeed, we can find modules
such as the Z-module Z(p∞), where p is a prime integer, that has no prime
submodules but every proper submodule of them is a pseudo-prime submodule.
We show that the theory of pseudo-prime submodule of modules resembles to
that theory of prime ideals of rings.

Example 2.3. Every free R-module F is pseudo-primeful (because for any
prime ideal p of R, pF is a proper submodule of F such that (pF : F ) = p).
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However, the converse is not true in general. For example, consider M =
Z⊕ Z(p∞) as a Z-module. Then M is pseudo-primeful which is not free.

We remark that pseudo-primeful modules and primeful modules which is
introduced in [16] are not the same. More precisely, every primeful module is
a pseudo-primeful module. However, the converse is not true in general.

Example 2.4. For example the Z-module
⊕

p(Z/pZ), where p runs over
the set of all prime integers is not primeful by [16, Result 2], but it is easy to
see that this is pseudo-primeful.

We recall that an R-module M is called a multiplication module if every
submodule N of M is of the form IM for some ideal I of R (see [4] and [10]).

Example 2.5. Every multiplication module is pseudo-injective. However,
the converse is not true in general. For example, consider L = (Z/pZ)⊕Z(p∞)
as a Z-module, where p is a prime integer. Let Q be a pseudo-prime submodule
of L. Then (Q : L)L ⊆ Q 6= L. Since L is a torsion Z-module, if (Q : L) 6= p,
then (Q : L)L = L which is a contradiction. Therefore, (Q : L) = p. Since
L/pL ∼= Z/pZ, (Q : L)L is a maximal submodule of L, and so Q = (Q : L)L.
This implies that L is pseudo-injective. It is easy to check that there does
not exist an ideal I of Z such that (Z/pZ) ⊕ (0) = IM , so that M is not a
multiplication module.

We claim that every pseudo-injective finitely generated R-module is mul-
tiplication.

Lemma 2.6. Let M be an R-module and consider the following state-
ments.

(1) M is a multiplication module;

(2) M is a pseudo-injective module;

(3) |XM,m| ≤ 1 for every maximal ideal m of R;

(4) M/mM is cyclic for every maximal ideal m of R.

Then the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) hold. Moreover, if M is finitely
generated then (4) implies (1).

Proof. (1)⇒ (2) and (2)⇒ (3) are clear. (3)⇒ (4) Let m be a maximal
ideal of R. If mM = M , then we are done. Suppose that mM 6= M and
N/mM is a proper submodule of M/mM . Then, m = (mM : M) = (N : M).
Hence, N and mM are belong to XM,m. By (3), we have N = mM . This
implies that M/mM is a simple (and so cyclic) R-module. Now, let (4) hold
and M is a finitely generated module. Then by [10, Corollary 1.5], M is
multiplication. �
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In the sequel, we use the notion of pseudo-prime submodules to define
another new class of modules, namely topological module. We present some
examples of topological modules (Theorem 2.10 and Theorem 2.11) and we
investigate some algebraic properties of this new class. Afterward in the next
section, we associate a topology to the set of all pseudo-prime submodules of
topological modules, which is called Zariski topology. Let Y be a subset of XM

for an R-module M . We denote the intersection of all elements in Y by =(Y ).

Definition 2.7. Let M be an R-module.

(1) A submodule N of M is said to be pseudo-semiprime if it is an intersec-
tion of pseudo-prime submodules.

(2) A pseudo-prime submodule H of M is called extraordinary if N ∩L ⊆ H,
where N and L are pseudo-semiprime submodules of M , then either
L ⊆ H or N ⊆ H.

(3) For a submodule N of M , the pseudo-prime radical of N , denoted by
Prad(N), is the intersection of all pseudo-prime submodules of M con-
taining N , that is

Prad(N) = =(V (N)) =
⋂

P∈V (N)

P.

If V (N) = ∅, then we set Prad(N) = M .

(4) A submodule N of M is said to be a pseudo-prime radical submodule if
N = Prad(N).

(5) M is said to be topological if XM = ∅ or every pseudo-prime submodule
of M is extraordinary.

Remark 2.8.

(1) Every radical ideal of a ring R is a pseudo-semiprime submodule of the
R-module R. For another example, every proper submodule of a co-
semisimple module is a pseudo-semiprime submodule (see [2, p. 122]).

(2) Any prime ideal of the ring R is an extraordinary pseudo-prime submod-
ule of the R-module R.

(3) It is not true that every pseudo-prime submodule is extraordinary. For
example, consider the Z-module M = Q ⊕ (Z/pZ), where p is a prime
integer. It is easy to see that the submodules (0)⊕ (Z/pZ), Q⊕ (0) and
Z⊕ (0) of M are pseudo-prime. We deduce from ((0)⊕ (Z/pZ)) ∩ (Q⊕
(0)) ⊆ Z ⊕ (0) that Z ⊕ (0) is not extraordinary. Therefore, M is not a
topological module.

(4) The notion of top modules is introduced in [19] and by definition, every
topological R-module is a top module. However, the converse is not true
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in general. For example, the above mentioned Z-module M is a top
module by [19, Example 2.6].

We recall that an R-module is called uniserial if its submodules are lin-
early ordered by inclusion (see [24]). Obviously, any uniserial module is a
topological module. Hence, the Z-module Z(p∞), where p is a prime integer is
a topological Z-module.

Theorem 2.9. Let M be a topological R-module.

(1) Any R-homomorphic image of M is a topological R-module.

(2) Mp is a topological Rp-module for each prime ideal p of R.

Proof. (1) It suffices to show that M ′ := M/N is a topological R-module
for each submodule N of M . We may assume that XM ′ is not an empty set.
Let H/N be a pseudo-prime submodule of M ′. Since (H/N : M ′) = (H : M),
H is a pseudo-prime submodule of M . Let L1/N and L2/N be two pseudo-
semiprime submodule of M ′ such that (L1/N) ∩ (L2/N) ⊆ (H/N). By above
discussion, L1 and L2 are pseudo-semiprime submodules of M and L1∩L2 ⊆ H.
Since M is a topological module, we have L1 ⊆ H or L2 ⊆ H. This implies
that L1/N ⊆ H/N or L2/N ⊆ H/N . Therefore M ′ is a topological R-module.

(2) Let H be any pseudo-prime submodule of the Rp-module Mp. We
claim that H ∩M (the contraction of H with respect to the canonical map
M →Mp) is a pseudo-prime submodule of M . Let I and J be two ideals of R
such that IJ ⊆ (H ∩M :R M). Hence

IpJpMp ⊆ H = (H ∩M)p.

Since H is a pseudo-prime submodule of the Rp-module Mp, Ip ⊆ (H : Mp) or
Jp ⊆ (H : Mp). This shows that

IM ⊆ (IM)p ∩M ⊆ H ∩M

or

JM ⊆ H ∩M.

Therefore H ∩M is a pseudo-prime submodule of M . Now let L1 and L2, be
pseudo-semiprime submodules of Mp with L1 ∩ L2 ⊆ H. Then L1 ∩M and
L2 ∩M are pseudo-semiprime submodules of M with

(L1 ∩M) ∩ (L2 ∩M) = (L1 ∩ L2) ∩M ⊆ H ∩M.

So, L1 ∩M ⊆ H ∩M or L2 ∩M ⊆ H ∩M . It follows that

L1 = (L1 ∩M)p ⊆ (H ∩M)p = H

or L2 ⊆ H. Thus, H is extraordinary and Mp is a topological Rp-module. �
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It is clear that if R is any ring then the pseudo-prime submodules of
R (as an R-module) are the pseudo-prime ideals, and hence the R-module R
is a topological module. Theorem 2.9 shows that every cyclic R-module is a
topological module. In Theorem 2.10, we generalized this fact to multiplication
modules (recall that every cyclic module is multiplication, see [4]).

Theorem 2.10. Consider the following statements for an R-module M .

(1) M is a multiplication module;

(2) For every submodule N of M there exists an ideal I of R such that
V (N) = V (IM);

(3) M is a topological module;

Then the implications (1)⇒ (2)⇒ (3) hold. Moreover, if M is finitely gener-
ated then (3) implies (1).

Proof. (1)⇒ (2) This is clear by definition of multiplication modules.

(2) ⇒ (3) Let K be a pseudo-prime submodule of M and let N and L
be pseudo-semiprime submodules of M such that N ∩L ⊆ K. By assumption,
there are ideals I and J of R such that V (N) = V (IM) and V (L) = V (JM).
Suppose that N =

⋂
λ∈Λ Pλ, for some collection of pseudo-prime submodules

{Pλ}λ∈Λ. For each λ ∈ Λ,

Pλ ∈ V (N) ⊆ V (N) ∪ V (L) = V (IM) ∪ V (JM) = V ((I ∩ J)M),

so that (I ∩ J)M ⊆ Pλ. Thus

(I ∩ J)M ⊆
⋂
λ∈Λ

Pλ = N.

Similarly (I ∩ J)M ⊆ L. Therefore

(I ∩ J)M ⊆ N ∩ L ⊆ K.

Now we have I ∩ J ⊆ (K : M). It follows that K ∈ V (IM) = V (N) or
K ∈ V (JM) = V (L), i.e., N ⊆ K or L ⊆ K.

(3) ⇒ (1) Since every topological module is a top module, according
to [19, Theorem 3.5], M/mM is cyclic for every maximal ideal m of R. Hence,
by Lemma 2.6, M is multiplication. �

In the next theorem, we present some examples of topological modules.
For any element x of an R-module M , we define

c(x) :=
⋂
{A|A is an ideal of R and x ∈ AM}.

We recall that an R-module M is called a content R-module if, for every x ∈M ,
x ∈ c(x)M . Every free module, or more generally, every projective module, is
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a content R-module [22, p. 51]. M is a content R-module if and only if for
every family {Ai|i ∈ J} of ideals of R,

(
⋂
i∈J

Ai)M =
⋂
i∈J

(AiM).

Also, every faithful multiplication module is a content module [10, Theo-
rem 1.6].

Theorem 2.11. The R-module M is topological in each of the following
cases:

(1) M is a content and pseudo-injective module.

(2) Prad(N) =
√

(N : M)M for each submodule N of M .

Proof. (1) Let N be a submodule of M . If Prad(N) = M , then V (N) =
V (RM). If Prad(N) 6= M , then Prad(N) is a pseudo-semiprime submodule of
M . Let Prad(N) =

⋂
λ∈Λ Pλ, where Pλ is pseudo-prime submodule of M for

each λ ∈ Λ with (Pλ : M) = pλ ∈ Spec(R). Since

pλM = (Pλ : M)M = ((Pλ : M)M : M)

and M is pseudo-injective, for each λ ∈ Λ, Pλ = pλM . Since M is a content
module, we have

Prad(N) =
⋂
λ∈Λ

Pλ =
⋂
λ∈Λ

(pλM) = (
⋂
λ∈Λ

pλ)M

= (
⋂
λ∈Λ

(Pλ : M))M = (
⋂
λ∈Λ

Pλ : M)M = (Prad(N) : M)M.

Hence

V (N) = V (Prad(N)) = V ((Prad(N) : M)M).

By Theorem 2.10, M is a topological module.

(2) Let N be a submodule of M . Then

V (N) = V (Prad(N)) = V (
√

(N : M)M).

By Theorem 2.10, M is a topological module. �

3. ON THE PSEUDO-PRIME SPECTRUM OF TOPOLOGICAL MODULES

For the remainder of this paper, we assume that M is always a topological
R-module. Then ∅ = V (M), XM = V (0) and for any family of submodules
{Ni}i∈I of M , ⋂

i∈I
V (Ni) = V (

∑
i∈I

Ni).
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Also for any submodules N and L of M there exists a submodule K of M
such that V (N) ∪ V (L) = V (K). Thus if ζ(M) denotes the collection of all
subsets V (N) of XM then ζ(M) satisfies the axioms of a topological space for
the closed subsets. This topology is called the Zariski topology.

In the sequel, we investigate the topological properties of this topology
and we find more results about the relationship between algebraic properties of
topological modules and topological properties of the Zariski topology on the
pseudo-prime spectrum of them. Modules whose Zariski topology is irreducible
or Noetherian are studied, and several characterizations of such modules are
given. Also, we investigate this topological space from the point of view of
spectral spaces.

We remark that for any R-module M , the Spec(M) when equipped the
topology Zariski which is introduced in [19] is a subspace of XM . There are
modules M ′ such that Spec(M ′) is empty but XM ′ is not an empty set. Hence,
we can talk about the relationship between M ′ and the topological property
of XM ′ .

Our first application of Zariski topology is to prove that the connectedness
property of XM has some results about the certain elements of the ring R. For
the remainder of this paper, for every ideal I ∈ V R(Ann(M)), R and I will
denote respectively R/Ann(M) and I/Ann(M).

Theorem 3.1. Let M be a pseudo-primeful R-module such that XM is
connected. Then XR̄ is connected and the ring R̄ contains no idempotent other
than 0̄ and 1̄.

Proof. Since the natural map ψ : XM → Spec(R/Ann(M)) is surjective,
it suffices to show that ψ is a continuous map with respect to the Zariski
topology. To do this, let I be an ideal of R containing Ann(M) and let L ∈
ψ−1(V R(Ī)). Then there exists some J̄ ∈ V R(Ī) such that ψ(L) = J̄ . Hence
J = (L : M) ⊇ I, and so IM ⊆ L. Therefore L ∈ VM (IM).

Now, let K ∈ VM (IM). Then

(K : M) ⊇ (IM : M) ⊇ I,

and so K ∈ ψ−1(V R(Ī)). Consequently ψ−1(V R(Ī)) = VM (IM), i.e., ψ is
continuous. �

In the next proposition, we show that if the topological space XM is a
T1-space, then we can obtain some properties of the pseudo-prime submodules
of M .

Proposition 3.2. Let M be an R-module and Y ⊆ XM and let L ∈ XM,I ,
for some I ∈ Spec(R).
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(1) Cl(Y ) = V (=(Y )). Hence, Y is closed if and only if Y = V (=(Y )). In
particular, Cl({L}) = V (L);

(2) If (0) ∈ Y , then Y is dense in XM ;

(3) XM is a T0-space;

(4) XM is a T1-space if and only if each pseudo-prime submodule of M is a
maximal element in the set of all pseudo-prime submodules of M .

(5) If Spec(R) is a T1-space, then XM is a T1-space.

Proof. (1) Clearly, Y ⊆ V (=(Y )). Let V (N) be any closed subset of XM

containing Y . Because of =(Y ) ⊇ =(V (N)), we have

V (=(Y )) ⊆ V (=(V (N))) = V (Prad(N)) = V (N).

This proves that V (=(Y )) is the smallest closed subset of XM containing Y .
Hence, Cl(Y ) = V (=(Y )).

(2) This is clear by (1).

(3) We recall that a topological space is a T0-space if and only if the
closures of distinct points are distinct. Let N and L be two distinct points of
XM . Then by (1),

Cl({N}) = V (N) 6= V (L) = Cl({L}).

We deduce that, XM is a T0-space.

(4) We recall that a topological space is a T1-space if and only if every
singleton subset is closed. Suppose P is a maximal element in the set of all
pseudo-prime submodules of M , then by (1), we have that

Cl({P}) = V (P ) = {P}

so that {P} is closed. Thus XM is a T1-space.

Conversely, since XM is a T1-space, {P} is closed, hence

{P} = Cl({P}) = V (=({P})) = V (P ),

thus P is a maximal element in the set of all pseudo-prime submodules of M .

(5) Suppose H is a pseudo-prime submodule of M . Then Cl({H}) =
V (H) by (1). Let L ∈ V (H). Then by assumption we have

(H : M) = (L : M) ∈ Max(R).

Hence, H and L are prime submodule of M . Now, by Theorem 2.10, L = H.
Therefore Cl({H}) = {H} and this implies that XM is a T1-space. �

Corollary 3.3. If R is an absolutely flat ring and M is an R-module,
then XM is a T1-space.
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Proof. We know that in an absolutely flat ring, maximal ideals and prime
ideals are the same (see [3, p. 55, Exercise 3 and p. 35, Exercise 27]). Hence,
by Proposition 3.2, XM is a T1-space. �

Noetherian and Artinian modules are two well-known classes of modules
and there are many papers devoted to the relationships between these classes.
Here, we present a topological condition which implies that a Noetherian mod-
ule is Artinian.

Theorem 3.4. Let M be an R-module and XM be a T1-space. If M is a
Noetherian R-module, then M is a Artinian cyclic module.

Proof. By Theorem 2.10, M is a multiplication R-module. By Proposi-
tion 3.2, every pseudo-prime submodule of M is a maximal element of XM .
Since M is finitely generated, every pseudo-prime submodule of M is maxi-
mal. Thus by [5, Theorem 4.9], M is Artinian. Now the result follows from [10,
Corollary 2.9]. �

A topological space T is irreducible if and only if for any decomposition
T = A1 ∪ A2 with closed subsets Ai of T with i = 1, 2, we have A1 = T
or A2 = T . By an irreducible component of a topological space T we mean
a maximal irreducible subset of T . Since every singleton subset of XM is
irreducible, its closure is also irreducible. Now, applying (1) of Proposition 3.2,
we obtain that

Corollary 3.5. V (L) is an irreducible closed subset of XM for every
pseudo-prime submodule L of an R-module M .

The next theorem shows that the irreducible subsets of the topological
space XM have a close relationship to the pseudo-prime submodules of the
R-module M . It is well-known that in a ring R, a subset T of Spec(R) is
irreducible if and only if =(T ) is a prime ideal of R. The next theorem is a
generalization of this fact for topological modules.

Theorem 3.6. Let M be an R-module and Y be a subset of XM . Then
=(Y ) is a pseudo-prime submodule of M if and only if Y is an irreducible
space.

Proof. Let Y be irreducible, I and J be ideals of R such that IJ ⊆ (=(Y ) :
M). Then (IJ)M ⊆ =(Y ). Now, we have

Y ⊆ V (=(Y )) ⊆ V ((IJ)M) = V (IM) ∪ V (JM).

Since Y is irreducible, so either Y ⊆ V (IM) or Y ⊆ V (JM). Hence, either

=(Y ) ⊇ =(V (IM)) = Prad(IM) ⊇ IM
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or =(Y ) ⊇ JM . This implies that either I ⊆ (=(Y ) : M) or J ⊆ (=(Y ) : M).
Therefore, =(Y ) is a pseudo-prime submodule of M . Suppose that =(Y ) is a
pseudo-prime submodule of M and that Y ⊆ Y1 ∪ Y2 where Y1 and Y2 are two
closed subsets of XM . Then there are submodules N and L of M such that
Y1 = V (N) and Y2 = V (L). Hence

=(Y ) ⊇ =(V (N) ∪ V (L)) = =(V (N)) ∩ =(V (L)) = Prad(N) ∩ Prad(L).

Since M is a topological module, =(Y ) is an extraordinary submodule. Hence,
we may have Prad(N) ⊆ =(Y ) or Prad(L) ⊆ =(Y ). Thus

Y ⊆ V (=(Y )) ⊆ V (Prad(N)) = V (N) = Y1

or Y ⊆ Y2. This implies that Y is irreducible. �

Corollary 3.7. Let M be an R-module and N be a submodule of M .

(1) V (N) is an irreducible space if and only if Prad(N) is a pseudo-prime
submodule of M .

(2) XM is a irreducible space if and only if Prad(0) is a pseudo-prime sub-
module of M .

(3) Let XM,I 6= ∅ for some I ∈ Spec(R). Then XM,I is an irreducible space.

(4) Let R be a quasi-local ring. Then Max(M) is an irreducible space (here
the Max(M) is the set of all maximal submodules of M).

Proof. (1) Since Prad(N) = =(V (N)), the result follows immediately from
Theorem 3.6.

(2) Take N = (0) in (1).

(3) We have

(=(XM,I) : M) =
⋂

Q∈XM,I

(Q : M) = I ∈ Spec(R)

and so the result follows from Theorem 3.6.

(4) Use Theorem 3.6 and the fact that (=(Max(M)) : M) ∈ Max(R). �

Corollary 3.8. Let M be an R-module such that (0) ∈ XM . Since

=(XM ) = (0) ∈ XM ,

by Theorem 3.6, XM is an irreducible space. In particular, if R is an integral
domain and M is a torsion-free R-module, then by [15, Lemma 4.5],

(0 : M) = (0) ∈ Spec(R).

Hence, XM is an irreducible space, by Theorem 3.6 again.
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Example 3.9. As we have seen in the paragraph after Remark 2.8, the Z-
moduleM = Z(p∞), where p is a prime integer, is a topological module. By [13,
p. 3745], every proper submodule N of M is pseudo-prime with (N : M) = (0).
Therefore, XM = XM,(0) is an irreducible space.

Lemma 3.10. Let M be a nonzero pseudo-primeful R-module and let I
be a radical ideal of R. Then (IM : M) = I if and only if Ann(M) ⊆ I. In
particular, qM is a pseudo-prime submodule of M for every q ∈ V R(Ann(M)).

Proof. The necessity is clear. For sufficiency, since I is a radical ideal,
one has Ann(M) ⊆ I = ∩i qi, where qi runs through V R(I). Since M is a
pseudo-primeful R-module and qi ∈ V R(Ann(M)), there exists a pseudo-prime
submodule Li of M such that (Li : M) = qi. Now we have

I ⊆ (IM : M) = ((∩i qi)M : M) ⊆ ∩i (qiM : M) ⊆ ∩i (Li : M) = ∩i qi = I.

Thus (IM : M) = I. �

One of the cornerstone theorem in algebra is Nakayama’s Lemma. Since
every finitely generated module is pseudo-primeful, the next proposition is a
generalization of Nakayama’s Lemma to the class of pseudo-primful modules.

Proposition 3.11. Let M be a pseudo-primeful R-module. If I is an
ideal of R contained in the Jacobson radical Rad(R) such that IM = M , then
M = (0).

Proof. Suppose that M 6= (0). Then Ann(M) 6= R. If m is any maximal
ideal containing Ann(M), then

I ⊆ Rad(R) ⊆ m

and

IM = M = mM

whence

(mM : M) = R 6= m,

a contradiction to Lemma 3.10. �

Let Y be a closed subset of a topological space. An element y ∈ Y is
called a generic point of Y if Y = Cl({y}). In Proposition 3.2(1), we have seen
that every element L of XM is a generic point of the irreducible closed subset
V (L). Note that a generic point of a closed subset Y of a topological space is
unique if the topological space is a T0-space (see the Proposition 3.2). The next
theorem is a good application of the Zariski topology on modules. Indeed, the
next theorem shows that there is a correspondence between irreducible closed
subsets of XM and the pseudo-prime submodules of the R-module M .
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Theorem 3.12. Suppose that M is an R-module and let Y ⊆ XM .

(1) Then Y is an irreducible closed subset of XM if and only if Y = V (L) for
some L ∈ XM . Thus every irreducible closed subset of XM has a generic
point.

(2) The correspondence V (L) 7→ L is a bijection of the set of all irreducible
components of XM onto the set of all minimal elements of XM .

(3) Let M be a pseudo-primeful R-module. Then the set of all irreducible
components of XM is of the form

T = {VM (IM) | I is a minimal element of V (Ann(M))}.

(4) Let R be a Laskerian ring (i.e., every proper ideal of R has a primary
decomposition) and let M be a nonzero pseudo-primeful R-module. Then
XM has only finitely many irreducible components.

Proof. (1) By Corollary 3.5, Y = V (L) is an irreducible closed subset of
XM for any L ∈ XM . Conversely, if Y is an irreducible closed subset of XM ,
then Y = V (N) for some N ≤M and

=(Y ) = =(V (N)) = Prad(N) ∈ XM

by Theorem 3.6. Hence Y = V (N) = V (Prad(N)), as desired.
(2) Let Y be an irreducible component of XM . Each irreducible compo-

nent of XM is a maximal element of the set {V (Q) | Q ∈ XM} by (1), so we
have Y = V (P ) for some P ∈ XM . Obviously, P is a minimal element of XM ,
for if T is a pseudo-prime submodule of M with T ⊆ P , then V (P ) ⊆ V (T ) so
that P = T . Now, let P be a minimal element of XM with V (P ) ⊆ V (Q) for
some Q ∈ XM . Then

Q = Prad(Q) = =(V (Q)) ⊆ =(V (P )) = Prad(P ) = P,

hence P = Q. This implies that V (P ) is an irreducible component of XM .
(3) Let Y be an irreducible component of XM . By part (1), Y = V (L)

for some L ∈ XM . It is evident that (L : M)M is a pseudo-prime submodule
of M . Since (L : M)M ⊆ L, we have

Y = V (L) ⊆ V ((L : M)M).

Since Y is an irreducible component, V (L) = V ((L : M)M), and so L =
(L : M)M . We must show that l := (L : M) is a minimal element of
V R(Ann(M)). To see this let J ∈ V R(Ann(M)) and J ⊆ l. Then J/Ann(M) ∈
Spec(R/Ann(M)), and there exists an element Q ∈ XM such that (Q : M) = J
because of M is a pseudo-primeful R-module. Thus Y = VM (L) ⊆ VM (Q).
Hence Y = VM (L) = VM (Q) due to the maximality of VM (L). Thus we have
that l = J . Conversely, assume that Y ∈ T . There exists a minimal element
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I in V R(Ann(M)) such that Y = VM (IM). Since M is pseudo-primeful, IM
is a pseudo-prime submodule of M by Lemma 3.10. Thus Y is an irreducible
space by part (1). Suppose Y = VM (IM) ⊆ VM (Q), where Q is an element of
XM . Since IM ∈ VM (Q) and I is minimal, we have I = (IM : M) = (Q : M).
Now,

Y = VM (IM) = VM ((Q : M)M) ⊇ VM (Q).

Therefore, Y = VM (IM) = VM (Q).

(4) By assumption, every proper ideal of R has a primary decomposition.
So, if I is a minimal element of V (Ann(M)) and if Ann(M) = ∩ni=1Qi is a
minimal primary decomposition of Ann(M), then for some 1 ≤ i ≤ n, we must
have Qi ⊆ I. By minimality of I, we get I =

√
Qi. Hence, the irreducible

components of XM are VM (QiM)’s, by part (3). �

In the next proposition, we show that the irreducibility of XM (a topo-
logical property) implies that

√
Ann(M) is a prime ideal of R (an algebraic

property).

Proposition 3.13. The following statements are equivalent for a nonzero
pseudo-primeful R-module M :

(1) XM is an irreducible space.

(2) Spec(R/Ann(M)) is an irreducible space.

(3) V (Ann(M)) is an irreducible space.

(4)
√

Ann(M) is a prime ideal of R.

(5) XM = VM (IM) for some I ∈ V (Ann(M)).

Proof. (1)⇒ (2) As we have seen in the proof of Theorem 3.1, the natural
map ψ is continuous and by assumption ψ is surjective. Hence Im(ψ) =
Spec(R/Ann(M)) is also irreducible.

(2)⇒ (3) It is well-known that the mapping

ϕ : Spec(R/Ann(M)) → Spec(R)

J/Ann(M) 7→ J

is a homeomorphism. This implies that V (Ann(M)) is an irreducible space.

(3)⇒ (4) By Theorem 3.6, =(V (Ann(M))) =
√

Ann(M) is a prime ideal
of R.

(4)⇒ (5) By Lemma 3.10,
√

Ann(M)M is a pseudo-prime submodule of
M . Now, let L ∈ XM . Then

√
Ann(M) ⊆ (L : M), and so

√
Ann(M)M ⊆ L.

Therefore XM = V (
√

Ann(M)M), where
√

Ann(M) ∈ V (Ann(M)).

(5) ⇒ (1) By Lemma 3.10, IM is a pseudo-prime submodule of M . By
Corollary 3.5, VM (IM) = XM is irreducible. �
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Example 3.14. Consider the faithful Z-module M = (
⊕

p Z/pZ) ⊕ Q,
where p runs through the set if all are prime integers. Let q be a prime integer.
Then

M/qM ∼=
(
⊕

p Z/pZ)⊕Q
(
⊕

p q(Z/pZ))⊕ qQ
∼= Z/qZ.

This implies that M is a pseudo-primeful module. By Proposition 3.13, XM is
an irreducible space.

We recall that a topological space X is said to be a Noetherian space if
the open subsets of X satisfy the ascending chain condition. The next result,
as another application of the topology on modules, shows that the Noetheri-
anness of the pseudo-prime spectrum of modules impose a chain condition on
the modules. Recall that a ring has Noetherian spectrum if and only if the
ascending chain condition ACC for radical ideals holds [21, p. 631]. The next
theorem is a generalization of this fact to modules.

Theorem 3.15. An R-module M has a Noetherian pseudo-prime spec-
trum if and only if the ACC holds for pseudo-prime radical submodules of M .

Proof. Suppose the ACC holds for pseudo-prime radical submodules of
M . Let

V (N1) ⊇ V (N2) ⊇ · · ·
be a descending chain of close subsets of XM , where Ni ≤M . Then

=(V (N1)) ⊆ =(V (N2)) ⊆ · · ·

is an ascending chain of pseudo-prime radical submodules =(V (Ni)) = Prad(Ni)
of M . So, by assumption there exists k ∈ N such that for all i ∈ N,

=(V (Nk)) = =(V (Nk+i)).

Now, by Proposition 3.2,

V (Nk) = V (=(V (Nk))) = V (=(V (Nk+i))) = V (Nk+i).

Hence the first chain is stationary, i.e., XM is a Noetherian space. Conversely,
suppose that M has a Noetherian pseudo-prime spectrum. Let N1 ⊆ N2 ⊆ · · ·
be an ascending chain of pseudo-prime radical submodules of M . Thus

Ni = =(V (Ni)) = Prad(Ni).

Hence
V (N1) ⊇ V (N2) ⊇ · · ·

is a descending chain of close subsets of XM . By assumption there is k ∈ N
such that for all i ∈ N, V (Nk) = V (Nk+i). Therefore,

Nk = Prad(Nk) = =(V (Nk)) = =(V (Nk+i)) = Prad(Nk+i) = Nk+i. �
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Following M. Hochster [12], we say that a topological space Y is a spectral
space in case Y is homeomorphic to Spec(S), with the Zariski topology, for
some ring S. In the sequel, we present algebraic conditions that under which
the pseudo-prime spectrum of modules is a spectral space. Spectral spaces have
been characterized by Hochster [12, p. 52, Proposition 4] as the topological
space Y which satisfies the following conditions: (1) Y is a T0-space; (2) Y is
quasi-compact; (3) the quasi-compact open subsets of Y are closed under finite
intersection and these form an open base; (4) each irreducible closed subset
of Y has a generic point. Note that a Noetherian space is spectral if and
only if it is T0 and every non-empty irreducible closed subspace has a generic
point [12, pp. 57–58]. We recall that if M is a topological R-module, then XM

is T0-space (see Proposition 3.2) and every non-empty irreducible closed subset
of XM has a generic point (see Theorem 3.12).

Theorem 3.16. Let M be an R-module. Then XM is a spectral space in
each of the following cases:

(1) Let R be a Noetherian ring and let for every submodule N of M there
exists an ideal I of R such that V (N) = V (IM).

(2) Let Spec(R) be a Noetherian topological space and let M be a content
pseudo-injective R-module.

Proof. (1) We will show that every open subset of XM is quasi-compact.
Let H be an open subset of XM and let {Eλ}λ∈Λ be an open cover of H. Then
there are submodules N and Nλ such that H = XM \V (N), Eλ = XM \V (Nλ)
for each λ ∈ Λ and

H ⊆
⋃
λ∈Λ

Eλ = XM \
⋂
λ∈Λ

V (Nλ).

By hypothesis, for each λ ∈ Λ there exists an ideal Jλ in R such that V (Nλ) =
V (JλM). Then

H ⊆ XM \ V (
∑
λ∈Λ

JλM) = XM \ V ((
∑
λ∈Λ

Jλ)M).

Since R is a Noetherian ring, there exists a finite subset Λ′ of Λ such that

H ⊆
⋃
λ∈Λ′

Eλ.

Therefore XM is a Noetherian space and whence a spectral space.
(2) We will show that XM is Noetherian. Let

V (N1) ⊇ V (N2) ⊇ · · ·
be a descending chain of closed subsets of XM . Then we have

Prad(N1) ⊆ Prad(N2) ⊆ · · · .
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Since Spec(R) is Noetherian, the ascending chain

(Prad(N1) : M) ⊆ (Prad(N2) : M) ⊆ · · ·

of radical ideals must be stationary by Theorem 3.15. Thus there is an integer
k such that for each i = 1, 2, . . .,

(Prad(Nk) : M) = (Prad(Nk+i) : M) = · · · .

As we have seen in the proof of Theorem 2.11, for each λ ∈ N,

Prad(Nλ) = (Prad(Nλ) : M)M.

Therefore, for each i = 1, 2, . . . we have Prad(Nk) = Prad(Nk+i) = · · · . This
implies that

V (Nk) = V (Prad(Nk)) = V (Prad(Nk+i)) = V (Nk+i) = · · · .

Thus XM is Noetherian and the proof is completes. �
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