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In this paper, we study commutative rings R whose maximal ideals are direct
sums of completely cyclic modules (an R-module M is called completely cyclic if
each submodule of M is cyclic). It is shown that if every maximal ideal of R is
a direct sum of completely cyclic R-modules, then dim(R) ≤ 1 and either R is a
local ring such that every prime ideal of R is a direct sum of uniserial Noetherian
R-modules, or R is a Noetherian ring and there exists a positive integer n such
that every prime ideal of R is a direct sum of at most n completely cyclic modules.
In particular, if R is a commutative Artinian ring, then every maximal ideal of
R is a direct sum of completely cyclic R-modules if and only if every maximal
ideal of R is cyclic, if and only if, R is a Köthe-ring (i.e., every R-module is a
direct sum of cyclic R-modules).
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1. INTRODUCTION

Throughout this paper, all rings are commutative with identity and all
modules are unital. For a ring R we denote by Spec(R) and Max(R) the set
of prime ideals and the set of maximal ideals of R, respectively. A ring R is
called local (resp. semilocal) if R has a unique maximal ideal (resp. R has a
finite number of maximal ideals). In this paper, (R,M) will be a local ring
with maximal ideal M. Let R be a ring, and let M be an R-module. Choose
a nonempty subset X of M . The annihilator of X, denoted AnnR(X), is the
ideal AnnR(X) = {a ∈ R | aX = 0}. The annihilator of a single element x is
usually written AnnR(x) instead of AnnR({x}). An ideal I of R is called an
annihilator ideal if I = AnnR(S) for some S ⊆ R.
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We recall that a commutative ring in which every ideal is principal is
called a principal ideal ring. A principal ideal domain (PID) is an integral
domain that is principal ideal ring. An R-module M is called completely cyclic
if each submodule of M is cyclic. Completely cyclic modules are obvious gen-
eralizations of principal ideal rings. Also, an R-module M is called uniserial if
its submodules are linearly ordered by inclusion. If R is an Artinian ring, then
every uniserial module is completely cyclic (see [10, Lemma 13.9]).

It was shown by Köthe [12] and Cohen-Kaplansky [6] that “a commutative
ring R has the property that every module is a direct sum of cyclic modules
if and only if R is an Artinian principal ideal ring.” In fact, over an Artinian
principal ideal ring every module is a direct sum of completely cyclic modules.
The study of commutative rings R that the ideals of R are direct sums of
(completely) cyclic modules was initiated by Behboodi et al., in [2–4].

In this paper, we study commutative rings R whose maximal ideals are
direct sums of completely cyclic modules. In Section 2, it is shown that if
every maximal ideal of R is a direct sum of completely cyclic R-modules, then
dim(R) ≤ 1 (see Proposition 2.4). Moreover, in the local case every prime ideal
is a direct sum of uniserial Noetherian R-modules (see Theorem 2.10), and in
the non-local case R is a Noetherian ring and there exists a positive integer
n such that every prime ideal of R is a direct sum of at most n completely
cyclic modules (see Theorem 2.12). In particular, it is shown that for any
commutative Artinian ring R every maximal ideal of R is a direct sum of
completely cyclic R-modules if and only if R is a Köthe-ring (i.e., every R-
module is a direct sum of cyclic R-modules (see Proposition 2.13). Finally,
some relevant examples and counterexamples are indicated in Section 3.

2. MAIN RESULTS

We begin with the following two famous results from commutative alge-
bra.

Lemma 2.1 (Cohen [5, Theorem 2]). Let R be a commutative ring. Then
R is a Noetherian ring if and only if every prime ideal of R is finitely generated.

Lemma 2.2 (Kaplansky, [11, Theorem 12.3]). A commutative Noetherian
ring R is a principal ideal ring if and only if every maximal ideal of R is
principal.

The following theorem is an analogue of Kaplanskys (Cohen) theorem.

Proposition 2.3. Let R be a ring such that every maximal ideal of R is
a direct sum of completely cyclic R-modules. Then
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(a) R is a principal ideal ring if and only if every maximal ideal of R is
principal.

(b) R is Noetherian if and only if every maximal ideal of R is finitely gener-
ated.

Proof. We only prove (a), since the proof of (b) is similar.
(a) (⇒) is clear.
(a) (⇐). Assume M is a maximal ideal of R. Then M =

⊕
j∈JRxj where

each Rxi is completely cyclic R-module. By the assumption M = Ry, for
some y ∈ R. Thus y = r1xj1 + ... + rnxjn for some xj1 , ..., xjn ∈ M and
r1, ..., rn ∈ R. It follows that M = Rxj1 ⊕ ... ⊕ Rxjn , and so M is a finite
direct sum of completely cyclic R-module and soM is a Noetherian R-module.
Since R/M is also Noetherian, R is a Noetherian ring, and so by Lemma 2.2,
R is a principal ideal ring. �

Proposition 2.4. Let R be a commutative ring. If every maximal ideal
of R is a direct sum of completely cyclic R-modules, then dim(R) ≤ 1.

Proof. Let P be a minimal prime ideal of R. Since each maximal ideal
of R is a direct sum of completely cyclic R-modules, so each maximal ideal
of the ring R/P is completely cyclic. Now by Proposition 2.3, R/P is a PID.
Thus dim(R/P ) ≤ 1 for each minimal prime ideal P of R. It follows that
dim(R) ≤ 1. �

Next we need the following two lemmas.

Lemma 2.5 (See [13, Lemma 1.1]). Let R be a ring (not necessarily com-
mutative) and let M be an R-module. If {ei | i ∈ I} is a minimal generating
set of M where the cardinality I is infinite, then M cannot be generated by
fewer than |I| elements.

Lemma 2.6 (See [2, Proposition 2.15]). Let R be a ring (not necessarily
commutative). Then the following statements are equivalent:

(1) R is a local ring.

(2) If
⊕n

i=1Rxi
∼=

⊕m
j=1Ryj where n,m ∈ N and Rxi, Ryj are nonzero cyclic

R-modules, then n = m.

(3) If
⊕

i∈I Rxi
∼=

⊕
j∈J Ryj where I, J are index sets and Rxi, Ryj are

nonzero cyclic R-modules, then |I| = |J |.

Let R = R1 × · · · × Rk where k ∈ N and each Ri is a nonzero ring. One
can easily see that, each prime ideal P of R is of the form P = R1 × · · · ×
Ri−1 ×Pi ×Ri+1 × · · · ×Rk where each Pi is a prime ideal of Ri. Also, if Pi is
a direct sum of Λ completely cyclic (respectively, cyclic) Ri-modules, then it
is easy to see that P is also a direct sum of Λ completely cyclic (respectively,
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cyclic) R-module. Thus the ring R has the property that whose prime ideals
are direct sum of completely cyclic (respectively, cyclic) R-modules if and only
if for each i the ring Ri has this property.

Proposition 2.7. Let R be a commutative semilocal ring and let M ∈
Max(R). If M =

⊕
i∈I Rxi =

⊕
j∈J Ryj where I, J are index sets and Rxi,

Ryj are nonzero cyclic R-modules, then |I| = |J |.

Proof. Suppose thatM =
⊕

i∈I Rxi =
⊕

j∈J Ryj where I or J is infinite.
Then by Lemma 2.5, |I| = |J |. Thus we can assume that I = {1, ..., n}
and J = {1, ...,m}, where n,m ∈ N. Since R is semilocal, we can write R =
R1×...×Rt, where each Ri is an indecomposable ring (i.e., Ri has no nontrivial
idempotent elements). By above argument, without loss of generality, we can
assume that R is indecomosable. Set R̄ = S−1R,M̄ = S−1M, x̄i = xi/1 and
ȳi = yi/1, where S = R \M. Then R̄ is a local ring with the maximal ideal
M̄ =

⊕n
i=1 R̄x̄i =

⊕m
i=1 R̄ȳi. Now we claim that for each i, j the R-modules

R̄x̄i, R̄ȳj are nonzero. In fact, for instance if R̄x̄i = 0 for some i, then there
exists a s ∈ S such that sxi = 0. Since s 6∈ M and M + Rs = R, so there
exist m ∈M and r ∈ R, such that m+ rs = 1. But m = r1x1 + ...+ rnxn for
some r1, . . . , rn ∈ R and so xi = mxi + rsxi, i.e., xi = mxi = rix

2
i . It follows

that (1− rixi)xi = 0 and so R = Rxi⊕R(1− rixi), a contradiction (since R is
indecomposable). Thus R̄x̄i, R̄ȳj are nonzero cyclic modules and so by Lemma
2.6, n = m. �

Corollary 2.8. Let R be a commutative semilocal ring. IfM=
⊕

i∈IRxi
where M∈ Max(R) and for each i ∈ I, Rxi is a nonzero completely cyclic R-
module, then for each i ∈ I, Rxi is an indecomposable R-module.

A local Artinian principal ideal ring is called a special principal ring and
has an extremely simple ideal structure: there are only finitely many ideals,
each of which is a power of the maximal ideal. A principal ideal ring R can
be written as a direct product

∏n
i=1Ri, where each Ri is either a principal

ideal domain or a special principal ring (see [14, p. 245, Theorem 33] and [9,
Theorem 1]).

Lemma 2.9. Let R be a commutative local ring and M be an R-module.
If M =

⊕
i∈I Rxi, where for each i ∈ I, Rxi is a nonzero completely cyclic

R-module, then for each i ∈ I, Rxi is a uniserial R-module.

Proof. By Lemma 2.6, Rxi is an indecomposable R-module for each i ∈ I.
On the other hand, for each i ∈ I, Rxi ∼= R/Ann(xi) is a principal ideal ring
so it can be written as a direct product

∏s
j=1Rj , where each Ri is either a

principal ideal domain or a special principal ring (see above argument). Now
since for each i ∈ I, Rxi is indecomosable so every Rxi ∼= R/Ann(xi) is either
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a PID or a special principal ring that both are uniserial rings (note that a local
PID is a chain ring) and so M is a direct sum of uniserial R-module. �

Theorem 2.10. Let (R,M) be a commutative local ring. Then the fol-
lowing statements are equivalent:

(1) M is a direct sum of completely cyclic R-modules.

(2) M =
⊕

λ∈ΛRwλ, where Λ is an index set and each Rwλ is a completely
cyclic R- module for every λ ∈ Λ.

(3) M =
⊕

λ∈ΛRwλ, where Λ is an index set and each Rwλ is a uniserial
Noetherian R-module for every λ ∈ Λ.

(4) Every prime ideal of R is a direct sum of at most |Λ| uniserial Noetherian
R-module, where Λ is an index set.

(5) Every prime ideal of R is a direct sum of at most |Λ| completely cyclic
R-module, where Λ is an index set.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (3) is by Lemma 2.9.
(3) ⇒ (4). Let P be a non-maximal ideal of R. Then P $M =

⊕
λ∈ΛRwλ,

where Λ is an index set, and for each λ ∈ Λ, Rwλ is a uniserial Noetherian
R-module. There exists a λ0 ∈ Λ, such that wλ0 6∈ P and since wλwλ0 = 0 ∈ P ,
so ⊕λ∈Λ\{λ0}Rwλ ⊆ P . Now by modular property, we have

P = P ∩M = (P ∩Rwλ0)⊕ (
⊕

λ∈Λ\{λ0}

Rwλ).

Since P ∩ Rwλ0 ⊆ Rwλ0 and Rwλ0 is a uniserial Noetherian R-module,
so P is a direct sum of at most |Λ| uniserial Noetherian R-modules.
(4) ⇒ (5) ⇒ (1) is clear. �

The following theorem shows that if R is a commutative ring such that
every maximal ideal is a direct sum of completely cyclic modules, then either
R is a local ring or R is a Noetherian ring.

Theorem 2.11. Let R be a non-local commutative ring. If every maximal
ideal is a direct sum of completely cyclic R-modules, then R is a Noetherian
ring.

Proof. First we will show that every maximal ideal of R is a finite direct
sum of completely cyclic R-modules, for this let Max(R) = {Mi | i ∈ {1, 2}∪I}
where I is an index set, that can be empty. Now let M1 =

⊕
λ∈ΛRxλ,M2 =⊕

γ∈ΓRyγ where Λ,Γ are index sets, and for each λ ∈ Λ, γ ∈ Γ, Rxλ, Ryγ are
completely cyclic R-modules be two distinct maximal ideals of R. Now there
exists yγ ∈M2 such that yγ 6∈ M1, and so M1 +Ryγ = R, from this we infer
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that there exist xλ1 , xλ2 , ..., xλn ∈M1 such that

Rxλ1 +Rxλ2 . . .+Rxλn +Ryγ = R.

Let Λ′ = Λ \ {λ1, λ2, ..., λn}. Then it is easy to check that
⊕

Λ′Rxλ ⊆ Ryγ .
Since Ryγ is a completely cyclic R-module, so

⊕
Λ′Rxλ = Rz, for some z ∈ R

and it follows that

M1 = Rxλ1 ⊕Rxλ2 ⊕ . . .⊕Rxλn ⊕Rz.

From this we infer that every maximal ideal of R is a finite direct sum of
completely cyclic R-modules and so it is a finitely generated ideal. Now part
(b) of Proposition 2.3, follows that R is a Noetherian ring. �

A uniform module is a nonzero module M such that the intersection of
any two nonzero submodules of M is nonzero. Let M be an R-module and
n a nonnegative integer. We recall that M has finite rank n (denoted by
u.dim(MR) = n) if M contains a direct sum of n nonzero submodules but no
direct sum of n+1 nonzero submodules (see for instance [8, Proposition 5.50]).
We note that every Noetherian module has finite rank (see for instance [8,
Section 5]).

Theorem 2.12. Let R be a non-local commutative ring. Then the follow-
ing statements are equivalent:

(1) Every prime ideal of R is a direct sum of completely cyclic R-modules.

(2) Every maximal ideal of R is a direct sum of completely cyclic R-modules.

(3) There exists a positive integer n such that every maximal ideal of R is a
direct sum of at most n completely cyclic modules.

(4) There exists a positive integer n such that every prime ideal of R is a
direct sum of at most n completely cyclic modules.

(5) R is a Noetherian ring and every maximal ideal of R is a direct sum of
completely cyclic modules.

(6) R is a Noetherian ring and every prime ideal of R is a direct sum of
completely cyclic modules.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (3). By Theorem 2.11, R is a Noetherian ring and hence R has a finite
rank. Thus u.dim(RR) = n for some n ∈ N. It follows that every maximal
ideal is a direct sum of at most n completely cyclic modules.
(3) ⇒ (4). Let P be a non-maximal ideal of R. Then P $M =

⊕n
i=1Rwi,

where M is a maximal ideal of R and for each i, Rwi is a completely cyclic
R-module. Without loss of generality we can assume that Rx1 * P , and so⊕n

i=2Rwı ⊆ P . Now by modular property, we have P = P ∩M = (P ∩Rw1)⊕
(
⊕n

i=2Rwi). Since P ∩Rw1 ⊆ Rw1 and Rw1 is a completely cyclic R-module,
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so P is a direct sum of at most n completely cyclic R-modules.
(4) ⇒ (5) is by Proposition 2.3.
(5) ⇒ (6) and (6) ⇒ (1) are clear. �

We conclude this section with the following result for commutative Ar-
tinian rings.

Proposition 2.13. Let R be a commutative Artinian ring. Then the
following statements are equivalent:

(1) Every maximal ideal of R is a direct sum of completely cyclic R-modules.

(2) Every maximal ideal of R is a direct sum of cyclic R-modules.

(3) Every maximal ideal of R is cyclic.

(4) R is a principal ideal ring.

(5) R is a Köthe-ring (i.e., every R-module is a direct sum of cyclic R-
modules).

Proof. (1) ⇒ (2) ⇒ (3) is clear.
(3) ⇒ (4) is by Lemma 2.2.
(4) ⇒ (5) is by Cohen-Kaplansky [6] .
(5) ⇒ (1) is clear. �

3. SOME RELEVANT EXAMPLES AND COUNTEREXAMPLES

The following example shows that there exists a local ring (R,M) with
dim(R) = 1 such that every maximal (prime) ideal of R is an infinite direct
sum of uniserial completely cyclic modules.

Example 3.1. Let F be a field. Then the ring

R = F [[{Xi | i ∈ N}]]/〈{XiXj | i 6= j} ∪ {X2
i | i ≥ 2}〉,

is a local commutative non-domain, non-Noetherian ring with dim(R) = 1 and
M =

⊕∞
i=1Rxi, (where xi = Xi + {〈XiXj | i 6= j}∪ {X2

i | i ≥ 2}〉). Note that
Rx1

∼= R/Ann(x1) = F [x1, x2, . . . , xn, ...]/〈x2
1, x2, ..., xn, ...〉, and so Rx1 is a

completely cyclic R-module. Also one can easily check that Rxi is a completely
cyclic R-module for each i ≥ 2 and so M is a direct sum of completely cyclic
R-modules. It is easy to check that Spec(R) = {M1,

⊕∞
i=2Rxi}, and so every

prime ideal of R is an infinite direct sum of completely cyclic modules.

Also, the following example shows that there exists a local ring (R,M)
with dim(R) = 0 such that every maximal (prime) ideal is an infinite direct
sum of uniserial completely cyclic modules.
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Example 3.2. Let F be a field and R be the F -algebra with genera-
tors {xi | i ∈ N} subject to the relations xixj = 0 for i, j ∈ N (i.e., R =
F [{Xi | i ∈ N}]/〈XiXj | i, j ∈ N〉). Then the ring R is a non-Noetherian
local ring with the maximal ideal M =

⊕
i∈NRxi. Since Rxi ∼= R/Ann(xi) =

F [x1, x2, . . . , xn, ...]/〈x1, x2, ..., xn, ...〉, so for each i, Rxi is a completely cyclic
R-module. Also it is easy to check that Spec(R) = {M} and so the only prime
ideal of R is an infinite direct sum of completely cyclic modules.

The natural question arises “whether it is possible to deduce every ideal is
a direct sum of completely cyclic modules, if one only assumes that every prime
ideal is a direct sum of completely cyclic modules?” The following example
shows that this question is not true in general.

Example 3.3. Let R = Z2[{Xi | 1 ≤ i ≤ n}]/〈XiXj | 1 ≤ i 6= j ≤
n〉, then R is a commutative non-domain Artinian ring with dim(R) = 0,
M = Rx1 ⊕ . . . ⊕ Rxn (where xi = Xi + 〈{XiXj | 1 ≤ i 6= j ≤ n}〉) and
Spec(R) = {M}. But there exists an ideal I of R that is not a direct sum of
completely cyclic R-modules (see Theorem 3.9, [3]).

We know that if an R-module is a direct sum of completely cyclic R-
modules then it is a direct sum of cyclic R-modules. The following example
shows that the converse is not true in general.

Example 3.4. Let R be the subring of all sequences from the ring
∏
i∈N Z2

that are eventually constant. Then R is a zero-dimensional Boolean ring
with minimal prime ideals Pi = {{an} ∈ R | ai = 0} and P∞ = {{an} ∈
R | an = 0 for large n} (See [1]). Clearly, each Pi is cyclic (in fact Pi = Rvi
where vi = (1, 1, · · · , 1, 0, 1, 1, · · · )) and P∞ =

⊕
i∈N Z2 =

⊕
i∈NRwi where

wi = (0, 0, · · · , 0, 1, 0, 0, · · · ). Thus every prime ideal of R is a direct sum of
cyclic modules. But the factor ring R/Ann(v1) = R/Ann(0, 1, 1, 1, · · · ) is not
a principal ideal ring (since prime ideal P∞/Ann(v1) is not a principal ideal of
R/Ann(v1)). Also, one can easily to see that if P1 =

⊕
λ∈ΛRzλ where Λ is an

index set and zλ ∈ P1, then |Λ| = 1 and P1 = Rzλ = Rv1.
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