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In this paper, we study commutative rings R whose maximal ideals are direct
sums of completely cyclic modules (an R-module M is called completely cyclic if
each submodule of M is cyclic). It is shown that if every maximal ideal of R is
a direct sum of completely cyclic R-modules, then dim(R) < 1 and either R is a
local ring such that every prime ideal of R is a direct sum of uniserial Noetherian
R-modules, or R is a Noetherian ring and there exists a positive integer n such
that every prime ideal of R is a direct sum of at most n completely cyclic modules.
In particular, if R is a commutative Artinian ring, then every maximal ideal of
R is a direct sum of completely cyclic R-modules if and only if every maximal
ideal of R is cyclic, if and only if, R is a Kothe-ring (i.e., every R-module is a
direct sum of cyclic R-modules).
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1. INTRODUCTION

Throughout this paper, all rings are commutative with identity and all
modules are unital. For a ring R we denote by Spec(R) and Max(R) the set
of prime ideals and the set of maximal ideals of R, respectively. A ring R is
called local (resp. semilocal) if R has a unique maximal ideal (resp. R has a
finite number of maximal ideals). In this paper, (R, M) will be a local ring
with maximal ideal M. Let R be a ring, and let M be an R-module. Choose
a nonempty subset X of M. The annihilator of X, denoted Anng(X), is the
ideal Anngr(X) = {a € R | aX = 0}. The annihilator of a single element z is
usually written Annpg(x) instead of Anng({z}). An ideal I of R is called an
annthilator ideal if I = Anng(S) for some S C R.
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We recall that a commutative ring in which every ideal is principal is
called a principal ideal ring. A principal ideal domain (PID) is an integral
domain that is principal ideal ring. An R-module M is called completely cyclic
if each submodule of M is cyclic. Completely cyclic modules are obvious gen-
eralizations of principal ideal rings. Also, an R-module M is called uniserial if
its submodules are linearly ordered by inclusion. If R is an Artinian ring, then
every uniserial module is completely cyclic (see [10, Lemma 13.9]).

It was shown by Kothe [12] and Cohen-Kaplansky [6] that “a commutative
ring R has the property that every module is a direct sum of cyclic modules
if and only if R is an Artinian principal ideal ring.” In fact, over an Artinian
principal ideal ring every module is a direct sum of completely cyclic modules.
The study of commutative rings R that the ideals of R are direct sums of
(completely) cyclic modules was initiated by Behboodi et al., in [2—4].

In this paper, we study commutative rings R whose maximal ideals are
direct sums of completely cyclic modules. In Section 2, it is shown that if
every maximal ideal of R is a direct sum of completely cyclic R-modules, then
dim(R) < 1 (see Proposition 2.4). Moreover, in the local case every prime ideal
is a direct sum of uniserial Noetherian R-modules (see Theorem 2.10), and in
the non-local case R is a Noetherian ring and there exists a positive integer
n such that every prime ideal of R is a direct sum of at most n completely
cyclic modules (see Theorem 2.12). In particular, it is shown that for any
commutative Artinian ring R every maximal ideal of R is a direct sum of
completely cyclic R-modules if and only if R is a Kothe-ring (i.e., every R-
module is a direct sum of cyclic R-modules (see Proposition 2.13). Finally,
some relevant examples and counterexamples are indicated in Section 3.

2. MAIN RESULTS
We begin with the following two famous results from commutative alge-
bra.

LEMMA 2.1 (Cohen [5, Theorem 2]). Let R be a commutative ring. Then
R is a Noetherian ring if and only if every prime ideal of R is finitely generated.

LEMMA 2.2 (Kaplansky, [11, Theorem 12.3]). A commutative Noetherian
ring R is a principal ideal ring if and only if every maximal ideal of R is
principal.

The following theorem is an analogue of Kaplanskys (Cohen) theorem.

PROPOSITION 2.3. Let R be a ring such that every mazximal ideal of R is
a direct sum of completely cyclic R-modules. Then
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(a) R is a principal ideal ring if and only if every maximal ideal of R is
principal.

(b) R is Noetherian if and only if every maximal ideal of R is finitely gener-
ated.

Proof. We only prove (a), since the proof of (b) is similar.

(a) (=) is clear.

(a) («). Assume M is a maximal ideal of R. Then M = P, ;Rx; where
each Rx; is completely cyclic R-module. By the assumption M = Ry, for
some y € R. Thus y = rixj, + ... + rpzxj, for some z;,,...,x;, € M and
r1,....,7n € R. It follows that M = Rx; @ ... ® Rx;,, and so M is a finite
direct sum of completely cyclic R-module and so M is a Noetherian R-module.
Since R/M is also Noetherian, R is a Noetherian ring, and so by Lemma 2.2,
R is a principal ideal ring. [J

PROPOSITION 2.4. Let R be a commutative ring. If every mazimal ideal
of R is a direct sum of completely cyclic R-modules, then dim(R) < 1.

Proof. Let P be a minimal prime ideal of R. Since each maximal ideal
of R is a direct sum of completely cyclic R-modules, so each maximal ideal
of the ring R/P is completely cyclic. Now by Proposition 2.3, R/P is a PID.
Thus dim(R/P) < 1 for each minimal prime ideal P of R. It follows that
dim(R) <1. O

Next we need the following two lemmas.

LEMMA 2.5 (See [13, Lemma 1.1]). Let R be a ring (not necessarily com-
mutative) and let M be an R-module. If {e; | i € I} is a minimal generating
set of M where the cardinality I is infinite, then M cannot be generated by
fewer than |I| elements.

LEMMA 2.6 (See [2, Proposition 2.15]). Let R be a ring (not necessarily
commutative). Then the following statements are equivalent:
(1) R is a local ring.
(2) If @i, Rr; = D)L, Ry; wheren,m € N and Rx;, Ry; are nonzero cyclic
R-modules, then n = m.
(3) If Dics Rri = Dy Ry; where I, J are index sets and Rx;, Ry; are
nonzero cyclic R-modules, then |I| = |J|.

Let R = Ry x --- X Ry where k € N and each R; is a nonzero ring. One
can easily see that, each prime ideal P of R is of the form P = Ry x -+ X
Ri—1 X P; X Rj41 X --- x Ry, where each P; is a prime ideal of R;. Also, if P; is
a direct sum of A completely cyclic (respectively, cyclic) R;-modules, then it
is easy to see that P is also a direct sum of A completely cyclic (respectively,
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cyclic) R-module. Thus the ring R has the property that whose prime ideals
are direct sum of completely cyclic (respectively, cyclic) R-modules if and only
if for each ¢ the ring R; has this property.

PROPOSITION 2.7. Let R be a commutative semilocal ring and let M €
Max(R). If M = @,c; Rvi = @;c; Ry; where I,J are index sets and Ra;,

Ry; are nonzero cyclic R-modules, then |I| = |J|.

Proof. Suppose that M = P,c; Rv; = @, ; Ry; where I or J is infinite.
Then by Lemma 2.5, |I| = |J|. Thus we can assume that I = {1,...,n}
and J = {1,...,m}, where n,m € N. Since R is semilocal, we can write R =
R; x...x Ry, where each R; is an indecomposable ring (i.e., R; has no nontrivial
idempotent elements). By above argument, without loss of generality, we can
assume that R is indecomosable. Set R = S™'R,M = S™'M,&; = ;/1 and
Vi = yi/1, where S = R\ M. Then R is a local ring with the maximal ideal
M =@, Rz; = @, Ry;. Now we claim that for each i, j the R-modules
Rfi,Ry_j are nonzero. In fact, for instance if R&; = 0 for some i, then there
exists a s € S such that sz; = 0. Since s € M and M + Rs = R, so there
exist m € M and r € R, such that m +rs=1. But m =rjz; + ... + rpx, for
some 71{,...,r, € R and so x; = mx; + rsx;, t.e., x; = mx; = rza:f It follows
that (1 —r;z;)x; = 0 and so R = Rx; ® R(1 — r;z;), a contradiction (since R is
indecomposable). Thus R;, Ry_j are nonzero cyclic modules and so by Lemma
26,n=m. O

COROLLARY 2.8. Let R be a commutative semilocal ring. If M =@, ;Rx;
where M € Max(R) and for each i € I, Rx; is a nonzero completely cyclic R-
module, then for each i € I, Rx; is an indecomposable R-module.

A local Artinian principal ideal ring is called a special principal ring and
has an extremely simple ideal structure: there are only finitely many ideals,
each of which is a power of the maximal ideal. A principal ideal ring R can
be written as a direct product [[; ; R;, where each R; is either a principal
ideal domain or a special principal ring (see [14, p. 245, Theorem 33] and [9,
Theorem 1]).

LEMMA 2.9. Let R be a commutative local ring and M be an R-module.
If M = @,c; Rxi, where for each i € I, Rx; is a nonzero completely cyclic
R-module, then for each i € I, Rx; is a uniserial R-module.

Proof. By Lemma 2.6, Rx; is an indecomposable R-module for each i € I.
On the other hand, for each i € I, Rz; = R/Ann(z;) is a principal ideal ring
so it can be written as a direct product Hj-:l Rj, where each R; is either a
principal ideal domain or a special principal ring (see above argument). Now
since for each i € I, Rx; is indecomosable so every Rx; = R/Ann(x;) is either
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a PID or a special principal ring that both are uniserial rings (note that a local
PID is a chain ring) and so M is a direct sum of uniserial R-module. O

THEOREM 2.10. Let (R, M) be a commutative local ring. Then the fol-
lowing statements are equivalent:

(1) M is a direct sum of completely cyclic R-modules.

(2) M =P,cp Rwy, where A is an index set and each Rwy is a completely
cyclic R- module for every A € A.

(3) M = @, cp Rwy, where A is an index set and each Rwy is a uniserial
Noetherian R-module for every \ € A.

(4) Every prime ideal of R is a direct sum of at most |A| uniserial Noetherian
R-module, where A is an index set.

(5) Ewery prime ideal of R is a direct sum of at most |A| completely cyclic
R-module, where A is an index set.

Proof. (1) = (2) is clear.
(2) = (3) is by Lemma 2.9.
(3) = (4). Let P be a non-maximal ideal of R. Then P & M = @, Rwy,
where A is an index set, and for each A € A, Rw) is a uniserial Noetherian
R-module. There exists a A\g € A, such that wy, ¢ P and since wywy, =0 € P,
80 @ea\{ro} Bwr € P. Now by modular property, we have

P=PnNM=(PnRuy)&( @ Ruw).
AeA\{ Do}

Since P N Rwy, € Rw), and Rw), is a uniserial Noetherian R-module,
so P is a direct sum of at most |A| uniserial Noetherian R-modules.
(4) = (5) = (1)isclear. O

The following theorem shows that if R is a commutative ring such that
every maximal ideal is a direct sum of completely cyclic modules, then either
R is a local ring or R is a Noetherian ring.

THEOREM 2.11. Let R be a non-local commutative ring. If every maximal
ideal is a direct sum of completely cyclic R-modules, then R is a Noetherian
TIng.

Proof. First we will show that every maximal ideal of R is a finite direct
sum of completely cyclic R-modules, for this let Max(R) = {M; | i € {1,2}UIl}
where [ is an index set, that can be empty. Now let M; = @, Rz), Mo =
@,YGFR% where A, I' are index sets, and for each A € A,y € I', Rz, Ry, are
completely cyclic R-modules be two distinct maximal ideals of R. Now there
exists y, € My such that y, € My, and so M1 + Ry, = R, from this we infer
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that there exist xy,,2x,,...,x), € M such that
Rxy, + Rxy, ...+ Rxy, + Ry, = R.

Let A" = A\ {\1,A2,..., A\n}. Then it is easy to check that @), Rxy C Ry,.
Since Ry, is a completely cyclic R-module, so @,,Rx\ = Rz, for some z € R
and it follows that

Mi =Rzy), & Rz, ®... D Rx), ® Rz.

From this we infer that every maximal ideal of R is a finite direct sum of
completely cyclic R-modules and so it is a finitely generated ideal. Now part
(b) of Proposition 2.3, follows that R is a Noetherian ring. [

A uniform module is a nonzero module M such that the intersection of
any two nonzero submodules of M is nonzero. Let M be an R-module and
n a nonnegative integer. We recall that M has finite rank n (denoted by
u.dim(Mp) = n) if M contains a direct sum of n nonzero submodules but no
direct sum of n+1 nonzero submodules (see for instance [8, Proposition 5.50]).
We note that every Noetherian module has finite rank (see for instance [8,
Section 5]).

THEOREM 2.12. Let R be a non-local commutative ring. Then the follow-
ing statements are equivalent:

(1) Ewvery prime ideal of R is a direct sum of completely cyclic R-modules.

(2) Ewvery maximal ideal of R is a direct sum of completely cyclic R-modules.

(3) There exists a positive integer n such that every mazimal ideal of R is a
direct sum of at most n completely cyclic modules.

(4) There exists a positive integer n such that every prime ideal of R is a
direct sum of at most n completely cyclic modules.

(5) R is a Noetherian ring and every maximal ideal of R is a direct sum of
completely cyclic modules.

(6) R is a Noetherian ring and every prime ideal of R is a direct sum of
completely cyclic modules.

Proof. (1) = (2) is clear.

(2) = (3). By Theorem 2.11, R is a Noetherian ring and hence R has a finite
rank. Thus u.dim(Rgr) = n for some n € N. It follows that every maximal
ideal is a direct sum of at most n completely cyclic modules.

(3) = (4). Let P be a non-maximal ideal of R. Then P G M = @, Rw;,
where M is a maximal ideal of R and for each i, Rw; is a completely cyclic
R-module. Without loss of generality we can assume that Rz; ¢ P, and so
.., Rw, C P. Now by modular property, we have P = PNM = (PNRw)®
(P}, Rw;). Since PN Rw; € Rw; and Rw; is a completely cyclic R-module,
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so P is a direct sum of at most n completely cyclic R-modules.
(4) = (5) is by Proposition 2.3.
(5) = (6) and (6) = (1) are clear. [

We conclude this section with the following result for commutative Ar-
tinian rings.

PRrROPOSITION 2.13. Let R be a commutative Artinian ring. Then the
following statements are equivalent:
(1) Every mazimal ideal of R is a direct sum of completely cyclic R-modules.
Every mazximal ideal of R is a direct sum of cyclic R-modules.
Every maximal ideal of R is cyclic.

modules).

Proof. (1) = (2) = (3) is clear.
(3) = (4) is by Lemma 2.2.
(4) = (5) is by Cohen-Kaplansky [6] .
(5) = (1) isclear. O

3. SOME RELEVANT EXAMPLES AND COUNTEREXAMPLES

The following example shows that there exists a local ring (R, M) with
dim(R) = 1 such that every maximal (prime) ideal of R is an infinite direct
sum of uniserial completely cyclic modules.

Example 3.1. Let F be a field. Then the ring
R=F[{X;|ieN}l/({X:X; [ i# 5} U{X? | i>2}),

is a local commutative non-domain, non-Noetherian ring with dim(R) = 1 and
M =@, Ra;, (where z; = X; + {(X;X; | i # j}U{X? | i>2})). Note that
Rry = R/Ann(zy) = Flzy,29,...,7p,...]/ (2}, 22, ..., Tp, ...), and so Rzy is a
completely cyclic R-module. Also one can easily check that Rz; is a completely
cyclic R-module for each ¢ > 2 and so M is a direct sum of completely cyclic
R-modules. It is easy to check that Spec(R) = { M, @;°, Rx;}, and so every
prime ideal of R is an infinite direct sum of completely cyclic modules.

Also, the following example shows that there exists a local ring (R, M)
with dim(R) = 0 such that every maximal (prime) ideal is an infinite direct
sum of uniserial completely cyclic modules.
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Example 3.2. Let F' be a field and R be the F-algebra with genera-
tors {z; | i € N} subject to the relations z;z; = 0 for 4,5 € N (i.e., R =
FH{X; | i € N}]/(X;X, | 4,7 € N)). Then the ring R is a non-Noetherian
local ring with the maximal ideal M = @,y Rz;. Since Rx; = R/Ann(xz;) =
Flz1,29,...,2p,...]/{x1,22, ..., Ty, ...), so for each i, Rx; is a completely cyclic
R-module. Also it is easy to check that Spec(R) = {M} and so the only prime
ideal of R is an infinite direct sum of completely cyclic modules.

The natural question arises “whether it is possible to deduce every ideal is
a direct sum of completely cyclic modules, if one only assumes that every prime
ideal is a direct sum of completely cyclic modules?” The following example
shows that this question is not true in general.

Example 3.3.Let R = Zo[{X; | 1 < i < n}]/{(X;X; |1 < i # j <
n), then R is a commutative non-domain Artinian ring with dim(R) = 0,
M = Rx; @ ... ® Rz, (where z; = X; + {X;X; |1 < i # 5 < n})) and
Spec(R) = {M}. But there exists an ideal I of R that is not a direct sum of

completely cyclic R-modules (see Theorem 3.9, [3]).

We know that if an R-module is a direct sum of completely cyclic R-
modules then it is a direct sum of cyclic R-modules. The following example
shows that the converse is not true in general.

Ezample 3.4. Let R be the subring of all sequences from the ring ], Zo
that are eventually constant. Then R is a zero-dimensional Boolean ring
with minimal prime ideals P; = {{an,} € R | a; = 0} and P = {{a,} €
R | an = 0 for large n} (See [1]). Clearly, each P; is cyclic (in fact P; = Ry,
where v; = (1,1,---,1,0,1,1,---)) and Py = @,cy%Z2 = P,y Rwi where
w; = (0,0,---,0,1,0,0,---). Thus every prime ideal of R is a direct sum of
cyclic modules. But the factor ring R/Ann(v;) = R/Ann(0,1,1,1,---) is not
a principal ideal ring (since prime ideal P, /Ann(v;) is not a principal ideal of
R/Ann(vy)). Also, one can easily to see that if P} = @, Rz\ where A is an
index set and z) € Py, then |A| =1 and P, = Rz) = Ruv;.
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