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Let X, be a p-complete modular space. A mapping f : X, — X, is called an
e-isometry if |p (f(z) — f(y)) — p(x —y)| < e for all z,y € X,. By making use
of a direct method, it is shown that there exists an isometry I : X, — X, and
constants A, B such that if f: X, — X, is an e-isometry, then p(f(z) —I(x)) <
Ap(z) + Be, where I(z) is p-limit sequence {27" f(2"z)} for any = € X,; thus
answering a question of Hyers and Ulam about the stability of isometries on
p—complete modular spaces.
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1. INTRODUCTION

An isometry is a distance-preserving map between metric spaces. For
normed spaces F and F, a function f: E — F is called a e-isometry if

H1f () = F@l = llz =yl <e

for all z,y € F and some € > 0. The basic question is how close is f to an
actual isometry. In [12] by making use of a direct method, D.H. Hyers and
S.M. Ulam proved that the surjective isometries of a complete Euclidean space
are stable:

Let E be a complete abstract Euclidean space. Assume that f :
E — F is a surjective e-isometry and f(0) = 0. Then there exists
a surjective isometry I : E — FE such that for all z € E

(1.1) 1f () = I(2)]| < 10e.

D.G. Bourgin [5], R.D. Bourgin [7] and P.M. Gruber [11] continued the
study of stability problems for isometries. In 1983, after many partial results
extending over almost four decades, Gevirtz [10] extended this theorem to
arbitrary Banach spaces F and F' with the better estimate 5¢ in (1.1). Finally,
Omladic¢ and Semrl [26] showed that 2¢ is a sharp constant in (1.1) for general
Banach spaces.
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J.W. Fickett [9] by making use of a different method from the direct
method of Hyers and Ulam proved the Hyers-Ulam-Rassias stability of isome-
tries on a restricted domain. In [18], S.-M. Jung by applying the fixed point
method, presented a short and simple proof for the Hyers-Ulam-Rassias sta-
bility of isometries of which domain is a normed space and range is a Banach
space in which the parallelogram law holds true.

On the other hand, G. Dolinar [8] proved the superstability property for
isometries. In fact, he proved that for p > 1 every surjective (g, p)-isometry
f : E — F between finite-dimensional real Banach spaces is an isometry, where
a mapping f : E — F is called an (g, p)-isometry if f satisfies the inequality

@) = fWIl =Nz —ylll < e llz =yl

for some € > 0 and for all z,y € E.

For more general information on the stability property for isometries and
related topics, refer to [1,3,4,6], [13-17], [14,21], [28-34] and [36].

In this paper, we obtain an approximation result for near isometries on
modular spaces. The theory of modulars on linear spaces and the correspond-
ing theory of modular linear spaces were founded by Nakano [25] and were
intensively developed by Amemiya, Koshi, Shimogaki, Yamamuro [19,37] and
others. Further and the most complete development of these theories are due
to Orlicz, Mazur, Musielak, Luxemburg, Turpin [22,24, 35] and their collab-
orators. In the present time, the theory of modulars and modular spaces is
extensively applied, in particular, in the study of various Orlicz spaces [27] and
interpolation theory [20, 23], which in turn have broad applications [24]. The
importance for applications consists in the richness of the structure of modular
function spaces, that—besides being Banach spaces (or F-spaces in more gen-
eral setting)— are equipped with modular equivalent of norm or metric notions.

Definition 1.1. Let X be an arbitrary vector space.
(a) A functional p : X — [0, 00] is called a modular if for arbitrary x,y € X,
(i) p(z) = 0 if and only if z =0,
(ii) p(ax) = p(x) for every scaler o with |a| =1,
(iii) p(ax + By) < p(z) + p(y) if and only if « + =1 and «, 5 > 0,
(b) if (iii) is replaced by
(iii)" p(az + By) < ap(x) + Bp(y) if and only if « + =1 and «, 5 > 0,
then we say that p is a convex modular.

A modular p defines a corresponding modular space, i.e., the vector space
X, given by

X,={zeX: pAzr)—=>0as—0}.
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Let p be a convex modular, the modular space X, can be equipped with a
norm called the Luxemburg norm, defined by

Hx||p:inf{)\>0 ; p(%) Sl}.
A function modular is said to satisfy the As—condition if there exists
x > 0 such that p(2z) < kp(z) for all z € X,.

Definition 1.2. Let {x,} and x be in X,. Then
(i) the sequence {x,}, with =, € X, is p-—convergent to x and write x,, Lz
if p(x, — ) - 0 as n — oo.
(ii) The sequence {z,}, with x,, € X, is called p—Cauchy if p(z, — ) — 0
as n,m — oo.
(iii) A subset S of X, is called p-complete if and only if any p—Cauchy sequence
is p—convergent to an element of S.

The modular p has the Fatou property if and only if p(x)<lim inf,, oo p(2,)
whenever the sequence {x,} is p—convergent to z.

Remark 1.1. Note that p is an increasing function. Suppose 0 < a < b,
then property (iii) of Definition 1.1 with y = 0 shows that p(az) = p ($bx) <
p(bx) for all z € X. Moreover, if p is a convex modular on X and |«| < 1, then
plaz) < ap(z) and also p(z) < 1p(2z) for all z € X.

A convex function ¢ defined on the interval [0,00), nondecreasing and
continuous for a > 0 and such that ¢(0) = 0, p(a) > 0 for a > 0, p(a) = 0
as o — 00, is called an Orlicz function. The Orlicz function ¢ satisfies the
Ag—condition if there exists k > 0 such that ¢(2a) < p(«) for all @ > 0. Let
(2,3, 1) be a measure space. Let us consider the space L°(u) consisting of all
measurable real-valued (or complex—valued) functions on 2. Define for every
f € L°(p) the Orlicz modular p,(f) by the formula

polf) = /Q (/)

The associated modular function space with respect to this modular is called
an Orlicz space, and will be denoted by L¥(2, 1) or briefly L¥. In other words,

LP={fe L) | pp(Af)—0as A— 0}
or equivalently as
L2 ={fe L) | pe(Af) < oo for some A > 0}.

It is known that the Orlicz space L¥ is p,—complete. Moreover, (L%, ||.||,,) is
a Banach space, where the Luxemburg norm ||.||,, is defined as follows

||f||p¢:inf{)\>0 : /Q <|f|> M<1}
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Moreover, if £ is the space of sequences x = {x;}°; with real or complex
terms z;, ¢ = {@;}2y, @i are Orlicz functions and o, (z) = X752, ¢;(|z;]), w
shall write ¢ in place of L¥. The space ¢¥ is called the generalized Orlicz
sequence space. The motivation for the study of modular spaces (and Orlicz
spaces) and many examples are detailed in [23-25,27].

2. MAIN RESULTS

Throughout this paper, we assume that p is a convex modular on X with
the Fatou property such that satisfies the As—condition with 0 < k < 2. By
making use of a direct method, we establish the stability of p—isometries in
modular spaces.

THEOREM 2.1. Let X, be a p—complete modular space. Suppose f : X, —
X, satisfies the condition f(0) =0 and an inequality of the form

(2.1) lp(f(z) = fy) —plz—y)|<e
for all x,y € X, and for some ¢ > 0. Then the p-limit
I(z) = lim f(2"z)

n—00 on

exists for any x € X, and

(2.2) p(I(x) = I(y)) =
for all x,y € X,. Moreover, I(2x) = 2I(x) a

(2.3) p(f(x) = I(x)) < 5 BH p(z) + Fe
for all x € X,,.

( y)

Proof. Putting y = 0 and replacing x by 2z in (2.1), we get

(2.4) p(F(22)) < p(23) + ¢
for all x € X. Putting y = 2z in (2.1), we get
(2.5) p(f(x) = f(22)) < p(z) + ¢

for all z € X. Since p is convex modular which satisfies the As—condition, by
(2.4) and (2.5) we have

p(r0)-150) < Goctre) - seom+ 5o (2{ 152 })

p(f (@) = F(20)) + Tp(f(2))

(pl) +2) + 2 (p(22) +2).

AN
x| =

(2.6)

IN

2
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By replacing x by x/2 in last inequality, we have

p(1-52) < S0 (5) +a+ s +o
(2.7) < Epla)+ et Do) + Fe = S pla) + e,

for all x € X. By replacing = by x/2 in (2.5), we have
x,  f(x/2) K (X 3K K 3K
AR < () + < e
p<f(4) 2 —2p<2>+45—4‘)(56”4E

Therefore, by (2.7) and last inequality, we have

p(fq)ﬂf)) < ffp(f(x f(x/2)>+ﬁp<f(w/2)f(x)>

2 1) 2 2"\ 2 4
< K—Qp(x) + (3H>28.
- 22 4
By mathematical induction, we can easily see that
n n
(25) p(12- 1) < S+ (%) -
forallz € X and n € N.

We will now present that {27" f(2"z)} is a p-Cauchy sequence. If n and
p are any positive integers, then it follows from (2.8) that

) <f(2"96) B f(2”+pﬂf)> < zinp <f(2”;’w) B f(T;I’I))

AL on+p
L (RP tp 3r\P
w(zpf’@ D\T) ¢

- () e (3

— 0 as n — oo,

IN

for any x € X, which implies that {27" f(2"z)} is a p-Cauchy sequence. Since
X, is p-complete, we can define a function I : X, — X, by p-limit sequence
{27"f(2"x)}.

By (2.1) we have

(2.9) plx—y)—e<p(flz) - fly) <plr—y)+e
By replacing = and y by 2"z and 2"y in inequality (2.9), respectively, we have
(2.10) p(f(2"z) = f(2")) < p(2"(xz—y)) +e,

(2.11) p(f(2'2) = F2")) = p(2(x—y)) —=.
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Since p satisfies the Ag—condition, by (2.10) we obtain

p(I52 - 182) < Sotrera) - )

A

21’L
1 n €
< mr@@-y)+ o
R\ ™ e g
(2.12) < (5) pla—p)+om <pE—y+ o

(2.
2”p(w—y) < p(2”(m—y)) < p(f(2"z)— f(2"y)) + ¢
o [ f(2"2)  f(2"y) .
({22 ),

on on
B f(2”y)> e

N
3
S

Y
~
—~
(\]
S
&

Dividing by 2" the last expression we get

s = (5) (1D LZ0), <

2 2n on
p(f(2 z) @2 y)> 2

(2.13)

IN

on  on ) T ow

for all z,y € X,. Letting n — oo in (2.13) and (2.13) yield I ia an p-isometry,
that is I satisfies (2.2).
Now we show that I(2x) = 2I(x). Putting y = 0 in (2.1), we get

p(f(z)) < p(z) + ¢,
for all x € X,. By (2.6) and the last expression, we get

p (20 - 157) < §p<2{f< M+ ;p<2{f<x>—f(§‘”>})
< S0 129
(5D o02)

By replacing « by 2"x in last inequality and dividing by 2", we have

on 2" % 2 1 K2 1 3
p (2 X f(znx) _ N 2: a:)) o <1+ 5 + 1 ) p(2"z) + o (1—1— f)a

B (50 ) n (10 %)

for all x € X,. Taking the limit, we deduce that I(2z) = 2/(x).

IN

IN
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By replacing x by 2z in (2.6) and dividing by 2, we have

(2 (Y

The last expression together with (2.6) yield

(50~ 1U) < 2y () - 1) 1, (1220 S
s

4 g 2
K K K K KQ K
{( 8)0 Sep (5o e
0

IN

z) +
< (2 %—I— )p(m)+?ge

By mathematical induction, we can easily see that

p<f(fv) f(;zx)) < <H+K2+---+2’an+ “Ml) P(ﬂc)ers

2 2 on+1 on+1
n i+1 n
K K 3k(2™ —1)
< (2 T Z 2i ) p(x) + on+l  ©
i=1
2
K“+ 2k 3K
< i
S Joa Wt ge

for all x € X,. Taking the limit, we deduce that I satisfies (2.3). O

Before presenting a corollary in this concept, we first introduce some
useful concepts: we fix a real number 8 with 0 < 8 < 1 and let K denote either
R or C. Let X be a linear space over K. A real-valued function || . ||g is called
a B-norm on X if and only if it satisfies

(BN1) ||z||g = 0 if and only if x = 0;

(BN2) |Az| g = |A|P. ||z for all A € K and all z € X;

(BN3) [l +ylls < lalls + lylls for all 2,y € X.

The pair (X, || . ||3) is called a B-normed space (see [2]). A pB-Banach space
is a complete S-normed space. Notice that if 0 < f < 1 and & := 27, then
0 <k <2and [|2z]g < k|||

COROLLARY 2.1. Let X be a B-Banach space with 0 < 8 < 1. Suppose
f: X — X satisfies the condition f(0) =0 and an inequality of the form

HIF (@) = F@)lls = llz —yllg| <e

for all x,y € X and for some € > 0. Then

I(z) = lim f(2"z)

n—oo 2N
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exists for any x € X, such that I(2x) = 21(x) and |[I(z) — I(y)|ls = ||z — ylig

for

all xz,y € X. Moreover
48 4 9P+1 .
17(@) = T@lls < G lalls + 3251z
allx € X.
Proof. Set p(z) = ||z||s and x = 2° and apply Theorem 2.1. O
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