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Let Xρ be a ρ–complete modular space. A mapping f : Xρ → Xρ is called an
ε-isometry if |ρ (f(x)− f(y)) − ρ (x− y) | ≤ ε for all x, y ∈ Xρ. By making use
of a direct method, it is shown that there exists an isometry I : Xρ → Xρ and
constants A, B such that if f : Xρ → Xρ is an ε-isometry, then ρ(f(x)− I(x)) ≤
Aρ(x) + Bε, where I(x) is ρ-limit sequence {2−nf(2nx)} for any x ∈ Xρ; thus
answering a question of Hyers and Ulam about the stability of isometries on
ρ–complete modular spaces.

AMS 2010 Subject Classification: Primary 46B20, Secondary 39B52.

Key words: Modular space, isometry, stability.

1. INTRODUCTION

An isometry is a distance-preserving map between metric spaces. For
normed spaces E and F , a function f : E → F is called a ε-isometry if

| ‖f(x)− f(y)‖ − ‖x− y‖ | ≤ ε

for all x, y ∈ E and some ε ≥ 0. The basic question is how close is f to an
actual isometry. In [12] by making use of a direct method, D.H. Hyers and
S.M. Ulam proved that the surjective isometries of a complete Euclidean space
are stable:

Let E be a complete abstract Euclidean space. Assume that f :
E → F is a surjective ε-isometry and f(0) = 0. Then there exists
a surjective isometry I : E → E such that for all x ∈ E

(1.1) ‖f(x)− I(x)‖ ≤ 10ε.

D.G. Bourgin [5], R.D. Bourgin [7] and P.M. Gruber [11] continued the
study of stability problems for isometries. In 1983, after many partial results
extending over almost four decades, Gevirtz [10] extended this theorem to
arbitrary Banach spaces E and F with the better estimate 5ε in (1.1). Finally,
Omladič and Šemrl [26] showed that 2ε is a sharp constant in (1.1) for general
Banach spaces.
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J.W. Fickett [9] by making use of a different method from the direct
method of Hyers and Ulam proved the Hyers-Ulam-Rassias stability of isome-
tries on a restricted domain. In [18], S.-M. Jung by applying the fixed point
method, presented a short and simple proof for the Hyers-Ulam-Rassias sta-
bility of isometries of which domain is a normed space and range is a Banach
space in which the parallelogram law holds true.

On the other hand, G. Dolinar [8] proved the superstability property for
isometries. In fact, he proved that for p > 1 every surjective (ε, p)-isometry
f : E → F between finite-dimensional real Banach spaces is an isometry, where
a mapping f : E → F is called an (ε, p)-isometry if f satisfies the inequality

| ‖f(x)− f(y)‖ − ‖x− y‖ | ≤ ε ‖x− y‖p

for some ε > 0 and for all x, y ∈ E.

For more general information on the stability property for isometries and
related topics, refer to [1, 3, 4, 6], [13–17], [14, 21], [28–34] and [36].

In this paper, we obtain an approximation result for near isometries on
modular spaces. The theory of modulars on linear spaces and the correspond-
ing theory of modular linear spaces were founded by Nakano [25] and were
intensively developed by Amemiya, Koshi, Shimogaki, Yamamuro [19, 37] and
others. Further and the most complete development of these theories are due
to Orlicz, Mazur, Musielak, Luxemburg, Turpin [22, 24, 35] and their collab-
orators. In the present time, the theory of modulars and modular spaces is
extensively applied, in particular, in the study of various Orlicz spaces [27] and
interpolation theory [20, 23], which in turn have broad applications [24]. The
importance for applications consists in the richness of the structure of modular
function spaces, that–besides being Banach spaces (or F–spaces in more gen-
eral setting)– are equipped with modular equivalent of norm or metric notions.

Definition 1.1. Let X be an arbitrary vector space.
(a) A functional ρ : X → [0,∞] is called a modular if for arbitrary x, y ∈ X,
(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α+ β = 1 and α, β ≥ 0,
(b) if (iii) is replaced by
(iii)′ ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α+ β = 1 and α, β ≥ 0,
then we say that ρ is a convex modular.

A modular ρ defines a corresponding modular space, i.e., the vector space
Xρ given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0} .
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Let ρ be a convex modular, the modular space Xρ can be equipped with a
norm called the Luxemburg norm, defined by

‖x‖ρ = inf
{
λ > 0 ; ρ

(x
λ

)
≤ 1
}
.

A function modular is said to satisfy the ∆2–condition if there exists
κ > 0 such that ρ(2x) ≤ κρ(x) for all x ∈ Xρ.

Definition 1.2. Let {xn} and x be in Xρ. Then

(i) the sequence {xn}, with xn ∈ Xρ, is ρ–convergent to x and write xn
ρ−→ x

if ρ(xn − x)→ 0 as n→∞.
(ii) The sequence {xn}, with xn ∈ Xρ, is called ρ–Cauchy if ρ(xn − xm) → 0
as n,m→∞.
(iii) A subset S of Xρ is called ρ–complete if and only if any ρ–Cauchy sequence
is ρ–convergent to an element of S.

The modular ρ has the Fatou property if and only if ρ(x)≤lim infn→∞ρ(xn)
whenever the sequence {xn} is ρ–convergent to x.

Remark 1.1. Note that ρ is an increasing function. Suppose 0 < a < b,
then property (iii) of Definition 1.1 with y = 0 shows that ρ(ax) = ρ

(
a
b bx
)
≤

ρ(bx) for all x ∈ X. Moreover, if ρ is a convex modular on X and |α| ≤ 1, then
ρ(αx) ≤ αρ(x) and also ρ(x) ≤ 1

2ρ(2x) for all x ∈ X.

A convex function ϕ defined on the interval [0,∞), nondecreasing and
continuous for α ≥ 0 and such that ϕ(0) = 0, ϕ(α) > 0 for α > 0, ϕ(α) → ∞
as α → ∞, is called an Orlicz function. The Orlicz function ϕ satisfies the
∆2–condition if there exists κ > 0 such that ϕ(2α) ≤ ϕ(α) for all α > 0. Let
(Ω,Σ, µ) be a measure space. Let us consider the space L0(µ) consisting of all
measurable real–valued (or complex–valued) functions on Ω. Define for every
f ∈ L0(µ) the Orlicz modular ρϕ(f) by the formula

ρϕ(f) =

∫
Ω
ϕ(|f |)dµ.

The associated modular function space with respect to this modular is called
an Orlicz space, and will be denoted by Lϕ(Ω, µ) or briefly Lϕ. In other words,

Lϕ = {f ∈ L0(µ) | ρϕ(λf)→ 0 as λ→ 0}
or equivalently as

Lϕ = {f ∈ L0(µ) | ρϕ(λf) <∞ for some λ > 0}.
It is known that the Orlicz space Lϕ is ρϕ–complete. Moreover, (Lϕ, ‖.‖ρϕ) is
a Banach space, where the Luxemburg norm ‖.‖ρϕ is defined as follows

‖f‖ρϕ = inf

{
λ > 0 :

∫
Ω
ϕ

(
|f |
λ

)
dµ ≤ 1

}
.
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Moreover, if L is the space of sequences x = {xi}∞i=1 with real or complex
terms xi, ϕ = {ϕi}∞i=1, ϕi are Orlicz functions and %ϕ(x) = Σ∞i=1ϕi(|xi|), we
shall write `ϕ in place of Lϕ. The space `ϕ is called the generalized Orlicz
sequence space. The motivation for the study of modular spaces (and Orlicz
spaces) and many examples are detailed in [23–25,27].

2. MAIN RESULTS

Throughout this paper, we assume that ρ is a convex modular on X with
the Fatou property such that satisfies the ∆2–condition with 0 < κ < 2. By
making use of a direct method, we establish the stability of ρ–isometries in
modular spaces.

Theorem 2.1. Let Xρ be a ρ–complete modular space. Suppose f : Xρ →
Xρ satisfies the condition f(0) = 0 and an inequality of the form

(2.1) |ρ (f(x)− f(y))− ρ (x− y) | ≤ ε

for all x, y ∈ Xρ and for some ε ≥ 0. Then the ρ-limit

I(x) = lim
n→∞

f(2nx)

2n

exists for any x ∈ Xρ and

(2.2) ρ(I(x)− I(y)) = ρ(x− y)

for all x, y ∈ Xρ. Moreover, I(2x) = 2I(x) and

(2.3) ρ(f(x)− I(x)) ≤ κ2+2κ
4−2κ ρ(x) + 3κ

2 ε

for all x ∈ Xρ.

Proof. Putting y = 0 and replacing x by 2x in (2.1), we get

(2.4) ρ(f(2x)) ≤ ρ(2x) + ε

for all x ∈ X. Putting y = 2x in (2.1), we get

(2.5) ρ(f(x)− f(2x)) ≤ ρ(x) + ε

for all x ∈ X. Since ρ is convex modular which satisfies the ∆2–condition, by
(2.4) and (2.5) we have

ρ

(
f(x)− f(2x)

2

)
≤ 1

2
ρ(2{f(x)− f(2x)}) +

1

2
ρ

(
2

{
f(2x)

2

})
≤ κ

2
ρ(f(x)− f(2x)) +

κ

4
ρ(f(2x))

≤ κ

2
(ρ(x) + ε) +

κ

4
(ρ(2x) + ε).(2.6)
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By replacing x by x/2 in last inequality, we have

ρ

(
f(
x

2
)− f(x)

2

)
≤ κ

2
(ρ
(x

2

)
+ ε) +

κ

4
(ρ(x) + ε)

≤ κ

4
ρ(x) +

κ

2
ε+

κ

4
ρ(x) +

κ

4
ε =

κ

2
ρ(x) +

3κ

4
ε,(2.7)

for all x ∈ X. By replacing x by x/2 in (2.5), we have

ρ

(
f(
x

4
)− f(x/2)

2

)
≤ κ

2
ρ
(x

2

)
+

3κ

4
ε ≤ κ

4
ρ (x) +

3κ

4
ε.

Therefore, by (2.7) and last inequality, we have

ρ

(
f(
x

4
)− f(x)

4

)
≤ κ

2
ρ

(
f(
x

4
)− f(x/2)

2

)
+
κ

2
ρ

(
f(x/2)

2
− f(x)

4

)
≤ κ2

22
ρ(x) +

(
3κ

4

)2

ε.

By mathematical induction, we can easily see that

(2.8) ρ

(
f(

x

2n
)− f(x)

2n

)
≤ κn

2n
ρ(x) +

(
3κ

4

)n
ε,

for all x ∈ X and n ∈ N.
We will now present that {2−nf(2nx)} is a ρ-Cauchy sequence. If n and

p are any positive integers, then it follows from (2.8) that

ρ

(
f(2nx)

2n
− f(2n+px)

2n+p

)
≤ 1

2n
ρ

(
f(

2n+px

2p
)− f(2n+px)

2p

)
≤ 1

2n

(
κp

2p
ρ(2n+px) +

(
3κ

4

)p
ε

)
=

(κ
2

)n(κ2

2

)p
ρ(x) +

1

2n

(
3κ

4

)p
ε

−→ 0 as n→∞,

for any x ∈ X, which implies that {2−nf(2nx)} is a ρ-Cauchy sequence. Since
Xρ is ρ-complete, we can define a function I : Xρ → Xρ by ρ-limit sequence
{2−nf(2nx)}.

By (2.1) we have

(2.9) ρ (x− y)− ε ≤ ρ (f(x)− f(y)) ≤ ρ (x− y) + ε.

By replacing x and y by 2nx and 2ny in inequality (2.9), respectively, we have

ρ (f(2nx)− f(2ny)) ≤ ρ (2n(x− y)) + ε,(2.10)

ρ (f(2nx)− f(2ny)) ≥ ρ (2n(x− y))− ε.(2.11)
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Since ρ satisfies the ∆2–condition, by (2.10) we obtain

ρ

(
f(2nx)

2n
− f(2ny)

2n

)
≤ 1

2n
ρ (f(2nx)− f(2ny))

≤ 1

2n
ρ (2n(x− y)) +

ε

2n

≤
(κ

2

)n
ρ (x− y) +

ε

2n
≤ ρ (x− y) +

ε

2n
,(2.12)

for all x, y ∈ Xρ. On other hand, by (2.11) we have

2nρ (x− y) ≤ ρ (2n(x− y)) ≤ ρ (f(2nx)− f(2ny)) + ε

≤ ρ

(
2n
{
f(2nx)

2n
− f(2ny)

2n

})
+ ε

≤ κnρ

(
f(2nx)

2n
− f(2ny)

2n

)
+ ε.

Dividing by 2n the last expression we get

ρ (x− y) ≤
(κ

2

)n
ρ

(
f(2nx)

2n
− f(2ny)

2n

)
+

ε

2n

≤ ρ

(
f(2nx)

2n
− f(2ny)

2n

)
+

ε

2n
,(2.13)

for all x, y ∈ Xρ. Letting n→∞ in (2.13) and (2.13) yield I ia an ρ-isometry,
that is I satisfies (2.2).

Now we show that I(2x) = 2I(x). Putting y = 0 in (2.1), we get

ρ(f(x)) ≤ ρ(x) + ε,

for all x ∈ Xρ. By (2.6) and the last expression, we get

ρ

(
2f(x)− f(2x)

2

)
≤ 1

2
ρ(2{f(x)}) +

1

2
ρ

(
2

{
f(x)− f(2x)

2

})
≤ κ

2
ρ(f(x)) +

κ

2
ρ

(
f(x)− f(2x)

2

)
≤

(
1 +

κ

2
+
κ2

4

)
ρ(x) +

(
1 +

3κ

4

)
ε.

By replacing x by 2nx in last inequality and dividing by 2n, we have

ρ

(
2× f(2nx)

2n
− f(2n × 2x)

2n

)
≤ 1

2n

(
1 +

κ

2
+
κ2

4

)
ρ(2nx) +

1

2n

(
1 +

3κ

4

)
ε

≤
(κ

2

)n(
1 +

κ

2
+
κ2

4

)
ρ(x)+

1

2n

(
1 +

3κ

4

)
ε,

for all x ∈ Xρ. Taking the limit, we deduce that I(2x) = 2I(x).
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By replacing x by 2x in (2.6) and dividing by 2, we have

ρ

(
f(2x)

2
− f(4x)

4

)
≤
(
κ2

4
+
κ3

8

)
ρ(x) +

3κ

8
ε.

The last expression together with (2.6), yield

ρ

(
f(x)− f(4x)

4

)
≤ κ

2
ρ

(
f(x)− f(2x)

2

)
+
κ

2
ρ

(
f(2x)

2
− f(4x)

4

)
≤

{(
κ2

4
+
κ3

8

)
ρ(x) +

3κ

8
ε

}
+

{(
κ

2
+
κ2

4

)
ρ(x) +

3κ

4
ε

}
≤

(
κ

2
+
κ2

2
+
κ3

8

)
ρ(x) +

9κ

16
ε

By mathematical induction, we can easily see that

ρ

(
f(x)− f(2nx)

2n

)
≤

(
κ

2
+
κ2

2
+ · · ·+ κn

2n−1
+
κn+1

2n+1

)
ρ(x) +

3κ(2n − 1)

2n+1
ε

≤

(
κ

2
+

n∑
i=1

κi+1

2i

)
ρ(x) +

3κ(2n − 1)

2n+1
ε

≤ κ2 + 2κ

4− 2κ
ρ(x) +

3κ

2
ε,

for all x ∈ Xρ. Taking the limit, we deduce that I satisfies (2.3). �

Before presenting a corollary in this concept, we first introduce some
useful concepts: we fix a real number β with 0 < β ≤ 1 and let K denote either
R or C. Let X be a linear space over K. A real-valued function ‖ . ‖β is called
a β-norm on X if and only if it satisfies

(βN1) ‖x‖β = 0 if and only if x = 0;

(βN2) ‖λx‖β = |λ|β. ‖x‖ for all λ ∈ K and all x ∈ X;

(βN3) ‖x+ y‖β ≤ ‖x‖β + ‖y‖β for all x, y ∈ X.
The pair (X, ‖ . ‖β) is called a β-normed space (see [2]). A β-Banach space
is a complete β-normed space. Notice that if 0 < β < 1 and κ := 2β, then
0 < κ < 2 and ‖2x‖β ≤ κ ‖x‖β.

Corollary 2.1. Let X be a β-Banach space with 0 < β < 1. Suppose
f : X → X satisfies the condition f(0) = 0 and an inequality of the form

| ‖f(x)− f(y)‖β − ‖x− y‖β | ≤ ε

for all x, y ∈ X and for some ε ≥ 0. Then

I(x) = lim
n→∞

f(2nx)

2n
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exists for any x ∈ X, such that I(2x) = 2I(x) and ‖I(x)− I(y)‖β = ‖x− y‖β
for all x, y ∈ X. Moreover

‖f(x)− I(x)‖β ≤
4β + 2β+1

4− 2β+1
‖x‖β + 3(2β−1)ε

for all x ∈ X.

Proof. Set ρ(x) = ‖x‖β and κ = 2β and apply Theorem 2.1. �
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