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Let Vect(R) be the Lie algebra of smooth vector fields on R and Fλ be the space
of λ-densities on R. Vect(R) acts on Fλ by Lie derivative. In this paper, we
compute the first and the second differential aff(1)−relative cohomology of the
Lie algebra Vect(R) with coefficients in the space Fλ. Explicit cocycles spanning
these cohomology spaces are given.
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1. INTRODUCTION

Let Vect(R) be the Lie algebra of all vector fields X d
dx on R, (X ∈

C∞(R)). For any λ ∈ R, we define a structure of Vect(R)-module over C∞(R)
by

(1.1) Lλ
X d

dx

(f) = Xf ′ + λX ′f,

where f ′, X ′ are df
dx , dX

dx .
The corresponding Vect(R)-module is the space of weighted densities on

R of weight λ with respect to the 1-form dx, denoted by:

Fλ =
{
f(dx)λ, f ∈ C∞(R)

}
, (λ ∈ R).

The space Fλ coincides with the space of vector fields, functions and differential
1-forms for λ = −1, 0 and 1, respectively. Obviously the adjoint Vect(R)-
module is isomorphic to F−1. The Lie algebra Vect(R) has a Lie subalgebra
aff(1) = Span

(
d

dx , x
d

dx

)
.

Our purpose in this paper is to compute the spaces H1
diff (Vect(R), aff(1) ;

Fλ), and H2
diff (Vect(R), aff(1);Fλ) , where H∗diff denotes the differential

aff(1)-relative cohomology, that is, only cochains given by differential oper-
ators are considered.

Let us mention that these results lead to the study of the aff(1)-trivial
deformation of the standard embedding of the Lie algebra Vect(R) into the Lie
algebra of pseudodiffential operators on R.
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2. RELATIVE COHOMOLOGY

Let us first recall some fundamental concepts from cohomology theory (see,
e.g., [4]). Let g be a Lie algebra acting on a vector space V and let h be a sub-
algebra of g. (If h is omitted it is assumed to be {0}.) The space of h-relative
n-cochains of g with values in V is the g-module

Cn(g, h;V ) := Homh(Λ
n(g/h);V ).

The coboundary operator δn : Cn(g, h;V ) −→ Cn+1(g, h;V ) is a g-map sat-
isfying δn ◦ δn−1 = 0. The kernel of δn, denoted Zn(g, h;V ), is the space of
h-relative n-cocycles, among them, the elements in the range of δn−1 are called
h-relative n-coboundaries. We denote Bn(g, h;V ) the space of n-coboundaries.

By definition, the nth h-relative cohomolgy space is the quotient space

Hn(g, h;V ) = Zn(g, h;V )/Bn(g, h;V ).

We will only need the formula of δn (which will be simply denoted δ) in degrees
0, 1 and 2: for v ∈ C0(g, h;V ) = V h, δv(g) := g · v, where

V h = {v ∈ V | h · v = 0 for all h ∈ h},
for Υ ∈ C1(g, h;V ),

δ(Υ)(g, h) := g ·Υ(h)− h ·Υ(g)−Υ([g, h]) for any g, h ∈ g.

and for Ω ∈ C2(g, V ),

(2.2)
δ(Ω)(x, y, z) := x.Ω(y, z)− y.Ω(x, z) + z.Ω(x, y)

−Ω([x, y], z) + Ω([x, z], y)− Ω([y, z], x),

where x, y, z ∈ g.

3. THE SPACE H1
diff(Vect(R), aff(1);Fλ)

In this section, we consider the Lie algebra Vect(R) acting on Fλ and we
compute the first aff(1)-relative cohomology space of Vect(R) with coefficients
in Fλ.

Our main result in this section is the following:

Theorem 3.1. The space H1
diff(Vect(R), aff(1), Fλ) has the following struc-

ture:

H1
diff(Vect(R), aff(1), Fλ) =

{
R, λ = 1, 2
0, otherwise.

The corresponding spaces H1
diff(Vect(R), aff(1), Fλ) are spanned by the rel-

ative cohomology classes of the 1-cocycles

(3.3) c1(f
d

dx
) = f ′′dx, c2(f

d

dx
) = f ′′′dx2.
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To prove Theorem 3.1 we need the following Lemma.

Lemma 3.2. Any 1-cocycle c ∈ Z1
diff(Vect(R);Fλ) vanishing on aff(1) is

aff(1)-invariant.

Proof. The 1-cocycle relation of c reads:

(3.4) f
d

dx
· c(g d

dx
)− g d

dx
· c(f d

dx
)− c([f d

dx
, g

d

dx
]) = 0,

where f d
dx , g

d
dx ∈Vect(R). Thus, if c(f d

dx) = 0 for all f d
dx ∈ aff(1), the equation

(3.4) becomes

(3.5) f
d

dx
· c(g d

dx
)− c([f d

dx
, g

d

dx
]) = 0

expressing the aff(1)-invariance of c. �

Proof of Theorem 3.1
Recall that the spaces H1

diff(Vect(R);Fλ) were computed by D.B. Fuchs
in [5], the description is the following:

H1
diff(Vect(R);Fλ) =

{
R, λ = 0, 1, 2
0, otherwise

represented by the cocycles

(3.6) c0(f
d

dx
) = f ′, c1(f

d

dx
) = f ′′dx, c2(f

d

dx
) = f ′′′dx2.

According to Lemma 3.2, we can easily deduce the space H1
diff(Vect(R),

aff(1);Fλ). �

4. THE SPACE H2
diff(Vect(R), aff(1);Fλ)

The following steps to compute the relative cohomology have been used
intensively in [1–3, 6]. First, we classify aff(1)-invariant differential operators,
then we isolate among them those that are 2-cocycles. To do that, we need the
following Lemma.

Lemma 4.1. Any 2-cocycle C ∈ Z2
diff(Vect(R);Fλ) vanishing on aff(1) is

aff(1)-invariant.

Proof. The 2-cocycle condition reads as follows:

C([X,Y ], Z)− LλX C(Y,Z)+ 	 (X,Y, Z) = 0

for every X,Y, Z ∈ Vect(R) where 	 (X,Y, Z) denotes the summands obtained
from the two written ones by the cyclic permutation of the symbols X,Y, Z.
Now, if X ∈ aff(1), then the equation above becomes

C([X,Y ], Z)− C([X,Z], Y ) = LλX C(Y,Z).

This condition is nothing but the invariance property. �
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4.1. aff(1)-INVARIANT DIFFERENTIAL OPERATORS

As our 2-cocycles vanish on aff(1), we will investigate aff(1)-invariant
bilinear differential operators that vanish on aff(1).

Proposition 4.2. Any skew-symmetric bilinear differential operators Cλ :
Vect(R) ∧ Vect(R) → Fλ, which is aff(1)-invariant and vanish on aff(1), is as
follows:

Cn(X,Y ) =

[n−1
2

]∑
i=2

ci,n−i

∣∣∣∣ f i gi

fn−i gn−i

∣∣∣∣ dxn−2

for X = f d
dx , Y = g d

dx , ci,n−i ∈ R, and n ≥ 5. [k] denotes the integer part
of k.

Proof. The generic form of any such a differential operator is (here X =
f d

dx , Y = g d
dx ∈ Vect(R)):

Cλ(X,Y ) =
∑
i+j≤k

ci,j f
(i) g(j)dxλ,

where ci,j = −cj,i and f (i) stands for dif
dxi
.

The invariance property with respect to the vector field X = d
dx with arbi-

trary Y implies that c′i,j = 0. Therefore ci,j are constants. Now, the invariance

property with respect to X = x d
dx with arbitrary Y implies that i+ j = λ+ 2,

so in particular λ is integer. �

4.2. aff(1)-RELATIVE COHOMOLOGY OF Vect(R)

The main result of this section is the following

Theorem 4.3. We have

H2
diff(Vect(R), aff(1);Fλ) =

{
R if λ = 5, 7

0 otherwise.

The corresponding spaces H2
diff(Vect(R), aff(1);Fλ) are spanned by the cohomol-

ogy classes of the following non-trivial 2-cocycles:

Ω7 (Xf , Xg) =

∣∣∣∣ f ′′′ g′′′

f (IV ) g(IV )

∣∣∣∣ dx5(4.7)

Ω9 (Xf , Xg) =

(
2

∣∣∣∣ f ′′′ g′′′

f (V I) g(V I)

∣∣∣∣− 9

∣∣∣∣ f (IV ) g(IV )

f (V ) g(V )

∣∣∣∣) dx7(4.8)

for Xf = f d
dx , Xg = g d

dx .
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Proof. Let Ωλ be a 2-cocycle on Vect(R) vanishing on aff(1), with values
in Fλ. By Lemma 4.1, up to a scalar factor, Ωλ is a skew-symmetric bilinear
differential operators aff(1)-invariant Cλ : Vect(R) ∧ Vect(R)→ Fλ. Thus, by
Proposition 4.2, we get the explicit formulae for Ωλ:

Cn(X,Y ) =

[n−1
2

]∑
i=2

ci,n−i

∣∣∣∣ f i gi

fn−i gn−i

∣∣∣∣ dxn−2

for X = f d
dx , Y = g d

dx , ci,n−i ∈ R, and n ≥ 5.
So any corresponding coboundary is up to a scalar factor as follows

δ(Bn)(X,Y ) =

[n−1
2

]∑
k=1

[(n+1

k+1

)
−
(n+1

k

)] ∣∣∣∣ fk+1 gk+1

fn−k+1 gn−k+1

∣∣∣∣ dxn−2

for X = f d
dx , Y = g d

dx , ci,n−i ∈ R, n ≥ 5, and where
(x
i

)
= x(x−1)···(x−i+1)

i! .

• For n = 5, the operator C5 satisfies the 2−cocycle condition. By the
coboundary expression we annul the term c2,5, and so, we get the 2−cocycle
Ω7.

• For n = 6, the operator C6 is not but a coboundary.

• For n = 7, the 2−cocycle condition applied to the operator C7 leades to
the condition 14c2,7−9c3,6−2c4,5 = 0. So, thanks to the coboundary expression
we annul the term c2,7 and we get the cocycle Ω9.

• For n ≥ 8, we annul the term c2,n as in the foregoing cases then we apply
the 2−cocycle condition, one get by collecting the terms in f (i)g(n−i−1)h′′, for i ∈
{3, · · · , [n−3

2 ]} the conditions

(4.9) (n− i)(n− i− 3)ci,n−i + (i+ 1)(i− 2)ci+1,n−i−1 = 0.

Then:

1. If n is even, we collect the term inf (n
2
−1)g(n

2
)h′′, one get the supplemen-

tary condition cn
2
−1,n

2
+1 = 0, and so Ωn = 0.

2. If n is odd, we collect the term in f (n−3
2

)g(n−1
2

)h′′′, one get the supple-
mentary condition

(4.10)((n−3
n−3

2

)
−
(n−3
n−5

2

))
c3,n−3+

((n+3
2

2

)
−
(n+3

2
3

))
cn−3

2
,n+3

2
+
((n+1

2
3

)
−
(n+1

2
2

))
cn−1

2
,n+1

2
= 0.

So, for n ≤ 15 we get Ωn = 0, and for n ≥ 17, the determinant of the linear
system (4.9–4.10) is
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∆n = (−1)(n−3
2

)

n−7
2∏
i=4

(n− i)(3− n+ i)

2[ (n−3
n−3

2

)
−
(n−3
n−5

2

)
− (n+3)(n+1)(n−3)(n−6)(n−7)

32

+ (n+5)(n+1)(n−1)2(n−3)(n−6)(n−9)
384

]
which is not zero, and so Ωn = 0. �
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