ON $\mathfrak{aff}(1)$ -RELATIVE COHOMOLOGY OF THE LIE ALGEBRA OF VECTOR FIELDS ON WEIGHTED DENSITIES ON \mathbb{R}

SALEM OMRI

Communicated by Vasile Brînzănescu

Let $\operatorname{Vect}(\mathbb{R})$ be the Lie algebra of smooth vector fields on \mathbb{R} and \mathbb{F}_{λ} be the space of λ -densities on \mathbb{R} . $\operatorname{Vect}(\mathbb{R})$ acts on \mathbb{F}_{λ} by Lie derivative. In this paper, we compute the first and the second differential $\mathfrak{aff}(1)$ -relative cohomology of the Lie algebra $\operatorname{Vect}(\mathbb{R})$ with coefficients in the space \mathbb{F}_{λ} . Explicit cocycles spanning these cohomology spaces are given.

AMS 2010 Subject Classification: 14F40.

Key words: cohomology, Lie algebra, weighted densities.

1. INTRODUCTION

Let $\operatorname{Vect}(\mathbb{R})$ be the Lie algebra of all vector fields $X \frac{\mathrm{d}}{\mathrm{d}x}$ on \mathbb{R} , $(X \in C^{\infty}(\mathbb{R}))$. For any $\lambda \in \mathbb{R}$, we define a structure of $\operatorname{Vect}(\mathbb{R})$ -module over $C^{\infty}(\mathbb{R})$ by

(1.1)
$$\mathbb{L}^{\lambda}_{X\frac{\mathrm{d}}{\mathrm{d}x}}(f) = Xf' + \lambda X'f,$$

where f', X' are $\frac{df}{dx}$, $\frac{dX}{dx}$.

The corresponding $\text{Vect}(\mathbb{R})$ -module is the space of weighted densities on \mathbb{R} of weight λ with respect to the 1-form dx, denoted by:

$$\mathbb{F}_{\lambda} = \left\{ f(\mathrm{d}x)^{\lambda}, \ f \in C^{\infty}(\mathbb{R}) \right\}, \quad (\lambda \in \mathbb{R}).$$

The space \mathbb{F}_{λ} coincides with the space of vector fields, functions and differential 1-forms for $\lambda = -1$, 0 and 1, respectively. Obviously the adjoint $\operatorname{Vect}(\mathbb{R})$ -module is isomorphic to \mathbb{F}_{-1} . The Lie algebra $\operatorname{Vect}(\mathbb{R})$ has a Lie subalgebra $\operatorname{aff}(1) = \operatorname{Span}\left(\frac{\mathrm{d}}{\mathrm{d}x}, x \frac{\mathrm{d}}{\mathrm{d}x}\right)$.

Our purpose in this paper is to compute the spaces H^1_{diff} (Vect(\mathbb{R}), $\mathfrak{aff}(1)$; \mathbb{F}_{λ}), and H^2_{diff} (Vect(\mathbb{R}), $\mathfrak{aff}(1)$; \mathbb{F}_{λ}), where H^*_{diff} denotes the differential $\mathfrak{aff}(1)$ -relative cohomology, that is, only cochains given by differential operators are considered.

Let us mention that these results lead to the study of the $\mathfrak{aff}(1)$ -trivial deformation of the standard embedding of the Lie algebra $\operatorname{Vect}(\mathbb{R})$ into the Lie algebra of pseudodiffential operators on \mathbb{R} .

2

2. RELATIVE COHOMOLOGY

Let us first recall some fundamental concepts from cohomology theory (see, e.g., [4]). Let $\mathfrak g$ be a Lie algebra acting on a vector space V and let $\mathfrak h$ be a subalgebra of $\mathfrak g$. (If $\mathfrak h$ is omitted it is assumed to be $\{0\}$.) The space of $\mathfrak h$ -relative n-cochains of $\mathfrak g$ with values in V is the $\mathfrak g$ -module

$$C^n(\mathfrak{g},\mathfrak{h};V) := \operatorname{Hom}_{\mathfrak{h}}(\Lambda^n(\mathfrak{g}/\mathfrak{h});V).$$

The coboundary operator $\delta_n: C^n(\mathfrak{g}, \mathfrak{h}; V) \longrightarrow C^{n+1}(\mathfrak{g}, \mathfrak{h}; V)$ is a \mathfrak{g} -map satisfying $\delta_n \circ \delta_{n-1} = 0$. The kernel of δ_n , denoted $Z^n(\mathfrak{g}, \mathfrak{h}; V)$, is the space of \mathfrak{h} -relative n-cocycles, among them, the elements in the range of δ_{n-1} are called \mathfrak{h} -relative n-coboundaries. We denote $B^n(\mathfrak{g}, \mathfrak{h}; V)$ the space of n-coboundaries.

By definition, the n^{th} \mathfrak{h} -relative cohomology space is the quotient space

$$H^n(\mathfrak{g},\mathfrak{h};V) = Z^n(\mathfrak{g},\mathfrak{h};V)/B^n(\mathfrak{g},\mathfrak{h};V).$$

We will only need the formula of δ_n (which will be simply denoted δ) in degrees 0,1 and 2: for $v \in C^0(\mathfrak{g}, \mathfrak{h}; V) = V^{\mathfrak{h}}, \ \delta v(g) := g \cdot v$, where

$$V^{\mathfrak{h}} = \{ v \in V \mid h \cdot v = 0 \text{ for all } h \in \mathfrak{h} \},$$

for $\Upsilon \in C^1(\mathfrak{g}, \mathfrak{h}; V)$,

$$\delta(\Upsilon)(q, h) := q \cdot \Upsilon(h) - h \cdot \Upsilon(q) - \Upsilon([q, h])$$
 for any $q, h \in \mathfrak{g}$.

and for $\Omega \in C^2(\mathfrak{g}, V)$.

(2.2)
$$\delta(\Omega)(x,y,z) := x.\Omega(y,z) - y.\Omega(x,z) + z.\Omega(x,y) \\ -\Omega([x,y],z) + \Omega([x,z],y) - \Omega([y,z],x),$$

where $x, y, z \in \mathfrak{g}$.

3. THE SPACE $H^1_{diff}(Vect(\mathbb{R}), \mathfrak{aff}(1); \mathbb{F}_{\lambda})$

In this section, we consider the Lie algebra $\operatorname{Vect}(\mathbb{R})$ acting on \mathbb{F}_{λ} and we compute the first $\mathfrak{aff}(1)$ -relative cohomology space of $\operatorname{Vect}(\mathbb{R})$ with coefficients in \mathbb{F}_{λ} .

Our main result in this section is the following:

Theorem 3.1. The space $H^1_{diff}(\operatorname{Vect}(\mathbb{R}), \mathfrak{aff}(1), \mathbb{F}_{\lambda})$ has the following structure:

 $\mathrm{H}^1_{\mathrm{diff}}(\mathrm{Vect}(\mathbb{R}),\ \mathfrak{aff}(1),\ \mathbb{F}_{\lambda}) = \left\{ egin{array}{ll} \mathbb{R}, & \lambda = 1,2 \\ 0, & otherwise. \end{array} \right.$

The corresponding spaces $H^1_{diff}(\operatorname{Vect}(\mathbb{R}), \mathfrak{aff}(1), \mathbb{F}_{\lambda})$ are spanned by the relative cohomology classes of the 1-cocycles

(3.3)
$$c_1(f\frac{\mathrm{d}}{\mathrm{d}x}) = f''\mathrm{d}x, \quad c_2(f\frac{\mathrm{d}}{\mathrm{d}x}) = f'''\mathrm{d}x^2.$$

To prove Theorem 3.1 we need the following Lemma.

LEMMA 3.2. Any 1-cocycle $c \in Z^1_{\text{diff}}(\text{Vect}(\mathbb{R}); \mathbb{F}_{\lambda})$ vanishing on $\mathfrak{aff}(1)$ is $\mathfrak{aff}(1)$ -invariant.

Proof. The 1-cocycle relation of c reads:

(3.4)
$$f\frac{\mathrm{d}}{\mathrm{d}x} \cdot c(g\frac{\mathrm{d}}{\mathrm{d}x}) - g\frac{\mathrm{d}}{\mathrm{d}x} \cdot c(f\frac{\mathrm{d}}{\mathrm{d}x}) - c([f\frac{\mathrm{d}}{\mathrm{d}x}, g\frac{\mathrm{d}}{\mathrm{d}x}]) = 0,$$

where $f \frac{d}{dx}$, $g \frac{d}{dx} \in \text{Vect}(\mathbb{R})$. Thus, if $c(f \frac{d}{dx}) = 0$ for all $f \frac{d}{dx} \in \mathfrak{aff}(1)$, the equation (3.4) becomes

(3.5)
$$f\frac{\mathrm{d}}{\mathrm{d}x} \cdot c(g\frac{\mathrm{d}}{\mathrm{d}x}) - c([f\frac{\mathrm{d}}{\mathrm{d}x}, g\frac{\mathrm{d}}{\mathrm{d}x}]) = 0$$

expressing the $\mathfrak{aff}(1)$ -invariance of c.

Proof of Theorem 3.1

Recall that the spaces $H^1_{diff}(\operatorname{Vect}(\mathbb{R}); \mathbb{F}_{\lambda})$ were computed by D.B. Fuchs in [5], the description is the following:

$$H^1_{diff}(Vect(\mathbb{R}); \mathbb{F}_{\lambda}) = \begin{cases} \mathbb{R}, & \lambda = 0, 1, 2\\ 0, & otherwise \end{cases}$$

represented by the cocycles

(3.6)
$$c_0(f\frac{d}{dx}) = f', \quad c_1(f\frac{d}{dx}) = f''dx, \quad c_2(f\frac{d}{dx}) = f'''dx^2.$$

According to Lemma 3.2, we can easily deduce the space $H^1_{diff}(\operatorname{Vect}(\mathbb{R}), \mathfrak{aff}(1); \mathbb{F}_{\lambda})$. \square

4. THE SPACE
$$H^2_{diff}(Vect(\mathbb{R}), \mathfrak{aff}(1); \mathbb{F}_{\lambda})$$

The following steps to compute the relative cohomology have been used intensively in [1-3,6]. First, we classify $\mathfrak{aff}(1)$ -invariant differential operators, then we isolate among them those that are 2-cocycles. To do that, we need the following Lemma.

LEMMA 4.1. Any 2-cocycle $C \in Z^2_{\text{diff}}(\text{Vect}(\mathbb{R}); \mathbb{F}_{\lambda})$ vanishing on $\mathfrak{aff}(1)$ is $\mathfrak{aff}(1)$ -invariant.

Proof. The 2-cocycle condition reads as follows:

$$C([X,Y],Z) - L_X^{\lambda} C(Y,Z) + \circlearrowleft (X,Y,Z) = 0$$

for every $X, Y, Z \in \text{Vect}(\mathbb{R})$ where $\circlearrowleft (X, Y, Z)$ denotes the summands obtained from the two written ones by the cyclic permutation of the symbols X, Y, Z. Now, if $X \in \mathfrak{aff}(1)$, then the equation above becomes

$$C([X,Y],Z) - C([X,Z],Y) = L_X^{\lambda} C(Y,Z).$$

This condition is nothing but the invariance property. \Box

4.1. aff(1)-INVARIANT DIFFERENTIAL OPERATORS

As our 2-cocycles vanish on $\mathfrak{aff}(1)$, we will investigate $\mathfrak{aff}(1)$ -invariant bilinear differential operators that vanish on $\mathfrak{aff}(1)$.

PROPOSITION 4.2. Any skew-symmetric bilinear differential operators C_{λ} : $\operatorname{Vect}(\mathbb{R}) \wedge \operatorname{Vect}(\mathbb{R}) \to \mathbb{F}_{\lambda}$, which is $\mathfrak{aff}(1)$ -invariant and vanish on $\mathfrak{aff}(1)$, is as follows:

$$C_n(X,Y) = \sum_{i=2}^{\left[\frac{n-1}{2}\right]} c_{i,n-i} \left| \begin{array}{cc} f^i & g^i \\ f^{n-i} & g^{n-i} \end{array} \right| dx^{n-2}$$

for $X = f \frac{d}{dx}$, $Y = g \frac{d}{dx}$, $c_{i,n-i} \in \mathbb{R}$, and $n \geq 5$. [k] denotes the integer part of k.

Proof. The generic form of any such a differential operator is (here $X = f \frac{d}{dx}, Y = g \frac{d}{dx} \in \text{Vect}(\mathbb{R})$):

$$C_{\lambda}(X,Y) = \sum_{i+j \le k} c_{i,j} f^{(i)} g^{(j)} dx^{\lambda},$$

where $c_{i,j} = -c_{j,i}$ and $f^{(i)}$ stands for $\frac{d^i f}{dx^i}$.

The invariance property with respect to the vector field $X = \frac{\mathrm{d}}{\mathrm{d}x}$ with arbitrary Y implies that $c'_{i,j} = 0$. Therefore $c_{i,j}$ are constants. Now, the invariance property with respect to $X = x \frac{\mathrm{d}}{\mathrm{d}x}$ with arbitrary Y implies that $i + j = \lambda + 2$, so in particular λ is integer. \square

4.2. $\mathfrak{aff}(1)$ -RELATIVE COHOMOLOGY OF $Vect(\mathbb{R})$

The main result of this section is the following

Theorem 4.3. We have

$$\mathrm{H}^2_{\mathrm{diff}}(\mathrm{Vect}(\mathbb{R}),\mathfrak{aff}(1);\mathbb{F}_{\lambda}) = \left\{ egin{array}{ll} \mathbb{R} & \textit{if } \lambda = 5,7 \\ 0 & \textit{otherwise.} \end{array} \right.$$

The corresponding spaces $H^2_{diff}(\operatorname{Vect}(\mathbb{R}), \mathfrak{aff}(1); \mathbb{F}_{\lambda})$ are spanned by the cohomology classes of the following non-trivial 2-cocycles:

$$(4.7) \quad \Omega_{7}(X_{f}, X_{g}) = \begin{vmatrix} f''' & g''' \\ f^{(IV)} & g^{(IV)} \end{vmatrix} dx^{5}$$

$$(4.8) \quad \Omega_{9}(X_{f}, X_{g}) = \left(2 \begin{vmatrix} f''' & g''' \\ f^{(VI)} & g^{(VI)} \end{vmatrix} - 9 \begin{vmatrix} f^{(IV)} & g^{(IV)} \\ f^{(V)} & g^{(V)} \end{vmatrix} \right) dx^{7}$$

$$for X_{f} = f \frac{d}{dx}, X_{g} = g \frac{d}{dx}.$$

Proof. Let Ω_{λ} be a 2-cocycle on Vect(\mathbb{R}) vanishing on $\mathfrak{aff}(1)$, with values in \mathbb{F}_{λ} . By Lemma 4.1, up to a scalar factor, Ω_{λ} is a skew-symmetric bilinear differential operators $\mathfrak{aff}(1)$ -invariant $C_{\lambda} : \operatorname{Vect}(\mathbb{R}) \wedge \operatorname{Vect}(\mathbb{R}) \to \mathbb{F}_{\lambda}$. Thus, by Proposition 4.2, we get the explicit formulae for Ω_{λ} :

$$C_n(X,Y) = \sum_{i=2}^{\left[\frac{n-1}{2}\right]} c_{i,n-i} \begin{vmatrix} f^i & g^i \\ f^{n-i} & g^{n-i} \end{vmatrix} dx^{n-2}$$

for $X = f \frac{d}{dx}, Y = g \frac{d}{dx}, \ c_{i,n-i} \in \mathbb{R}$, and $n \geq 5$. So any corresponding coboundary is up to a scalar factor as follows

$$\delta(B_n)(X,Y) = \sum_{k=1}^{\left[\frac{n-1}{2}\right]} \left[\binom{n+1}{k+1} - \binom{n+1}{k} \right] \left| \begin{array}{cc} f^{k+1} & g^{k+1} \\ f^{n-k+1} & g^{n-k+1} \end{array} \right| dx^{n-2}$$

for $X = f \frac{\mathrm{d}}{\mathrm{d}x}, Y = g \frac{\mathrm{d}}{\mathrm{d}x}, \ c_{i,n-i} \in \mathbb{R}, n \ge 5$, and where $\binom{x}{i} = \frac{x(x-1)\cdots(x-i+1)}{i!}$.

- For n=5, the operator C_5 satisfies the 2-cocycle condition. By the coboundary expression we annul the term $c_{2,5}$, and so, we get the 2-cocycle Ω_7 .
 - For n=6, the operator C_6 is not but a coboundary.
- For n=7, the 2-cocycle condition applied to the operator C_7 leades to the condition $14c_{2,7}-9c_{3,6}-2c_{4,5}=0$. So, thanks to the coboundary expression we annul the term $c_{2,7}$ and we get the cocycle Ω_9 .
- For $n \geq 8$, we annul the term $c_{2,n}$ as in the foregoing cases then we apply the 2-cocycle condition, one get by collecting the terms in $f^{(i)}g^{(n-i-1)}h''$, for $i \in \{3, \dots, \lfloor \frac{n-3}{2} \rfloor\}$ the conditions

$$(4.9) (n-i)(n-i-3)c_{i,n-i} + (i+1)(i-2)c_{i+1,n-i-1} = 0.$$

Then:

- 1. If n is even, we collect the term $\inf_{n = 1}^{(\frac{n}{2} 1)} g^{(\frac{n}{2})} h''$, one get the supplementary condition $c_{\frac{n}{2} 1, \frac{n}{2} + 1} = 0$, and so $\Omega_n = 0$.
- 2. If n is odd, we collect the term in $f^{(\frac{n-3}{2})}g^{(\frac{n-1}{2})}h'''$, one get the supplementary condition

$$\left(\binom{n-3}{\frac{n-3}{2}} - \binom{n-3}{\frac{n-5}{2}} \right) c_{3,n-3} + \left(\binom{\frac{n+3}{2}}{2} - \binom{\frac{n+3}{2}}{3} \right) c_{\frac{n-3}{2},\frac{n+3}{2}} + \left(\binom{\frac{n+1}{2}}{3} - \binom{\frac{n+1}{2}}{2} \right) c_{\frac{n-1}{2},\frac{n+1}{2}} = 0.$$

So, for $n \leq 15$ we get $\Omega_n = 0$, and for $n \geq 17$, the determinant of the linear system (4.9–4.10) is

$$\Delta_n = (-1)^{\left(\frac{n-3}{2}\right)} \prod_{i=4}^{\frac{n-7}{2}} \frac{(n-i)(3-n+i)}{2}$$

$$\begin{bmatrix} \binom{n-3}{\frac{n-3}{2}} - \binom{n-3}{\frac{n-5}{2}} - \frac{(n+3)(n+1)(n-3)(n-6)(n-7)}{32} \\ + \frac{(n+5)(n+1)(n-1)^2(n-3)(n-6)(n-9)}{384} \end{bmatrix}$$

which is not zero, and so $\Omega_n = 0$.

REFERENCES

- [1] S. Bouarroudj, Cohomology of the vector fields Lie algebras on \mathbb{RP}^1 acting on bilinear differential operators. Int. J. Geom. Methods Mod. Phys. 2 (2005), 23–40.
- [2] S. Bouarroudj, Projective and conformal Schwarzian derivatives and cohomology of Lie algebras vector fields related to differential operators. Int. J. Geom. Methods Mod. Phys. 3 (2006), 667–696.
- [3] S. Bouarroudj and V. Ovsienko, Three cocycles on Diff(S^1) generalizing the Schwarzian derivative. Int. Math. Res. Not. IMRN 1 (1998), 25–39.
- [4] D.B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras. Springer, New York, 1986.
- [5] B.L. Feigin and D.B. Fuchs, Homology of the Lie algebras of vector fields on the line. Func. Anal. Appl. 14 (1980), 201–212.
- [6] P.B.A. Lecomte and V. Ovsienko, Cohomology of the vector fields Lie algebra and modules of differential operators on a smooth manifold. Compos. Math. 124 (2000), 95–110.

Received 31 March 2015

Faculté des Sciences de Gafsa, Département de Mathématiques, Zarroug 2112 Gafsa, Tunisie omri_salem@yahoo.fr