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Let Vect(R) be the Lie algebra of smooth vector fields on R and F» be the space
of A-densities on R. Vect(R) acts on Fy by Lie derivative. In this paper, we
compute the first and the second differential aff(1)—relative cohomology of the
Lie algebra Vect(R) with coefficients in the space Fy. Explicit cocycles spanning
these cohomology spaces are given.
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1. INTRODUCTION

Let Vect(R) be the Lie algebra of all vector fields X% on R, (X €
C*(R)). For any A € R, we define a structure of Vect(R)-module over C*°(R)
by

(1.1) Lg\(di(f) = Xf +2X'f,

where f/, X' are %, %.

The corresponding Vect(R)-module is the space of weighted densities on
R of weight A with respect to the 1-form dz, denoted by:

Fy = {f(dx)A, fe C“X’(R)} , (A eR).

The space F) coincides with the space of vector fields, functions and differential
1-forms for A = —1, 0 and 1, respectively. Obviously the adjoint Vect(R)-
module is isomorphic to F_;. The Lie algebra Vect(R) has a Lie subalgebra
aff(1) = Span (L, z ).

Our purpose in this paper is to compute the spaces H}.q (Vect(R), aff(1);
Fy), and HZg; (Vect(R),aff(1);Fy), where H%; denotes the differential
aff(1)-relative cohomology, that is, only cochains given by differential oper-
ators are considered.

Let us mention that these results lead to the study of the aff(1)-trivial
deformation of the standard embedding of the Lie algebra Vect(R) into the Lie
algebra of pseudodiffential operators on R.
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2. RELATIVE COHOMOLOGY

Let us first recall some fundamental concepts from cohomology theory (see,
e.g., [4]). Let g be a Lie algebra acting on a vector space V and let h be a sub-
algebra of g. (If b is omitted it is assumed to be {0}.) The space of h-relative
n-cochains of g with values in V' is the g-module

C"(g,b; V) := Homy(A"(g/h); V).

The coboundary operator &, : C™(g,b; V) — C"Tl(g,b;V) is a g-map sat-
isfying &, o 6,1 = 0. The kernel of d,, denoted Z"(g,h;V), is the space of
h-relative n-cocycles, among them, the elements in the range of §,,_1 are called
h-relative n-coboundaries. We denote B™(g,bh; V') the space of n-coboundaries.
By definition, the n'"* h-relative cohomolgy space is the quotient space

H"(g,b;V) = Z"(a,b;V)/B"(a,h; V).
We will only need the formula of §,, (which will be simply denoted d) in degrees
0,1 and 2: for v € C%g, h; V) = VY, dv(g) := g - v, where
Vi={veV | h-v=0 forall heh},
for Y € Cl(g,bh;V),
6(T)(g, h) :=g-T(h) —h-T(g) = T(lg, h]) forany g,heg.
and for Q € C?(g,V),
() (z,y,2) = z.Qy,2) —y.Qx,2) + 2.0(z,y)

(2.2)
—QU[z,y], 2) + U=, 2], y) — Uy, 2], z),

where z,y, 2z € g.

3. THE SPACE H}(Vect(R), aff(1); F»)

In this section, we consider the Lie algebra Vect(R) acting on F) and we
compute the first aff(1)-relative cohomology space of Vect(R) with coefficients
in Fy.

Our main result in this section is the following:

THEOREM 3.1. The space H}.q(Vect(R), aff(1), Fy) has the following struc-
ture:
R, A=1,2
0, otherwise.

The corresponding spaces H.o(Vect(R), aff(1), Fy) are spanned by the rel-
ative cohomology classes of the 1-cocycles

d d

(3.3) i ( fa) = f"dz, e f@) = f"da?.

Heig(Vect(R), aff(1), Fx) =



3 On aff(1)—relative cohomology of the Lie algebra of vector fields 511

To prove Theorem 3.1 we need the following Lemma.
LEMMA 3.2. Any 1-cocycle ¢ € Z}o(Vect(R);Fy) vanishing on aff(1) is
aff(1)-invariant.

Proof. The 1-cocycle relation of ¢ reads:

B4 felgn) g o) el g =0,
where f- g4 €Vect(R). Thus, if c(f <L) = 0 for all fL € aff(1), the equation
(3.4) becomes

d d d

(35 foelgn) —ellf o

expressing the aff(1)-invariance of c. [

Proof of Theorem 3.1
Recall that the spaces H}.:(Vect(R); Fy) were computed by D.B. Fuchs

in [5], the description is the following:
Hiig(Vect(R); F)) = { R, A=0,1,2

0, otherwise
represented by the cocycles

B6) o) =1 alfa)= e, e )= [

According to Lemma 3.2, we can easily deduce the space H}(Vect(R),
aff(1);F). O

4. THE SPACE H3g(Vect(R), aff(1);F»)

The following steps to compute the relative cohomology have been used
intensively in [1-3,6]. First, we classify aff(1)-invariant differential operators,
then we isolate among them those that are 2-cocycles. To do that, we need the
following Lemma.

LEMMA 4.1. Any 2-cocycle C € Z3,4(Vect(R); Fy) vanishing on aff(1) is
aff(1)-invariant.

Proof. The 2-cocycle condition reads as follows:

C(X,Y],Z) - LY C(Y,2)+ O (X,Y,Z) =0

for every X, Y, Z € Vect(R) where O (X,Y, Z) denotes the summands obtained
from the two written ones by the cyclic permutation of the symbols X,Y, 7.
Now, if X € aff(1), then the equation above becomes

C(X,Y],2)-C(X,Z2],Y)=Lx C(Y, 2).

This condition is nothing but the invariance property. [
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4.1. aff(1)-INVARIANT DIFFERENTIAL OPERATORS

As our 2-cocycles vanish on aff(1), we will investigate aff(1)-invariant
bilinear differential operators that vanish on aff(1).

PROPOSITION 4.2. Any skew-symmetric bilinear differential operators Cl :
Vect(R) A Vect(R) — Fy, which is aff(1)-invariant and vanish on aff(1), is as
follows:

ooy
fnfi gnfi

for X = f%,Y = g%, Cin—i € R, andn > 5. [k] denotes the integer part
of k.

dxn_2

Co(X,Y) = " cini

1=2

Proof. The generic form of any such a differential operator is (here X =
fLY =gd e Vect(R)):

O\X,)Y) = Z cij [ gWda?,
i+j<k
dif
dat
The invariance property with respect to the vector field X = % with arbi-
trary Y implies that c;j = 0. Therefore ¢; ; are constants. Now, the invariance

where ¢; j = —c;; and f(i) stands for

property with respect to X = l‘% with arbitrary Y implies that i +j7 = A+ 2,
so in particular A is integer. [

4.2. aff(1)-RELATIVE COHOMOLOGY OF Vect(R)

The main result of this section is the following

THEOREM 4.3. We have

) R ifA=5,7
Hig (Vect(R), aff(1); Fx) = .
0 otherwise.
The corresponding spaces H3.(Vect(R), aff(1); ) are spanned by the cohomol-
ogy classes of the following non-trivial 2-cocycles:

1" n
@ 20nX) = | [fw |
111 " V) (1v)
g Fav) g
(48) Qg(Xfan) = (2‘ f(VI) g(VI) -9 f(V) g(V) ’) dj;7

for Xy :f%, X, :g%.
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Proof. Let 2 be a 2-cocycle on Vect(R) vanishing on aff(1), with values
in Fy. By Lemma 4.1, up to a scalar factor, {2y is a skew-symmetric bilinear
differential operators aff(1)-invariant C) : Vect(R) A Vect(R) — Fy. Thus, by
Proposition 4.2, we get the explicit formulae for €2:

Cn<X, Y) = Z ci,n—i f,n_i gg_Z dx"*Q
=2

for X = f%,Y = g%, Cin—i €R, and n > 5.
So any corresponding coboundary is up to a scalar factor as follows
& nt1 nt1 fEEL gt
§(Bn)(X,Y) = [(k+1) - (k )} ‘ fnfk+1 gnfk+1
k=1

dl’n_z

for X = f%,Y = g%, Cin—i € R,n >5, and where (f) = w

e For n = 5, the operator Cf satisfies the 2—cocycle condition. By the
coboundary expression we annul the term co 5, and so, we get the 2—cocycle
Q7.

e For n = 6, the operator Cg is not but a coboundary.

e For n = 7, the 2—cocycle condition applied to the operator C7 leades to
the condition 14cp 7 —9¢3 6 —2c4,5 = 0. So, thanks to the coboundary expression
we annul the term cp 7 and we get the cocycle .

e For n > 8, we annul the term ¢ ,, as in the foregoing cases then we apply
the 2—cocycle condition, one get by collecting the terms in f()g==Dp” fori e
{3, -+, [252]} the conditions

(4.9) (n—1i)(n—1i—3)cin—i+ (@ +1)(i—2)¢it1n—i—1 =0.

Then:
1. If n is even, we collect the term inf (-1 g(%) 1", one get the supplemen-
tary condition Cn_jniy = 0, and so 2, = 0.
2. If n is odd, we collect the term in f(nTig’)g(nTil)h”’, one get the supple-
mentary condition
(4.10)
ntl

(C2)=C2))enn-st(GF)=(F) enge mpat ((F )= (7)) enps mr =0

2 0 2 2 7 2

So, for n < 15 we get €2, = 0, and for n > 17, the determinant of the linear
system (4.9-4.10) is
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A, = (1)) ﬁ (n—i)(32—n+i)
1=4

(n73) . (1173) . (n+3)(n+1)(n3—23)(n—6)(n—7)

n—3 n—>5

+ (n+5)(n+1)(n—1)2(n—3)(n—6)(n—9)
384

which is not zero, and so 2, =0. O
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