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A ring R is periodic provided that for any a ∈ R there exist distinct elements
m,n ∈ N such that am = an. We shall prove that periodicity is inherited by all
generalized matrix rings. A ring R is called strongly periodic if for any a ∈ R
there exists a potent p ∈ R such that a − p is in its Wedderburn radical and
ap = pa. A ring R is J-clean-like if for any a ∈ R there exists a potent p ∈ R such
that a− p is in its Jacobson radical. Furthermore, we completely determine the
connections between strongly periodic rings and periodic rings. The relations
among J-clean-like rings and these rings are also obtained.
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1. INTRODUCTION

A ring R is periodic provided that for any a ∈ R there exist distinct
elements m,n ∈ N such that am = an. Examples of periodic rings are finite
rings and Boolean rings. There are many interesting problems related to peri-
odic rings. We explore, in this article, the periodicity of a type of generalized
matrix rings. An element p ∈ R is potent if p = pm for some m ≥ 2. For later
convenience we state here some elementary characterizations of periodic rings:

Theorem 1.1. Let R be a ring. Then the following are equivalent:

(1) R is periodic.

(2) For any a ∈ R, there exists some m ≥ 2 such that am = am+1f(a) for
some f(t) ∈ Z[t].

(3) For any a ∈ R, there exists some m ≥ 2 such that a−am ∈ R is nilpotent.

(4) For any a ∈ R, there exists a potent p ∈ R such that a−p ∈ R is nilpotent
and ap = pa.

Here, the equivalences of all items are stated in [1, Lemma 2], [5, Propo-
sition 2], [19, Theorem 3], and the simple implication from (3) to (2). A
Morita context (A,B,M,N,ψ, ϕ) consists of two rings A and B, two bimodules
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ANB and BMA, and a pair of bimodule homomorphisms ψ : N
⊗
B

M → A

and ϕ : M
⊗
A

N → B which satisfy the following associativity: ψ
(
n
⊗
m
)
n′ =

nϕ
(
m
⊗
n′
)

and ϕ
(
m
⊗
n
)
m′ = mψ

(
n
⊗
m′
)

for any m,m′ ∈ M,n, n′ ∈ N .

These conditions ensure that the set T of generalized matrices

(
a n
m b

)
; a ∈

A, b ∈ B,m ∈M,n ∈ N will form a ring with addition defined componentwise
and with multiplication defined by(

a1 n1
m1 b1

)(
a2 n2
m2 b2

)
=

(
a1a2 + ψ(n1

⊗
m2) a1n2 + n1b2

m1a2 + b1m2 ϕ(m1
⊗
n2) + b1b2

)
,

called the ring of the Morita context (cf. [20]). The class of rings of the Morita
contexts is a type of generalized matrix rings. For instances, all 2 × 2 matrix
rings and all triangular matrix rings.

Let T be the ring of a Morita context (A,B, M,N, ψ, ϕ). We prove, in
Section 2, that if im(ψ) and im(ϕ) are nilpotent, then A and B are periodic
if and only if so is T . This provides a large new class of periodic rings for
generalized matrix rings.

It is an attractive problem to express an element in a ring as the sum
of idempotents and units (cf. [4], [6], [8] and [9]). We say that a ring R is
clean provided that every element in R is the sum of an idempotent and a
unit. Such rings have been extensively studied in recent years, see [7] and
[21]. This motivates us to combine periodic rings with clean rings together,
and investigate further properties of related rings.

For a ring R the Wedderburn radical is denoted by P (R), i.e., P (R) is
the sum of all nilpotent ideals of R. We now introduce a new type of rings. A
ring R is said to be strongly periodic provided that for any a ∈ R there exists
a potent p ∈ R such that a − p ∈ P (R) and ap = pa. Strongly periodic rings
form a subclass of periodic rings. We shall prove that a ring R is strongly
periodic if and only if for any a ∈ R there exists a potent p ∈ R such that
a − p ∈ P (R), and determine completely the connections between these ones
and periodic rings. A ring is 2-primary provided that its Wedderburn radical
coincides with the set of nilpotent elements of the ring. It is proved that a ring
R is strongly periodic if and only if R is a 2-primary periodic ring. From this,
we show that the strong periodicity will be inherited by generalized matrix
rings.

Replacing the Wedderburn radical P (R) by the Jacobson radical J(R),
we introduce a type of rings which behave like that of periodic rings. We say
that a ring R is J-clean-like provided that for any a ∈ R there exists a potent
p ∈ R such that a− p ∈ J(R). This is a natural generalization of J-clean rings
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[6]. Many properties of periodic rings are extended to these ones. We shall
characterize J-clean-like rings and obtain the relations among these rings.

Throughout, all rings are associative with an identity. Mn(R) will denote
the ring of all n× n matrices over R with an identity In. N(R) stands for the
set of all nilpotent elements in R. C(R) denote the center of R. P (R) and
J(R) denote the Wedderburn radical and Jacobson radical of R, respectively.

2. PERIODIC RINGS

The purpose of this section is to investigate the periodicity for Morita
contexts. The following lemma is known [17, Lemma 3.1.23], and we include a
simple proof for the sake of completeness.

Lemma 2.1. A ring R is periodic if and only if for any a, b ∈ R, there
exists an n ∈ N such that a− an, b− bn ∈ N(R).

Proof. ⇐= For any a ∈ R, we can find n ∈ N such that a − an ∈ N(R).
This implies that R is periodic, by Theorem 1.1.

=⇒ Suppose that R is periodic. For any a, b ∈ R, we can find p, q, s, t ∈ R
(p < q, s < t) such that ap = aq and bs = bt. Hence, aps = aqs and bps = bpt.
This implies that

aps = apsa(q−p)s = apsa2(q−p)s = · · · = apsa(t−s)p(q−p)s.

Likewise, we get bps = bpsb(q−p)s(t−s)p. Choose k = ps and l = ps+ (t− s)p(q−
p)s. Then ak = al, bk = bl (k < l). Thus, ak = al = a(l−k)+k = · · · = ak(l−k)+k,

and so ak =
(
ak
)l−k+1

. This implies that
(
ak(l−k)

)2
=
(
ak(l−k)+k

)(
ak(l−k)−k

)
=

ak
(
ak(l−k)−k

)
= ak(l−k). Choose n = k(l−k). Then

(
a−an+1

)n
= an

(
1−an

)n
=

an
(
1 − an

)
= 0. Thus, a − an ∈ N(R). Likewise, b − bn ∈ N(R). Therefore,

we complete the proof. �

Theorem 2.2. Let T be the ring of a Morita context (A,B, M,N, ψ, ϕ).
If im(ψ) and im(ϕ) are nilpotent, then A and B are periodic if and only if so
is T .

Proof. Suppose A and B are periodic. For any

(
a n
m b

)
∈ T , as in

the proof of Lemma 2.1, there exists a k ∈ N such that a − ak ∈ N(A) and
b− bk ∈ N(B). Hence,(

a n
m b

)
−
(

a n
m b

)k

=

(
a− ak + c ∗
∗ b− bk + d

)
,
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where c ∈ im(ψ) and d ∈ im(ϕ). Write (a − ak)l = 0 and (b − bk)l = 0. By
hypothesis, im(ψ) and im(ϕ) are nilpotent ideals of A and B, respectively. Say(
im(ψ)

)s
= 0 and

(
im(ϕ)

)t
= 0. Choose p = max(s, t) and q = p(l + 1). Then(

a− ak + c
)q

= 0 and
(
b− bk + d

)q
= 0.

Obviously, (
a− ak + c ∗
∗ b− bk + d

)q+1

∈
(

im(ψ) N
M im(ϕ)

)
.

Set NM := im(ψ) and MN := im(ϕ). We see that(
NM N
M MN

)2

⊆
(

NM (NM)N
(MN)M MN

)
.

For any l ∈ N, by induction, one easily checks that(
NM N
M MN

)2l

⊆
(

NM (NM)N
(MN)M MN

)l

⊆
(

(NM)l (NM)lN
(MN)lM (MN)l

)
.

Choose j = 2p(q + 1). As (NM)p = (MN)p = 0, we get(
a− ak + c ∗
∗ b− bk + d

)j

=

(
0 t
s 0

)
for some s ∈M, t ∈ N . Hence,(

0 t
s 0

)2

=

(
ψ(t

⊗
s) 0

0 ϕ(s
⊗
t)

)
,

and so (( a n
m b

)
−
(

a n
m b

)k )2jp
= 0.

Accordingly, T is periodic, by Theorem 1.1. The converse is obvious. �

Let R be a ring, and let s ∈ C(R). Let M(s)(R) = {
(
a b
c d

)
| a, b, c, d ∈

R}, where the operations are defined as follows:(
a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a+ a′ b+ b′

c+ c′ d+ d′

)
,(

a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + sbc′ ab′ + bd′

ca′ + dc′ scb′ + dd′

)
.

Then M(s)(R) is a ring with the identity

(
1R 0
0 1R

)
. Recently, the strong

cleanness of such type generalized matrix rings was studied in [21]. For the
periodicity of such rings, we derive
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Corollary 2.3. Let R be periodic, and let s ∈ N(R)
⋂
C(R). Then

M(s)(R) is periodic.

Proof. Let ψ : R⊗R→ R,n⊗m 7→ snm and ϕ : R⊗R→ R,m⊗n 7→ smn.
Then Ms(R) = (R,R,R,R, ψ, ϕ). As s ∈ N(R)

⋂
C(R), we see that im(ϕ) and

im(ψ) ⊆ J(R) are nilpotent, and we are through by Theorem 2.2. �

As a consequence, a ring R is periodic if and only if so is the trivial
Morita context M(0)(R). Choosing s = 0 ∈ R, we are through from Corollary
2.3. Given a ring R and an R-R-bimodule M , the trivial extension of R by
M is the ring T (R,M) = R ⊕M with the usual addition and the following
multiplication: (r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2).

Corollary 2.4. Let R be a ring, and let M be a R-R-bimodule. Then
the following are equivalent:

(1) R is periodic.

(2) T (R,M) is periodic.

Proof. (1)⇒ (2) Let R be a periodic ring and let S =

(
R M
0 R

)
. It is

obvious by Theorem 2.2 that S is periodic. Clearly, T (R,M) is a subring of
S, and so proving (2).

(2)⇒ (1) Let T (R,M) be a periodic ring. As R is isomorphic to a subring
of T (R,M), and so R is periodic. �

Example 2.5. Let R be periodic, let

A = B =

 R 0 0
0 R 0
0 0 R

 ,M =

 0 0 0
0 0 0
0 R 0

 and N =

 0 0 0
0 0 0
R R 0

 ,

and let ψ : N
⊗
B

M → A,ψ(n⊗m) = nm and φ : M
⊗
A

N → B,φ(m⊗n) = mn.

Then T = (A,B,M,N,ψ, φ) is a Morita context with zero pairings, i.e., T is a
trivial Morita context. Hence, im(ψ) and im(ϕ) are nilpotent. Clearly, A and
B are both periodic. In light of Theorem 2.2, T is periodic.

Let R be a ring, and let α be an endomorphism of R. Let Tn(R,α) be
the set of all upper triangular matrices over the rings R. For any (aij), (bij) ∈
Tn(R,α), we define (aij) + (bij) = (aij + bij), and (aij)(bij) = (cij) where

cij =
n∑

k=i

aikα
k−i(bkj). Then Tn(R,α) is a ring under the preceding addition

and multiplication (cf. [14]). Clearly, Tn(R,α) will be Tn(R) only when α is
the identity morphism.
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Lemma 2.6. Let R be periodic, and let α : R → R be an endomorphism.
Then

(1) R[[x, α]]/(xn) is periodic.

(2) Tn(R,α) is periodic for all n ∈ N.

Proof. (1) For any f(x) ∈ R[[x]]/(xn), there exists an m ∈ N such that
f(0) − fm(0) ∈ N(R). Hence, f(x) − fm(x) ∈ N

(
R[[x]]/(xn)

)
. According to

Theorem 1.1, R[[x]]/(xn) is periodic.

(2) For any (aij) ∈ Tn(R,α), as in the proof of Lemma 2.1, we can find
an m ∈ N such that aii − amii ∈ N(R) for each i. Thus, (aij) − (aij)

m ∈
N
(
Tn(R,α)

)
, as required. �

We are now ready to prove:

Theorem 2.7. Let R be periodic. Then M(xm)

(
R[[x]]/(xn)

)
is periodic

for all 1 ≤ m ≤ n.

Proof. Choose α = 1. Then R[[x]]/(xn) is periodic, by Lemma 2.6.
Choose s = xm(1 ≤ m ≤ n). Then s ∈ N

(
R[[x]]/(xn)

)⋂
C
(
R[[x]]/(xn)

)
.

Applying Corollary 2.3 to R[[x]]/(xn), M(xm)

(
R[[x]]/(xn)

)
is periodic, as as-

serted. �

Corollary 2.8. Let R be a finite ring. Then M(xm)

(
R[[x]]/(xn)

)
is pe-

riodic for all 1 ≤ m ≤ n.

Proof. Since every finite ring is periodic, we complete the proof by The-
orem 2.7. �

3. STRONGLY PERIODIC RINGS

A ring R is potent if for any a ∈ R, there exists some n ≥ 2 such that
a = an. An ideal I of a ring R is locally nilpotent if, every finitely generated
subring of elements belonging to I is nilpotent. Clearly, an ideal I of a ring R
is locally nilpotent if and only if RxR is nilpotent for any x ∈ I. Recall that
J(R) consists of all x ∈ R such that 1 +RxR is included in the set of units of
R. We now derive

Theorem 3.1. Let R be a ring. Then the following are equivalent:

(1) R is strongly periodic.

(2) R is periodic and N(R) is a locally nilpotent ideal of R.

(3) R/J(R) is potent, every potent lifts modulo J(R) and J(R) is locally
nilpotent.
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Proof. (1)⇒ (2) Clearly, R is periodic. Let x ∈ N(R). Then we can find
a potent p ∈ R such that w := x − p ∈ P (R). Write xn = 0 for some n ∈ N.
Then pn = (x−w)n ∈ P (R). This shows that p ∈ R is nilpotent, and so p = 0;
hence, x = w ∈ P (R). We infer that N(R) = P (R) is an ideal of R.

For any x ∈ P (R), we claim that RxR is nilpotent. As P (R) is the sum
of all nilpotent ideals of R, we can find nilpotent ideals I1, · · · , Im of R such
that x ∈ I1 + · · · Im. Clearly, I1 + · · · Im is a nilpotent ideal. It follows from
RxR ⊆ I1 + · · · Im that RxR is nilpotent. Thus, N(R) is locally nilpotent.

(2)⇒ (1) Let x ∈ N(R). As N(R) is locally nilpotent, RxR is nilpotent.
Write (RxR)m = 0(m ∈ N). Then RxR ⊆ P (R). This implies that x ∈ P ;
hence, N(R) ⊆ P (R). The implication is true, by Theorem 1.1.

(1) ⇒ (3) For any a ∈ R there exists some potent p ∈ R such that
a− p ∈ P (R) ⊆ J(R). Hence, a = p in R/J(R). Therefore R/J(R) is potent.

Let x ∈ J(R). Then there exists a potent p ∈ R such that x− p ∈ P (R);
hence, p = x− (x− p) ∈ J(R). Write p = pm(m ≥ 2). then p(1− pm−1) = 0,
and so p = 0. Hence, x ∈ P (R). By the preceding discussion, RxR is nilpotent,
and therefore J(R) is locally nilpotent.

(3) ⇒ (1) Let a ∈ R. Then a − an ∈ J(R) for some n ≥ 2. As J(R) is
locally nilpotent, it is nilpotent, and so a − an ∈ N(R). In view of Theorem
1.1, R is periodic. Let x ∈ N(R). Then x ∈ R/J(R) is potent; hence, x = 0 in
R/J(R). That is, x ∈ J(R). By hypothesis, J(R) is locally nilpotent; hence,
RxR is nilpotent. As in the proof in (2) ⇒ (1), we see that x ∈ P (R). Thus,
N(R) ⊆ P (R).

For any a ∈ R, there exists a potent p ∈ R and a w ∈ N(R) such that
a = p + w and pw = wp, by Theorem 1.1. By the preceding discussion,
w ∈ P (R). This proving (1). �

Corollary 3.2. A ring R is strongly periodic if and only if for any a ∈ R
there exists a potent p ∈ R such that a− p ∈ P (R).

Proof. =⇒ This is trivial.
⇐= For any a ∈ R there exists potent p ∈ R such that a − p ∈ P (R) ⊆

J(R). Hence, R/J(R) is potent. For any x ∈ J(R), there exists a potent q ∈ R
such that x− q ∈ P (R). Hence, q = x− (x− q) ∈ J(R). Write q = qm(m ≥ 2).
Then q(1− qm−1) = 0, and so q = 0. We infer that x ∈ P (R). As in the proof
in Theorem 3.1, RxR is nilpotent, and so J(R) is locally nilpotent. This result
follows, by using Theorem 3.1. �

A ring R is a 2-primary ring R if its Wedderburn radical coincides with
the set of all nilpotent elements, i.e. N(R) = P (R). A ring R is weakly
periodic provided that for any a ∈ R there exists a potent p ∈ R such that
a− p ∈ N(R) [17]. We now derive
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Theorem 3.3. A ring R is strongly periodic if and only if R is a 2-
primary weakly periodic ring.

Proof. =⇒ Clearly, R is weakly periodic. For any a ∈ N(R), there exists
a potent p ∈ R such that w := a − p ∈ P (R). Hence, p = a − w. Write
am = 0(m ∈ N). Then pm ∈ P (R), and so p ∈ N(R). This implies that p = 0,
and so a = w ∈ P (R). Thus, N(R) = P (R), and so R is 2-primary.

⇐= Let a ∈ R. Since R is weakly periodic, there exists a potent p ∈ R
such that a−p ∈ N(R). As R is 2-primary, N(R) ⊆ P (R), we get a−p ∈ P (R).
Therefore, we complete the proof, by Corollary 3.2. �

A ring R is called strongly 2-primal provided that R/I is 2-primal for all
ideals I of R.

Corollary 3.4. A ring R is strongly periodic if and only if the following
two conditions hold:

(1) R is a weakly periodic ring with locally nilpotent J(R);

(2) Every prime ideal of R is completely prime.

Proof. =⇒ (1) is obvious. Clearly, R/P (R) is potent. As is well known,
every potent ring is commutative (cf. [10, Theorem 1 in Chapter X]), and so
R/P (R) is commutative. In view of [15, Proposition 1.2], every prime ideal of
R is completely prime.

⇐= In view of [15, Proposition 1.2], R is strongly 2-primal, and then it
is 2-primal. As J(R) is locally nilpotent, we show that R is 2-primary. This
completes the proof, in terms of Theorem 3.3. �

A ring R is called nil-semicommutative if ab = 0 in R implies that aRb = 0
for every a, b ∈ N(R) (see [16]). For instance, every semicommutative ring (i.e.,
ab = 0 in R implies that aRb = 0) is nil-semicommutative.

Corollary 3.5. Every nil-semicommutative weakly periodic ring is strongly
periodic.

Proof. One easily checks that every nil-semicommutative ring is 2-primary,
so the result follows from Theorem 3.3. �

We note that strongly periodic rings may not be nil-semicommutative as
the following shows.

Example 3.6. Let Z2 be the field of integral modulo 2, and let
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Rn = {


a a12 a13 · · · a1n
0 a a23 · · · a1n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a

 | a, aij ∈ Z2}

with 3 ≤ n ∈ N. Let R =
( ∞⊕
n=3

Rn, 1
)

be the subalgebra of
∞∏
n=3

Rn over

Z2 generated by
∞⊕
n=3

Rn and 1. We note that P (R) =
∞⊕
n=3

P (Rn). Hence,

R/P (R) ∼=
( ∞⊕
n=3

Fn, 1
)
, the subalgebra of

∞∏
n=3

Fn over Z2 generated by
∞⊕
n=3

Fn

and 1 ∞∏
n=3

Fn

, where Fn = Z2 for all n = 3, 4, · · · . This implies that R/P (R) is

reduced. For any a ∈ N(R), a ∈ R/P (R) is nilpotent, and so a = 0. That
is, a ∈ P (R). Therefore R is 2-primary. As Rn is a finite ring for each n,
we see that it is periodic. We infer that R is periodic, and so it is weakly
periodic. In light of Theorem 3.3, R is strongly periodic. We claim that R4 is
not nil-semicommutative. Choose

a =


0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , x =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 and b =


0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0

 .

Then a2 = b2 = 0, and so a, b ∈ N(R4). Furthermore, ab = 0, while axb 6= 0.
Thus, R4 is not nil-semicommutative. Therefore R is not nil-semicommutative,
and we are done.

Theorem 3.7. Let T be the ring of a Morita context (A,B, M,N, ψ, ϕ).
If im(ψ) and im(ϕ) are nilpotent, then A and B are strongly periodic if and
only if so is T .

Proof. Suppose A and B are strongly periodic. Then A and B are 2-
primary, by Theorem 3.3. Further, they are periodic. In view of Theorem 2.2,
T is periodic. It suffices to prove that T is 2-primary.

Let

(
a n
m b

)
∈ T be nilpotent. Then we can find some c ∈ im(ψ) and

d ∈ im(ϕ) such that ak + c = 0 and bl + d = 0 for some k, l ∈ N. This implies
that a ∈ N(A) and b ∈ N(B). As A is 2-primary, a ∈ P (A). Analogously
to the proof in Theorem 3.1, we see that AaA is nilpotent. Likewise, BbB is
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nilpotent. Clearly,

T

(
a n
m b

)
T ⊆

(
AaA+ im(ψ) N

M BbB + im(ϕ)

)
.

As the sum of two nilpotent ideal of a ring is nilpotent, we see that AaA+im(ψ)
and BbB + im(ϕ) are nilpotent ideals of A and B, respectively. Similarly to

the proof of Theorem 2.2, we see that

(
AaA+ im(ψ) N

M BbB + im(ϕ)

)
is a

nilpotent ideal of T . Hence, T

(
a n
m b

)
T is nilpotent, and so

(
a n
m b

)
∈

P (T ). Thus, T is 2-primary, and so T is strongly periodic, by Theorem 3.3.
Conversely, assume that T is strongly periodic. Then A is periodic. Let

a ∈ N(R). Then

(
a 0
0 0

)
∈ N(T ). By virtue of Theorem 3.3, T is 2-

primary; hence,

(
a 0
0 0

)
∈ P (T ). As in the proof in Theorem 3.1, we see

that T

(
a 0
0 0

)
T is nilpotent. Then AaA is nilpotent, and so a ∈ P (R). It

follows that A is 2-primary. Therefore A is strongly periodic, by Theorem 3.3.
Likewise, B is strongly periodic, as required. �

Corollary 3.8. Let R be strongly periodic, and let s ∈ N(R)
⋂
C(R).

Then M(s)(R) is strongly periodic.

Proof. As in the proof of Corollary 2.3, we haveMs(R) = (R,R,R,R, ψ, ϕ)
where im(ϕ) and im(ψ) are nilpotent. This completes the proof, by Theo-
rem 3.7. �

Example 3.9. Consider the Morita context R =

(
Z4 Z4

2Z4 Z4

)
, where the

context products are the same as the product in Z4. Then we claim that R
is strongly periodic. Since R is finite, it is periodic, and then we are done by
Theorem 3.7.

As a consequence, a ring R is strongly periodic if and only if so is the
trivial Morita context M(0)(R). Now we exhibit the useful characterizations of
strongly periodic rings as follows.

Theorem 3.10. Let R be a ring. Then the following are equivalent:

(1) R is strongly periodic.

(2) R/P (R) is potent.

(3) For any a ∈ R, there exists a prime m ≥ 2 such that a− am ∈ P (R).

(4) For any a ∈ R, a = eu+w, where e = e2 ∈ R, um = 1 (m ∈ N), w ∈ P (R)
and e, u, w commutate.
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Proof. (1)⇒ (2) This is obvious.

(2) ⇒ (3) Luh’s Theorem states that a ring S is potent if and only if
for any x ∈ S there exists a prime n such that x = xn (cf. [13]). Let a ∈ R.
Since R/J(R) is potent, we have a prime m ≥ 2 such that a = am in R/P (R).
Therefore, a− am ∈ P (R).

(3) ⇒ (4) Let a ∈ R. Then we have a prime n ≥ 2 such that a −
an ∈ P (R) ⊆ N(R). By Theorem 1.1, R is periodic. Let x ∈ N(R). Then
x ∈ R/P (R) is potent; whence, x = 0 in R/P (R). Thus, x ∈ P (R), and so
N(R) ⊆ P (R). By [7, Proposition 13.1.18], a = eu+w, where e = e2 ∈ R, u ∈
U(R), w ∈ P (R) and e, u, w commutate. Write uk = uk+m for some m, k ∈ N.
Then um = 1, as desired,

(4) ⇒ (1) For any a ∈ R, a = eu + w, where e = e2 ∈ R, um = 1 (m ∈
N), w ∈ P (R) and e, u, w commutate. Set p = eu. Then p = eum+1 = pm+1,
i.e., p ∈ R is potent. Thus, R is strongly periodic. �

Corollary 3.11. Every subring of a strongly periodic ring is strongly
periodic.

Proof. Let R be strongly periodic, and let S ⊆ R. For any a ∈ S, there
exists some n ≥ 2 such that a− an ∈ P (R) in terms of Theorem 3.10. Hence,
(R(a − an)R)m = 0 for some m ∈ N. This forces that (S(a − an)S)m = 0.
Therefore a−an ∈ P (S). By using Theorem 3.10 again, S is strongly periodic,
as needed. �

For example, if R is the finite subdirect product of strongly periodic rings,
then Corollary 3.11 shows that R is strongly periodic.

Example 3.12. Let F = GF (q) be a Galois field and let V be an infinite
dimensional left vector space over Fp with {v1, v2, · · · } a basis. For the endo-
morphism ring A = EndF (V ), define A1 = {f ∈ A | rank(f) <∞ and f(vi) =
a1v1 + · · ·+ aivi for i = 1, 2, · · · with aj ∈ Fp} and let R be the F -algebra of A
generated by A1 and 1A. Then R is strongly periodic. As in the proof of [15,
Example 1.1], R/P (R) ∼= {(a1, · · · , an, b, b, · · · ) | ai, b ∈ F and n = 1, 2, · · · }.
As F = GF (q), we see that x = xq for all x ∈ F , and then R/P (R) is potent.
According to Theorem 3.10, R is strongly periodic.

Lemma 3.13. Let I be a nilpotent ideal of a ring R. If R/I is strongly
periodic, then so is R.

Proof. Let a ∈ R. Then there exists some n ≥ 2 such that a− an ∈
P
(
R/I

)
. Hence,

(
R(a − an)R

)m ⊆ I. As I is nilpotent,
(
R(a − an)R

)mn
=

0. This shows that a − an ∈ P (R). Therefore R is strongly periodic, by
Theorem 3.9. �
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Theorem 3.14. Let I be an ideal of a ring R. Then the following are
equivalent:

(1) R/I is strongly periodic.

(2) R/In is strongly periodic for all n ∈ N.

(2) R/In is strongly periodic for some n ∈ N.

Proof. (1) ⇒ (2) Clearly, R/I ∼=
(
R/In

)
/
(
I/In

)
. Since

(
I/In

)n
= 0,

proving (2) by Lemma 3.13.
(2)⇒ (3) This is trivial.
(3) ⇒ (1) For any a ∈ R/I, we see that a + In ∈ R/In. By hypothesis,

there exists a potent p ∈ R/In such that a− p ∈ P
(
R/In

)
. Write p = pm for

some m ≥ 2. Then p − pm ∈ In ⊆ I, and so p ∈ R/I is potent. Obviously,
(R/In)(a− p)(R/In) is nilpotent, and then

(
R(a − p)R

)s ⊆ In ⊆ I for some

s ∈ N. We infer that (R/I)(a− p)(R/I) is nilpotent. As in the proof of
Theorem 3.1, we infer that a− p ∈ P (R/I), as required. �

Recall that a ring R is an abelian ring if every idempotent in R is central.
A ring R is strongly π-regular if for any a ∈ R there exists n ∈ N such that
an ∈ an+1R. Obviously, every periodic ring is strongly π-regular. We now
derive

Lemma 3.15. Every abelian periodic ring of bounded index is strongly
periodic.

Proof. Let R be an abelian periodic ring of bounded index. Then R
is strongly π-regular. Badawi’s Theorem states that the set of all nilpotent
elements of an abelian strongly π-regular ring is an ideal [2]. Thus, N(R)
forms an ideal of R. This completes the proof, by Theorem 3.1. �

Let n ≥ 2 be a fixed integer. A ring R is said to be generalized n-like
provided that for any a, b ∈ R, (ab)n−abn−anb+ab = 0 (cf. [18]). It is proved
that every generalized 3-like ring is commutative ( [18, Theorem 3]). We now
derive

Theorem 3.16. Every generalized n-like ring is strongly periodic.

Proof. Let R be a generalized n-like ring, and let a ∈ R. Then a2n −
2an+1 + a2 = 0, and so (a− an)2 = 0. Thus, a− an ∈ N(R). Accordingly, R is
periodic by Theorem 1.1. In light of [18, Lemma 2], R is abelian. If am = 0,
then a2(1− an) = 0, and so a2 = 0. Thus, R is of bounded index 2. Therefore
R is strongly periodic, by Lemma 3.15. �

Let R = {

 x y z
0 x2 0
0 0 x

 | x, y, z ∈ GF (4)}. Then for each a ∈ R, a7 = a
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or a7 = a2 = 0. Therefore R is a generalized 7-like ring. By Theorem 3.16, R
is strongly periodic. In this case, R is abelian but not commutative (cf. [18,
Example 2]).

4. J-CLEAN-LIKE RINGS

We now consider J-clean-like Morita contexts and extend Theorem 2.2 as
follows.

Theorem 4.1. Let T be the ring of a Morita context (A, B, M, N, ψ, ϕ)
with im(ψ) ⊆ J(A) and im(ϕ) ⊆ J(B). If A and B are J-clean-like, then so
is T .

Proof. Let

(
a n
m b

)
∈ T. Then we have potent p ∈ A and q ∈ B such

that a− p ∈ J(A) and b− q ∈ J(B. Hence(
a n
m b

)
−
(
p 0
0 q

)
=

(
a− p n
m b− q

)
.

Let

(
c s
t d

)
∈ T . As 1A − (a− p)c− ψ(n

⊗
t) ∈ U(A) and 1B − (b− q)d−

ϕ(m
⊗
s) ∈ U(B), it follows by [20, Lemma 3.1] that

1T −
(
a− p n
m b− q

)(
c s
t d

)
=

(
1A − (a− p)c− ψ(n

⊗
t) ∗

∗ 1B − (b− q)d− ϕ(m
⊗
s)

)
∈ U(T ).

Hence,

(
a− p n
m b− q

)
∈ J(T ), and therefore T is J-clean-like. �

As a consequence, we deduce that the n × n lower (upper) triangular
matrix ring over a J-clean-like ring is J-clean-like.

Corollary 4.2. Let R be J-clean-like, and let s ∈ J(R)
⋂
C(R). Then

M(s)(R) is J-clean-like.

Proof. As in the proof of Corollary 2.3, M(s)(R) can be regarded as the
ring of a Morita context (R,R,R,R, ψ, ϕ) with im(ψ) ⊆ J(R) and im(ϕ) ⊆
J(R). According to Theorem 4.1, M(s)(R) is J-clean-like. �

Corollary 4.3. Let R be a J-clean-like ring. Then M(x)(R[[x]]) is J-
clean-like.
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Proof. For any f(x) ∈ R[[x]], we can find a potent p ∈ R such that
f(0) − p ∈ J(R). Hence, f(x) = p +

(
f(x) − p

)
. One easily checks that

f(x) − p ∈ J
(
R[[x]]

)
. Thus, R[[x]] is J-clean-like. Choose s = x. Applying

Corollary 4.2 to R[[x]], M(x)(R[[x]]) is J-clean-like. �

Analogously, if R is a J-clean-like ring then so is M(xm)

(
R[[x]]/(xn)

)
for

all 1 ≤ m ≤ n.

Proposition 4.4. A ring R is strongly periodic if and only if the following
two conditions hold simultaneously:

(1) R is J-clean-like;

(2) J(R) is locally nilpotent.

Proof. =⇒ Suppose R is strongly periodic. As P (R) ⊆ J(R), R is J-clean-
like. Let x ∈ J(R). Then there exists a potent p ∈ R such that x− p ∈ P (R);
hence, p = x − (x − p) ∈ J(R). This shows that p = 0, and so x ∈ P (R). As
in the proof of Theorem 3.1, RxR is nilpotent. As the sum of finite nilpotent
ideal is nilpotent, we prove that J(R) is locally nilpotent, as required.

⇐= Let x ∈ J(R). Since J(R) is locally nilpotent, RxR is nilpotent. As
in the proof of Theorem 3.1, we get x ∈ P (R). Hence, J(R) ⊆ P (R). This
completes the proof, by (1). �

Recall that a ring R is J-clean provided the for any a ∈ R there exists
an idempotent e ∈ R such that a − e ∈ J(R) (cf. [6]). This following result
explains the relation between J-clean rings and J-clean-like rings.

Proposition 4.5. A ring R is J-clean if and only if the following two
conditions hold:

(1) R is J-clean-like;

(2) J(R) = {x ∈ R | 1− x ∈ U(R)}.

Proof. =⇒ Clearly, R is J-clean-like. It is easy to check that J(R) ⊆ {x ∈
R | 1−x ∈ U(R)}. If 1−x ∈ U(R), then there exists an idempotent e ∈ R such
that w := x−e ∈ J(R). Hence, 1−e = (1−x)+w = (1−x)

(
1+(1−x)−1w

)
∈

U(R). This shows that 1 − e = 1, and so e = 0. Therefore x ∈ J(R), and so
J(R) ⊇ {x ∈ R | 1− x ∈ U(R)}, as required.

⇐= For any a ∈ R there exists a potent p ∈ R such that (a−1)−p ∈ J(R).
Write p = pm(m ≥ 2). Then pm−1 ∈ R is an idempotent. Set e = 1 − pm−1
and u = p − 1 + pm−1. Then e = e2 ∈ R and u−1 = pm−1 − 1 + pm−1pm−2.
Further, p = e+u. This shows that a−1 = p+(a−1−p) = e+u+(a−1−p).
Hence, a = e +

(
u + (a − p)

)
. As 1 −

(
u + (a − p)

)
= −u − (a − 1 − p) =

−u
(
1− u−1(a− 1− p)

)
∈ U(R), we see that u+ (a− p) ∈ J(R). Therefore R

is J-clean, as asserted. �



15 Periodicity and J-Clean-Like Rings 529

Example 4.6. Let R =

(
Z3 Z3

0 Z3

)
. Then R is J-clean-like, while it is not

J-clean. For any

(
a c
0 b

)
∈ R, we see that

(
a c
0 b

)
=

(
a 0
0 b

)
+

(
0 c
0 0

)
is the sum of a potent element in R and an element in J(R), hence that R is
J-clean-like. As R/J(R) ∼= Z3 is not Boolean, we conclude that R is not
J-clean.

An element p ∈ R is J-potent provided that there exists some n ≥ 2 such
that p− pn ∈ J(R). We say that every potent element lifts modulo J(R) if for
any J-potent p ∈ R there exists a potent q ∈ R such that p− q ∈ J(R).

Lemma 4.7. A ring R is J-clean-like if and only if the following two
conditions hold:

(1) R/J(R) is potent;

(2) Every potent element lifts modulo J(R).

Proof. =⇒ This is obvious.

⇐= Let a ∈ R. Then a ∈ R/J(R) is potent. By hypothesis, we can find
a potent p ∈ R such that a− p ∈ J(R). Accordingly, R is J-clean-like. �

Recall that a ring R is right (left) quasi-duo provided that every maximal
right (left) ideal is a two-sided ideal. As is well known, every right (left) duo
ring (i.e., every right (left) ideal is two-sided) is right (left) quasi-duo. We
come now to the main result of this section.

Theorem 4.8. A ring R is J-clean-like if and only if the following three
conditions hold:

(1) R/J(R) is periodic;

(2) R is right (left) quasi-duo;

(3) Every potent element lifts modulo J(R).

Proof. =⇒ In view of Lemma 4.7, R/J(R) is potent, and so it is periodic.
Let M be a maximal right ideal of R, and let r ∈ R. Then J(R) ⊆ M , and
that M/J(R) is a maximal right of R/J(R). As is well known, every potent
ring is commutative, and so rx + J(R) ∈ M/J(R) for any x ∈ M . Write
rx + J(R) = y + J(R) for a y ∈ M . hence, rx − y ∈ J(R) ⊆ M . This shows
that rx ∈ M ; hence, rM ⊆ M . Therefore M is a two-sided ideal, and then R
is right quasi-duo. Likewise, R is left quasi-duo. (3) is obvious, by Lemma 4.7.

⇐= Let a ∈ R. By (1), there exists a p ∈ R such that a− p ∈ N
(
R/J(R)

)
,

p − pn ∈ J(R)(n ≥ 2), by Theorem 1.1. By (3), we may assume that p = pn.
Set w = a−p. Then wm = 0. Since R is right (left) quasi-duo, as in [7, Corol-
lary 3.4.7], we see that ex − xe ∈ J(R) for any idempotent e ∈ R and any
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element x ∈ R. This means that R/J(R) is abelian. Similarly to the proof
of [7, COROLLARY 1.3.15], R/J(R) is reduced. Hence, w = 0, and then
w ∈ J(R). Therefore a− p ∈ J(R), as desired. �

As a consequence of Corollary 3.5, every right (left) duo periodic ring is
strongly periodic. Further, we derive

Corollary 4.9. A ring R is strongly periodic if and only if

(1) R is periodic;

(2) R is right (left) quasi-duo;

(3) J(R) is locally nilpotent.

Proof. =⇒ Clearly, R is periodic. It follows from Proposition 4.4 that R
is J-clean-like and J(R) is locally nilpotent. Thus, R is right (left) quasi-duo,
by Theorem 4.8.

⇐= Since R is periodic, R/J(R) is periodic. Thus, R is J-clean-like, by
Theorem 4.8. By (3), J(R) = P (R), and the result follows. �

Example 4.10. Let R = Z(5). Then R is right (left) quasi-duo, R/J(R) is
periodic, while R is not J-clean-like.

Proof. Let R = Z(5). Then J(R) = 5R. Hence, R/J(R) ∼= Z5 is a finite
field. Thus, R/J(R) is periodic. Suppose every potent element lifts modulo
J(R). Clearly, 2−25 ∈ J(R). Hence, 2 ∈ R/J(R) is potent. Thus, we can find
a potent w ∈ R such that 2−w ∈ J(R). Write w = m

n , where (m,n) = 1, 5 - n
and w = ws(s ≥ 2). Then w(1 − ws−1) = 0, and so w = 0 or ws−1 = 1.

If w = 0, then 2 ∈ J(R), a contradiction. If ws−1 = 1, then ms−1

ns−1 = 1;
whence, m = ±n. This implies that w = ±1; hence, 2 − w = 1, 3 6∈ J(R), a
contradiction. Therefore R is not J-clean-like, by Lemma 4.7. �

Lemma 4.11. Let R be J-clean-like. Then N(R) ⊆ J(R).

Proof. Let x ∈ N(R). Then xm = 0 for some m ≥ 2. Moreover, there
exists a potent p ∈ R such that w := x − p ∈ J(R). Write p = pn for some
n ≥ 2. Then p = pn = (pn)n = pn

2
= (pn)n

2
= pn

3
= · · · = pn

m
. Clearly,

nm =
(
1+(n−1)

)m ≥ m(n−1) ≥ m, and so xn
m

= 0. As xn
m−pnm ∈ J(R), we

have x = p+w = pn
m

+w ∈ J(R). Therefore x ∈ J(R), hence the result. �

Lemma 4.12. Let R be a ring. Then the following are equivalent:

(1) R is a periodic ring in which every nilpotent is contained in J(R).

(2) R is J-clean-like and J(R) is nil.

Proof. (1) ⇒ (2) Suppose R is a periodic ring with N(R) ⊆ J(R). Let
x ∈ J(R). Then we have m,n ∈ N such that xm = xn(n > m). Hence,
xm(1− xn−m) = 0, and so xm = 0. This shows that J(R) is nil. Let a ∈ R. In
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view of Theorem 1.1, there exists a potent p ∈ R such that a− p ∈ N(R). By
hypothesis, a− p ∈ J(R). Therefore R is J-clean-like.

(2) ⇒ (1) For any a ∈ R, there exists a potent p ∈ R such that w :=
a− p ∈ J(R). Hence, a = p+w and p = pn for some n ≥ 2. Thus, an = pn + v
for a v ∈ J(R). This implies that a− an = w − v ∈ J(R) ⊆ N(R). Therefore
R is periodic, by Theorem 1.1. In light of Lemma 4.11, every nilpotent of R is
contained in J(R), as desired. �

Theorem 4.13. Let R be a ring. If for any sequence of elements {ai} ⊆ R
there exists a k ∈ N and n1, · · · , nk ≥ 2 such that (a1− an1

1 ) · · · (ak − ank
k ) = 0,

then R is J-clean-like.

Proof. For any a ∈ R, we have a k ∈ N and n1, · · · , nk ≥ 2 such that
(a−an1) · · · (a−ank) = 0. This implies that ak = ak+1f(a) for some f(t) ∈ Z[t].
In view of Theorem 1.1, R is periodic.

Clearly, R/J(R) is isomorphic to a subdirect product of some primitive
rings Ri. Case 1. There exists a subring Si of Ri which admits an epimorphism
φi : Si → M2(Di) where Di is a division ring. Case 2. Ri

∼= Mki(Di) for
a division ring Di. Clearly, the hypothesis is inherited by all subrings, all
homomorphic images of R, we claim that, for any sequence of elements {ai} ⊆
M2(Di) there exists s ∈ N and m1, · · · ,ms ≥ 2 such that (a1 − am1

1 ) · · · (as −
ams
s ) = 0. Choose ai = e12 if i is odd and ai = e21 if i is even. Then

(a1 − am1
1 )(a2 − am2

2 ) · · · (as − ams
s ) = a1a2 · · · as 6= 0, a contradiction. Thus,

Case I do not happen. Further, in Case II, ki = 1 for all i. This shows that
each Ri is reduced, and then so is R/J(R). If a ∈ N(R), we have some n ∈ N
such that an = 0, and thus an = 0 is R/J(R). Hence, a ∈ J

(
R/J(R)

)
= 0.

This implies that a ∈ J(R), and so N(R) ⊆ J(R). Therefore R is J-clean-like,
by Lemma 4.12. �

Recall that a subset I of a ring R is left (resp., right) T -nilpotent in case
for every sequence a1, a2, · · · in I there is an n such that a1 · · · an = 0 (resp.,
an · · · a1 = 0). Every nilpotent ideal is left and right T -nilpotent. The Jacobson
radical J(R) of a ring R is left (resp., right) T -nilpotent if and only if for any
nonzero left (resp., right) R-module M , J(R)M 6= M(resp., MJ(R) 6= M).

Corollary 4.14. Let R be a ring. If R/J(R) is potent and J(R) is left
(resp., right) T -nilpotent, then R is J-clean-like.

Proof. We may assume R/J(R) is potent and J(R) is left T -nilpotent.
For every sequence a1, a2, · · · , am, · · · in R, there exists some ni ∈ N such that
ai−ani

i ∈ J(R) for all i. We choose b1 = a1−an1
1 , b2 = (1−b1)−1

(
a2−an2

2

)
, b3 =

(1 − b2)−1
(
a3 − an3

3

)
, · · · , bm = (1 − bm−1)−1

(
am − anm

m

)
, · · · . By hypothesis,

we can find some k ∈ N such that b1(1 − b1)b2(1 − b2) · · · bk−1(1 − bk−1) = 0.
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Hence, b1(1 − b1)b2(1 − b2) · · · bk−1(1 − bk−1)bk = 0. This shows that (a1 −
an1
1 ) · · · (as − ank

k ) = 0. Therefore R is J-clean-like, by Theorem 4.13. �
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[19] M. Ôhori, On strongly π–regular rings and periodic rings. Math. J. Okayama Univ. 27
(1985), 49–52.



19 Periodicity and J-Clean-Like Rings 533

[20] G. Tang, C. Li and Y. Zhou, Study of Morita contexts. Comm. Algebra 42 (2014),
1668–1681.

[21] G. Tang and Y. Zhou, Strong cleanness of generalized matrix rings over a local ring,
Linear Algebra Appl. 437 (2012), 2546–2559.

Received 3 April 2015 Hangzhou Normal University,
Department of Mathematics,

Hangzhou 310036, China
huanyinchen@aliyun.com

Statistics and Computer Science
Semnan University,

Faculty of Mathematics,
Semnan, Iran

m.sheibani1@gmail.com


