# PERIODICITY AND J-CLEAN-LIKE RINGS

### HUANYIN CHEN and MARJAN SHEIBANI

## Communicated by Vasile Brînzănescu

A ring R is periodic provided that for any  $a \in R$  there exist distinct elements  $m,n \in \mathbb{N}$  such that  $a^m = a^n$ . We shall prove that periodicity is inherited by all generalized matrix rings. A ring R is called strongly periodic if for any  $a \in R$  there exists a potent  $p \in R$  such that a-p is in its Wedderburn radical and ap = pa. A ring R is J-clean-like if for any  $a \in R$  there exists a potent  $p \in R$  such that a-p is in its Jacobson radical. Furthermore, we completely determine the connections between strongly periodic rings and periodic rings. The relations among J-clean-like rings and these rings are also obtained.

AMS 2010 Subject Classification: 16N40, 16N20, 16U99.

Key words: periodic ring, strongly periodic ring, J-clean-like ring, generalized matrix ring.

### 1. INTRODUCTION

A ring R is periodic provided that for any  $a \in R$  there exist distinct elements  $m, n \in \mathbb{N}$  such that  $a^m = a^n$ . Examples of periodic rings are finite rings and Boolean rings. There are many interesting problems related to periodic rings. We explore, in this article, the periodicity of a type of generalized matrix rings. An element  $p \in R$  is potent if  $p = p^m$  for some  $m \geq 2$ . For later convenience we state here some elementary characterizations of periodic rings:

Theorem 1.1. Let R be a ring. Then the following are equivalent:

- (1) R is periodic.
- (2) For any  $a \in R$ , there exists some  $m \ge 2$  such that  $a^m = a^{m+1}f(a)$  for some  $f(t) \in \mathbb{Z}[t]$ .
- (3) For any  $a \in R$ , there exists some  $m \ge 2$  such that  $a-a^m \in R$  is nilpotent.
- (4) For any  $a \in R$ , there exists a potent  $p \in R$  such that  $a-p \in R$  is nilpotent and ap = pa.

Here, the equivalences of all items are stated in [1, Lemma 2], [5, Proposition 2], [19, Theorem 3], and the simple implication from (3) to (2). A Morita context  $(A, B, M, N, \psi, \varphi)$  consists of two rings A and B, two bimodules

 ${}_AN_B$  and  ${}_BM_A$ , and a pair of bimodule homomorphisms  $\psi: N \underset{B}{\bigotimes} M \to A$  and  $\varphi: M \underset{A}{\bigotimes} N \to B$  which satisfy the following associativity:  $\psi(n \underset{A}{\bigotimes} m)n' = n\varphi(m \underset{A}{\bigotimes} n')$  and  $\varphi(m \underset{A}{\bigotimes} n)m' = m\psi(n \underset{A}{\bigotimes} m')$  for any  $m,m' \in M, n,n' \in N$ . These conditions ensure that the set T of generalized matrices  $\begin{pmatrix} a & n \\ m & b \end{pmatrix}$ ;  $a \in A, b \in B, m \in M, n \in N$  will form a ring with addition defined componentwise and with multiplication defined by

$$\begin{pmatrix} a_1 & n_1 \\ m_1 & b_1 \end{pmatrix} \begin{pmatrix} a_2 & n_2 \\ m_2 & b_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 + \psi(n_1 \bigotimes m_2) & a_1n_2 + n_1b_2 \\ m_1a_2 + b_1m_2 & \varphi(m_1 \bigotimes n_2) + b_1b_2 \end{pmatrix},$$

called the ring of the Morita context (cf. [20]). The class of rings of the Morita contexts is a type of generalized matrix rings. For instances, all  $2 \times 2$  matrix rings and all triangular matrix rings.

Let T be the ring of a Morita context  $(A, B, M, N, \psi, \varphi)$ . We prove, in Section 2, that if  $im(\psi)$  and  $im(\varphi)$  are nilpotent, then A and B are periodic if and only if so is T. This provides a large new class of periodic rings for generalized matrix rings.

It is an attractive problem to express an element in a ring as the sum of idempotents and units (cf. [4], [6], [8] and [9]). We say that a ring R is clean provided that every element in R is the sum of an idempotent and a unit. Such rings have been extensively studied in recent years, see [7] and [21]. This motivates us to combine periodic rings with clean rings together, and investigate further properties of related rings.

For a ring R the Wedderburn radical is denoted by P(R), i.e., P(R) is the sum of all nilpotent ideals of R. We now introduce a new type of rings. A ring R is said to be strongly periodic provided that for any  $a \in R$  there exists a potent  $p \in R$  such that  $a - p \in P(R)$  and ap = pa. Strongly periodic rings form a subclass of periodic rings. We shall prove that a ring R is strongly periodic if and only if for any  $a \in R$  there exists a potent  $p \in R$  such that  $a - p \in P(R)$ , and determine completely the connections between these ones and periodic rings. A ring is 2-primary provided that its Wedderburn radical coincides with the set of nilpotent elements of the ring. It is proved that a ring R is strongly periodic if and only if R is a 2-primary periodic ring. From this, we show that the strong periodicity will be inherited by generalized matrix rings.

Replacing the Wedderburn radical P(R) by the Jacobson radical J(R), we introduce a type of rings which behave like that of periodic rings. We say that a ring R is J-clean-like provided that for any  $a \in R$  there exists a potent  $p \in R$  such that  $a - p \in J(R)$ . This is a natural generalization of J-clean rings

[6]. Many properties of periodic rings are extended to these ones. We shall characterize J-clean-like rings and obtain the relations among these rings.

Throughout, all rings are associative with an identity.  $M_n(R)$  will denote the ring of all  $n \times n$  matrices over R with an identity  $I_n$ . N(R) stands for the set of all nilpotent elements in R. C(R) denote the center of R. P(R) and J(R) denote the Wedderburn radical and Jacobson radical of R, respectively.

#### 2. PERIODIC RINGS

The purpose of this section is to investigate the periodicity for Morita contexts. The following lemma is known [17, Lemma 3.1.23], and we include a simple proof for the sake of completeness.

LEMMA 2.1. A ring R is periodic if and only if for any  $a, b \in R$ , there exists an  $n \in \mathbb{N}$  such that  $a - a^n, b - b^n \in N(R)$ .

*Proof.*  $\Leftarrow$  For any  $a \in R$ , we can find  $n \in \mathbb{N}$  such that  $a - a^n \in N(R)$ . This implies that R is periodic, by Theorem 1.1.

 $\Longrightarrow$  Suppose that R is periodic. For any  $a,b\in R$ , we can find  $p,q,s,t\in R$  (p< q,s< t) such that  $a^p=a^q$  and  $b^s=b^t$ . Hence,  $a^{ps}=a^{qs}$  and  $b^{ps}=b^{pt}$ . This implies that

$$a^{ps} = a^{ps}a^{(q-p)s} = a^{ps}a^{2(q-p)s} = \dots = a^{ps}a^{(t-s)p(q-p)s}$$

Likewise, we get  $b^{ps} = b^{ps}b^{(q-p)s(t-s)p}$ . Choose k = ps and l = ps + (t-s)p(q-p)s. Then  $a^k = a^l, b^k = b^l$  (k < l). Thus,  $a^k = a^l = a^{(l-k)+k} = \cdots = a^{k(l-k)+k}$ , and so  $a^k = (a^k)^{l-k+1}$ . This implies that  $(a^{k(l-k)})^2 = (a^{k(l-k)+k})(a^{k(l-k)-k}) = a^k(a^{k(l-k)-k}) = a^{k(l-k)}$ . Choose n = k(l-k). Then  $(a-a^{n+1})^n = a^n(1-a^n)^n = a^n(1-a^n) = 0$ . Thus,  $a-a^n \in N(R)$ . Likewise,  $b-b^n \in N(R)$ . Therefore, we complete the proof.  $\square$ 

THEOREM 2.2. Let T be the ring of a Morita context  $(A, B, M, N, \psi, \varphi)$ . If  $im(\psi)$  and  $im(\varphi)$  are nilpotent, then A and B are periodic if and only if so is T.

*Proof.* Suppose A and B are periodic. For any  $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \in T$ , as in the proof of Lemma 2.1, there exists a  $k \in \mathbb{N}$  such that  $a - a^k \in N(A)$  and  $b - b^k \in N(B)$ . Hence,

$$\begin{pmatrix} a & n \\ m & b \end{pmatrix} - \begin{pmatrix} a & n \\ m & b \end{pmatrix}^k = \begin{pmatrix} a - a^k + c & * \\ * & b - b^k + d \end{pmatrix},$$

where  $c \in \operatorname{im}(\psi)$  and  $d \in \operatorname{im}(\varphi)$ . Write  $(a - a^k)^l = 0$  and  $(b - b^k)^l = 0$ . By hypothesis,  $\operatorname{im}(\psi)$  and  $\operatorname{im}(\varphi)$  are nilpotent ideals of A and B, respectively. Say  $\left(\operatorname{im}(\psi)\right)^s = 0$  and  $\left(\operatorname{im}(\varphi)\right)^t = 0$ . Choose  $p = \max(s, t)$  and q = p(l+1). Then

$$(a - a^k + c)^q = 0$$
 and  $(b - b^k + d)^q = 0$ .

Obviously,

$$\begin{pmatrix} a - a^k + c & * \\ * & b - b^k + d \end{pmatrix}^{q+1} \in \begin{pmatrix} \operatorname{im}(\psi) & N \\ M & \operatorname{im}(\varphi) \end{pmatrix}.$$

Set  $NM := \operatorname{im}(\psi)$  and  $MN := \operatorname{im}(\varphi)$ . We see that

$$\left(\begin{array}{cc}NM & N\\ M & MN\end{array}\right)^2 \subseteq \left(\begin{array}{cc}NM & (NM)N\\ (MN)M & MN\end{array}\right).$$

For any  $l \in \mathbb{N}$ , by induction, one easily checks that

$$\left( \begin{array}{cc} NM & N \\ M & MN \end{array} \right)^{2l} \subseteq \left( \begin{array}{cc} NM & (NM)N \\ (MN)M & MN \end{array} \right)^l \subseteq \left( \begin{array}{cc} (NM)^l & (NM)^lN \\ (MN)^lM & (MN)^l \end{array} \right).$$

Choose j = 2p(q+1). As  $(NM)^p = (MN)^p = 0$ , we get

$$\begin{pmatrix} a - a^k + c & * \\ * & b - b^k + d \end{pmatrix}^j = \begin{pmatrix} 0 & t \\ s & 0 \end{pmatrix}$$

for some  $s \in M, t \in N$ . Hence,

$$\left(\begin{array}{cc} 0 & t \\ s & 0 \end{array}\right)^2 = \left(\begin{array}{cc} \psi(t \bigotimes s) & 0 \\ 0 & \varphi(s \bigotimes t) \end{array}\right),$$

and so

$$\left( \left( \begin{array}{cc} a & n \\ m & b \end{array} \right) - \left( \begin{array}{cc} a & n \\ m & b \end{array} \right)^k \right)^{2jp} = 0.$$

Accordingly, T is periodic, by Theorem 1.1. The converse is obvious.

Let R be a ring, and let  $s \in C(R)$ . Let  $M_{(s)}(R) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in R \}$ , where the operations are defined as follows:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix},$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa'+sbc' & ab'+bd' \\ ca'+dc' & scb'+dd' \end{pmatrix}.$$

Then  $M_{(s)}(R)$  is a ring with the identity  $\begin{pmatrix} 1_R & 0 \\ 0 & 1_R \end{pmatrix}$ . Recently, the strong cleanness of such type generalized matrix rings was studied in [21]. For the periodicity of such rings, we derive

COROLLARY 2.3. Let R be periodic, and let  $s \in N(R) \cap C(R)$ . Then  $M_{(s)}(R)$  is periodic.

Proof. Let  $\psi: R \otimes R \to R$ ,  $n \otimes m \mapsto snm$  and  $\varphi: R \otimes R \to R$ ,  $m \otimes n \mapsto smn$ . Then  $M_s(R) = (R, R, R, R, \psi, \varphi)$ . As  $s \in N(R) \cap C(R)$ , we see that  $\operatorname{im}(\varphi)$  and  $\operatorname{im}(\psi) \subseteq J(R)$  are nilpotent, and we are through by Theorem 2.2.  $\square$ 

As a consequence, a ring R is periodic if and only if so is the trivial Morita context  $M_{(0)}(R)$ . Choosing  $s=0 \in R$ , we are through from Corollary 2.3. Given a ring R and an R-R-bimodule M, the trivial extension of R by M is the ring  $T(R,M)=R\oplus M$  with the usual addition and the following multiplication:  $(r_1,m_1)(r_2,m_2)=(r_1r_2,r_1m_2+m_1r_2)$ .

COROLLARY 2.4. Let R be a ring, and let M be a R-R-bimodule. Then the following are equivalent:

- (1) R is periodic.
- (2) T(R, M) is periodic.

*Proof.* (1)  $\Rightarrow$  (2) Let R be a periodic ring and let  $S = \begin{pmatrix} R & M \\ 0 & R \end{pmatrix}$ . It is obvious by Theorem 2.2 that S is periodic. Clearly, T(R,M) is a subring of S, and so proving (2).

 $(2)\Rightarrow (1)$  Let T(R,M) be a periodic ring. As R is isomorphic to a subring of T(R,M), and so R is periodic.  $\square$ 

Example 2.5. Let R be periodic, let

$$A = B = \begin{pmatrix} R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \end{pmatrix}, M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & R & 0 \end{pmatrix} \text{ and } N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ R & R & 0 \end{pmatrix},$$

and let  $\psi: N \bigotimes_B M \to A$ ,  $\psi(n \otimes m) = nm$  and  $\phi: M \bigotimes_A N \to B$ ,  $\phi(m \otimes n) = mn$ . Then  $T = (A B M N \psi, \phi)$  is a Morita context with zero pairings, i.e. T is a

Then  $T=(A,B,M,N,\psi,\phi)$  is a Morita context with zero pairings, *i.e.*, T is a trivial Morita context. Hence,  $\operatorname{im}(\psi)$  and  $\operatorname{im}(\varphi)$  are nilpotent. Clearly, A and B are both periodic. In light of Theorem 2.2, T is periodic.

Let R be a ring, and let  $\alpha$  be an endomorphism of R. Let  $T_n(R, \alpha)$  be the set of all upper triangular matrices over the rings R. For any  $(a_{ij}), (b_{ij}) \in T_n(R, \alpha)$ , we define  $(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$ , and  $(a_{ij})(b_{ij}) = (c_{ij})$  where  $c_{ij} = \sum_{k=i}^n a_{ik} \alpha^{k-i} (b_{kj})$ . Then  $T_n(R, \alpha)$  is a ring under the preceding addition and multiplication (cf. [14]). Clearly,  $T_n(R, \alpha)$  will be  $T_n(R)$  only when  $\alpha$  is the identity morphism.

Lemma 2.6. Let R be periodic, and let  $\alpha: R \to R$  be an endomorphism. Then

- (1)  $R[[x,\alpha]]/(x^n)$  is periodic.
- (2)  $T_n(R, \alpha)$  is periodic for all  $n \in \mathbb{N}$ .

*Proof.* (1) For any  $f(x) \in R[[x]]/(x^n)$ , there exists an  $m \in \mathbb{N}$  such that  $f(0) - f^m(0) \in N(R)$ . Hence,  $f(x) - f^m(x) \in N(R[[x]]/(x^n))$ . According to Theorem 1.1,  $R[[x]]/(x^n)$  is periodic.

(2) For any  $(a_{ij}) \in T_n(R, \alpha)$ , as in the proof of Lemma 2.1, we can find an  $m \in \mathbb{N}$  such that  $a_{ii} - a_{ii}^m \in N(R)$  for each i. Thus,  $(a_{ij}) - (a_{ij})^m \in N(T_n(R, \alpha))$ , as required.  $\square$ 

We are now ready to prove:

THEOREM 2.7. Let R be periodic. Then  $M_{(x^m)}(R[[x]]/(x^n))$  is periodic for all  $1 \le m \le n$ .

*Proof.* Choose  $\alpha=1$ . Then  $R[[x]]/(x^n)$  is periodic, by Lemma 2.6. Choose  $s=x^m(1\leq m\leq n)$ . Then  $s\in N\big(R[[x]]/(x^n)\big)\cap C\big(R[[x]]/(x^n)\big)$ . Applying Corollary 2.3 to  $R[[x]]/(x^n)$ ,  $M_{(x^m)}\big(R[[x]]/(x^n)\big)$  is periodic, as asserted.  $\square$ 

COROLLARY 2.8. Let R be a finite ring. Then  $M_{(x^m)}(R[[x]]/(x^n))$  is periodic for all  $1 \le m \le n$ .

*Proof.* Since every finite ring is periodic, we complete the proof by Theorem 2.7.  $\square$ 

## 3. STRONGLY PERIODIC RINGS

A ring R is potent if for any  $a \in R$ , there exists some  $n \geq 2$  such that  $a = a^n$ . An ideal I of a ring R is locally nilpotent if, every finitely generated subring of elements belonging to I is nilpotent. Clearly, an ideal I of a ring R is locally nilpotent if and only if RxR is nilpotent for any  $x \in I$ . Recall that J(R) consists of all  $x \in R$  such that 1 + RxR is included in the set of units of R. We now derive

Theorem 3.1. Let R be a ring. Then the following are equivalent:

- (1) R is strongly periodic.
- (2) R is periodic and N(R) is a locally nilpotent ideal of R.
- (3) R/J(R) is potent, every potent lifts modulo J(R) and J(R) is locally nilpotent.

Proof. (1)  $\Rightarrow$  (2) Clearly, R is periodic. Let  $x \in N(R)$ . Then we can find a potent  $p \in R$  such that  $w := x - p \in P(R)$ . Write  $x^n = 0$  for some  $n \in \mathbb{N}$ . Then  $p^n = (x - w)^n \in P(R)$ . This shows that  $p \in R$  is nilpotent, and so p = 0; hence,  $x = w \in P(R)$ . We infer that N(R) = P(R) is an ideal of R.

For any  $x \in P(R)$ , we claim that RxR is nilpotent. As P(R) is the sum of all nilpotent ideals of R, we can find nilpotent ideals  $I_1, \dots, I_m$  of R such that  $x \in I_1 + \dots I_m$ . Clearly,  $I_1 + \dots I_m$  is a nilpotent ideal. It follows from  $RxR \subseteq I_1 + \dots I_m$  that RxR is nilpotent. Thus, N(R) is locally nilpotent.

- $(2) \Rightarrow (1)$  Let  $x \in N(R)$ . As N(R) is locally nilpotent, RxR is nilpotent. Write  $(RxR)^m = 0 (m \in \mathbb{N})$ . Then  $RxR \subseteq P(R)$ . This implies that  $x \in P$ ; hence,  $N(R) \subseteq P(R)$ . The implication is true, by Theorem 1.1.
- $(1) \Rightarrow (3)$  For any  $a \in R$  there exists some potent  $p \in R$  such that  $a p \in P(R) \subseteq J(R)$ . Hence,  $\overline{a} = \overline{p}$  in R/J(R). Therefore R/J(R) is potent.

Let  $x \in J(R)$ . Then there exists a potent  $p \in R$  such that  $x - p \in P(R)$ ; hence,  $p = x - (x - p) \in J(R)$ . Write  $p = p^m (m \ge 2)$ . then  $p(1 - p^{m-1}) = 0$ , and so p = 0. Hence,  $x \in P(R)$ . By the preceding discussion, RxR is nilpotent, and therefore J(R) is locally nilpotent.

 $(3)\Rightarrow (1)$  Let  $a\in R$ . Then  $a-a^n\in J(R)$  for some  $n\geq 2$ . As J(R) is locally nilpotent, it is nilpotent, and so  $a-a^n\in N(R)$ . In view of Theorem 1.1, R is periodic. Let  $x\in N(R)$ . Then  $\overline{x}\in R/J(R)$  is potent; hence,  $\overline{x}=\overline{0}$  in R/J(R). That is,  $x\in J(R)$ . By hypothesis, J(R) is locally nilpotent; hence, RxR is nilpotent. As in the proof in  $(2)\Rightarrow (1)$ , we see that  $x\in P(R)$ . Thus,  $N(R)\subseteq P(R)$ .

For any  $a \in R$ , there exists a potent  $p \in R$  and a  $w \in N(R)$  such that a = p + w and pw = wp, by Theorem 1.1. By the preceding discussion,  $w \in P(R)$ . This proving (1).  $\square$ 

COROLLARY 3.2. A ring R is strongly periodic if and only if for any  $a \in R$  there exists a potent  $p \in R$  such that  $a - p \in P(R)$ .

 $Proof. \Longrightarrow This is trivial.$ 

A ring R is a 2-primary ring R if its Wedderburn radical coincides with the set of all nilpotent elements, *i.e.* N(R) = P(R). A ring R is weakly periodic provided that for any  $a \in R$  there exists a potent  $p \in R$  such that  $a - p \in N(R)$  [17]. We now derive

Theorem 3.3. A ring R is strongly periodic if and only if R is a 2-primary weakly periodic ring.

Proof.  $\Longrightarrow$  Clearly, R is weakly periodic. For any  $a \in N(R)$ , there exists a potent  $p \in R$  such that  $w := a - p \in P(R)$ . Hence, p = a - w. Write  $a^m = 0 (m \in \mathbb{N})$ . Then  $p^m \in P(R)$ , and so  $p \in N(R)$ . This implies that p = 0, and so  $a = w \in P(R)$ . Thus, N(R) = P(R), and so R is 2-primary.

 $\Leftarrow$  Let  $a \in R$ . Since R is weakly periodic, there exists a potent  $p \in R$  such that  $a-p \in N(R)$ . As R is 2-primary,  $N(R) \subseteq P(R)$ , we get  $a-p \in P(R)$ . Therefore, we complete the proof, by Corollary 3.2.  $\square$ 

A ring R is called strongly 2-primal provided that R/I is 2-primal for all ideals I of R.

COROLLARY 3.4. A ring R is strongly periodic if and only if the following two conditions hold:

- (1) R is a weakly periodic ring with locally nilpotent J(R);
- (2) Every prime ideal of R is completely prime.

 $Proof. \Longrightarrow (1)$  is obvious. Clearly, R/P(R) is potent. As is well known, every potent ring is commutative (cf. [10, Theorem 1 in Chapter X]), and so R/P(R) is commutative. In view of [15, Proposition 1.2], every prime ideal of R is completely prime.

 $\Leftarrow$  In view of [15, Proposition 1.2], R is strongly 2-primal, and then it is 2-primal. As J(R) is locally nilpotent, we show that R is 2-primary. This completes the proof, in terms of Theorem 3.3.

A ring R is called nil-semicommutative if ab=0 in R implies that aRb=0 for every  $a,b\in N(R)$  (see [16]). For instance, every semicommutative ring (i.e., ab=0 in R implies that aRb=0) is nil-semicommutative.

COROLLARY 3.5. Every nil-semicommutative weakly periodic ring is strongly periodic.

*Proof.* One easily checks that every nil-semicommutative ring is 2-primary, so the result follows from Theorem 3.3.  $\Box$ 

We note that strongly periodic rings may not be nil-semicommutative as the following shows.

Example 3.6. Let  $\mathbb{Z}_2$  be the field of integral modulo 2, and let

$$R_{n} = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{1n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in \mathbb{Z}_{2} \right\}$$

with  $3 \leq n \in \mathbb{N}$ . Let  $R = \left(\bigoplus_{n=3}^{\infty} R_n, 1\right)$  be the subalgebra of  $\prod_{n=3}^{\infty} R_n$  over  $\mathbb{Z}_2$  generated by  $\bigoplus_{n=3}^{\infty} R_n$  and 1. We note that  $P(R) = \bigoplus_{n=3}^{\infty} P(R_n)$ . Hence,

 $R/P(R) \cong \left(\bigoplus_{n=3}^{\infty} F_n, 1\right)$ , the subalgebra of  $\prod_{n=3}^{\infty} F_n$  over  $\mathbb{Z}_2$  generated by  $\bigoplus_{n=3}^{\infty} F_n$  and  $1 \underset{n=3}{\infty} F_n$ , where  $F_n = \mathbb{Z}_2$  for all  $n = 3, 4, \cdots$ . This implies that R/P(R) is

reduced. For any  $a \in N(R)$ ,  $\overline{a} \in R/P(R)$  is nilpotent, and so  $\overline{a} = \overline{0}$ . That is,  $a \in P(R)$ . Therefore R is 2-primary. As  $R_n$  is a finite ring for each n, we see that it is periodic. We infer that R is periodic, and so it is weakly periodic. In light of Theorem 3.3, R is strongly periodic. We claim that  $R_4$  is not nil-semicommutative. Choose

Then  $a^2 = b^2 = 0$ , and so  $a, b \in N(R_4)$ . Furthermore, ab = 0, while  $axb \neq 0$ . Thus,  $R_4$  is not nil-semicommutative. Therefore R is not nil-semicommutative, and we are done.

THEOREM 3.7. Let T be the ring of a Morita context  $(A, B, M, N, \psi, \varphi)$ . If  $im(\psi)$  and  $im(\varphi)$  are nilpotent, then A and B are strongly periodic if and only if so is T.

*Proof.* Suppose A and B are strongly periodic. Then A and B are 2-primary, by Theorem 3.3. Further, they are periodic. In view of Theorem 2.2, T is periodic. It suffices to prove that T is 2-primary.

Let  $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \in T$  be nilpotent. Then we can find some  $c \in \operatorname{im}(\psi)$  and  $d \in \operatorname{im}(\varphi)$  such that  $a^k + c = 0$  and  $b^l + d = 0$  for some  $k, l \in \mathbb{N}$ . This implies that  $a \in N(A)$  and  $b \in N(B)$ . As A is 2-primary,  $a \in P(A)$ . Analogously to the proof in Theorem 3.1, we see that AaA is nilpotent. Likewise, BbB is

nilpotent. Clearly,

$$T\left(\begin{array}{cc} a & n \\ m & b \end{array}\right)T\subseteq \left(\begin{array}{cc} AaA+\mathrm{im}(\psi) & N \\ M & BbB+\mathrm{im}(\varphi) \end{array}\right).$$

As the sum of two nilpotent ideal of a ring is nilpotent, we see that  $AaA+\operatorname{im}(\psi)$  and  $BbB+\operatorname{im}(\varphi)$  are nilpotent ideals of A and B, respectively. Similarly to the proof of Theorem 2.2, we see that  $\begin{pmatrix} AaA+\operatorname{im}(\psi) & N \\ M & BbB+\operatorname{im}(\varphi) \end{pmatrix}$  is a nilpotent ideal of T. Hence,  $T\begin{pmatrix} a & n \\ m & b \end{pmatrix} T$  is nilpotent, and so  $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \in P(T)$ . Thus, T is 2-primary, and so T is strongly periodic, by Theorem 3.3.

Conversely, assume that T is strongly periodic. Then A is periodic. Let  $a \in N(R)$ . Then  $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in N(T)$ . By virtue of Theorem 3.3, T is 2-primary; hence,  $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in P(T)$ . As in the proof in Theorem 3.1, we see that  $T \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} T$  is nilpotent. Then AaA is nilpotent, and so  $a \in P(R)$ . It follows that A is 2-primary. Therefore A is strongly periodic, by Theorem 3.3. Likewise, B is strongly periodic, as required.  $\square$ 

COROLLARY 3.8. Let R be strongly periodic, and let  $s \in N(R) \cap C(R)$ . Then  $M_{(s)}(R)$  is strongly periodic.

*Proof.* As in the proof of Corollary 2.3, we have  $M_s(R) = (R, R, R, R, \psi, \varphi)$  where  $\operatorname{im}(\varphi)$  and  $\operatorname{im}(\psi)$  are nilpotent. This completes the proof, by Theorem 3.7.  $\square$ 

Example 3.9. Consider the Morita context  $R = \begin{pmatrix} \mathbb{Z}_4 & \mathbb{Z}_4 \\ 2\mathbb{Z}_4 & \mathbb{Z}_4 \end{pmatrix}$ , where the context products are the same as the product in  $\mathbb{Z}_4$ . Then we claim that R is strongly periodic. Since R is finite, it is periodic, and then we are done by Theorem 3.7.

As a consequence, a ring R is strongly periodic if and only if so is the trivial Morita context  $M_{(0)}(R)$ . Now we exhibit the useful characterizations of strongly periodic rings as follows.

Theorem 3.10. Let R be a ring. Then the following are equivalent:

- (1) R is strongly periodic.
- (2) R/P(R) is potent.
- (3) For any  $a \in R$ , there exists a prime  $m \ge 2$  such that  $a a^m \in P(R)$ .
- (4) For any  $a \in R$ , a = eu + w, where  $e = e^2 \in R$ ,  $u^m = 1$   $(m \in \mathbb{N})$ ,  $w \in P(R)$  and e, u, w commutate.

- *Proof.*  $(1) \Rightarrow (2)$  This is obvious.
- $(2) \Rightarrow (3)$  Luh's Theorem states that a ring S is potent if and only if for any  $x \in S$  there exists a prime n such that  $x = x^n$  (cf. [13]). Let  $a \in R$ . Since R/J(R) is potent, we have a prime  $m \geq 2$  such that  $\overline{a} = \overline{a^m}$  in R/P(R). Therefore,  $a a^m \in P(R)$ .
- $(3)\Rightarrow (4)$  Let  $a\in R$ . Then we have a prime  $n\geq 2$  such that  $a-a^n\in P(R)\subseteq N(R)$ . By Theorem 1.1, R is periodic. Let  $x\in N(R)$ . Then  $\overline{x}\in R/P(R)$  is potent; whence,  $\overline{x}=\overline{0}$  in R/P(R). Thus,  $x\in P(R)$ , and so  $N(R)\subseteq P(R)$ . By [7, Proposition 13.1.18], a=eu+w, where  $e=e^2\in R, u\in U(R), w\in P(R)$  and e,u,w commutate. Write  $u^k=u^{k+m}$  for some  $m,k\in\mathbb{N}$ . Then  $u^m=1$ , as desired,
- $(4)\Rightarrow (1)$  For any  $a\in R,\ a=eu+w,$  where  $e=e^2\in R, u^m=1\ (m\in\mathbb{N}), w\in P(R)$  and e,u,w commutate. Set p=eu. Then  $p=eu^{m+1}=p^{m+1},$  i.e.,  $p\in R$  is potent. Thus, R is strongly periodic.  $\square$

Corollary 3.11. Every subring of a strongly periodic ring is strongly periodic.

*Proof.* Let R be strongly periodic, and let  $S \subseteq R$ . For any  $a \in S$ , there exists some  $n \geq 2$  such that  $a - a^n \in P(R)$  in terms of Theorem 3.10. Hence,  $(R(a-a^n)R)^m = 0$  for some  $m \in \mathbb{N}$ . This forces that  $(S(a-a^n)S)^m = 0$ . Therefore  $a - a^n \in P(S)$ . By using Theorem 3.10 again, S is strongly periodic, as needed.  $\square$ 

For example, if R is the finite subdirect product of strongly periodic rings, then Corollary 3.11 shows that R is strongly periodic.

Example 3.12. Let F = GF(q) be a Galois field and let V be an infinite dimensional left vector space over  $F_p$  with  $\{v_1, v_2, \cdots\}$  a basis. For the endomorphism ring  $A = End_F(V)$ , define  $A_1 = \{f \in A \mid rank(f) < \infty \text{ and } f(v_i) = a_1v_1 + \cdots + a_iv_i \text{ for } i = 1, 2, \cdots \text{ with } a_j \in F_p\}$  and let R be the F-algebra of A generated by  $A_1$  and  $A_1$ . Then  $A_1$  is strongly periodic. As in the proof of [15, Example 1.1],  $A_1 = \{f(x_1, \cdots, x_n, x_n) \in F_n\}$  and  $A_1 = \{f(x_n) \in F_n\}$  and  $A_2 = \{f(x_n) \in F_n\}$  and  $A_3 = \{f(x_n) \in F_n\}$  and then  $A_1 = \{f(x_n) \in F_n\}$  and then  $A_2 = \{f(x_n) \in F_n\}$  is potent. According to Theorem 3.10,  $A_1 = \{f(x_n) \in F_n\}$  and then  $A_2 = \{f(x_n) \in F_n\}$  is potent.

Lemma 3.13. Let I be a nilpotent ideal of a ring R. If R/I is strongly periodic, then so is R.

*Proof.* Let  $a \in R$ . Then there exists some  $n \geq 2$  such that  $\overline{a-a^n} \in P(R/I)$ . Hence,  $(R(a-a^n)R)^m \subseteq I$ . As I is nilpotent,  $(R(a-a^n)R)^{mn} = 0$ . This shows that  $a-a^n \in P(R)$ . Therefore R is strongly periodic, by Theorem 3.9.  $\square$ 

Theorem 3.14. Let I be an ideal of a ring R. Then the following are equivalent:

- (1) R/I is strongly periodic.
- (2)  $R/I^n$  is strongly periodic for all  $n \in \mathbb{N}$ .
- (2)  $R/I^n$  is strongly periodic for some  $n \in \mathbb{N}$ .

*Proof.* (1)  $\Rightarrow$  (2) Clearly,  $R/I \cong (R/I^n)/(I/I^n)$ . Since  $(I/I^n)^n = 0$ , proving (2) by Lemma 3.13.

- $(2) \Rightarrow (3)$  This is trivial.
- $(3)\Rightarrow (1)$  For any  $\overline{a}\in R/I$ , we see that  $a+I^n\in R/I^n$ . By hypothesis, there exists a potent  $\overline{p}\in R/I^n$  such that  $\overline{a-p}\in P(R/I^n)$ . Write  $\overline{p}=\overline{p}^m$  for some  $m\geq 2$ . Then  $p-p^m\in I^n\subseteq I$ , and so  $\overline{p}\in R/I$  is potent. Obviously,  $(R/I^n)\overline{(a-p)}(R/I^n)$  is nilpotent, and then  $(R(a-p)R)^s\subseteq I^n\subseteq I$  for some  $s\in \mathbb{N}$ . We infer that  $(R/I)\overline{(a-p)}(R/I)$  is nilpotent. As in the proof of Theorem 3.1, we infer that  $\overline{a-p}\in P(R/I)$ , as required.  $\square$

Recall that a ring R is an abelian ring if every idempotent in R is central. A ring R is strongly  $\pi$ -regular if for any  $a \in R$  there exists  $n \in \mathbb{N}$  such that  $a^n \in a^{n+1}R$ . Obviously, every periodic ring is strongly  $\pi$ -regular. We now derive

Lemma 3.15. Every abelian periodic ring of bounded index is strongly periodic.

*Proof.* Let R be an abelian periodic ring of bounded index. Then R is strongly  $\pi$ -regular. Badawi's Theorem states that the set of all nilpotent elements of an abelian strongly  $\pi$ -regular ring is an ideal [2]. Thus, N(R) forms an ideal of R. This completes the proof, by Theorem 3.1.  $\square$ 

Let  $n \geq 2$  be a fixed integer. A ring R is said to be generalized n-like provided that for any  $a, b \in R$ ,  $(ab)^n - ab^n - a^nb + ab = 0$  (cf. [18]). It is proved that every generalized 3-like ring is commutative ( [18, Theorem 3]). We now derive

Theorem 3.16. Every generalized n-like ring is strongly periodic.

Proof. Let R be a generalized n-like ring, and let  $a \in R$ . Then  $a^{2n} - 2a^{n+1} + a^2 = 0$ , and so  $(a - a^n)^2 = 0$ . Thus,  $a - a^n \in N(R)$ . Accordingly, R is periodic by Theorem 1.1. In light of [18, Lemma 2], R is abelian. If  $a^m = 0$ , then  $a^2(1 - a^n) = 0$ , and so  $a^2 = 0$ . Thus, R is of bounded index 2. Therefore R is strongly periodic, by Lemma 3.15.  $\square$ 

Let 
$$R = \{ \begin{pmatrix} x & y & z \\ 0 & x^2 & 0 \\ 0 & 0 & x \end{pmatrix} \mid x, y, z \in GF(4) \}$$
. Then for each  $a \in R$ ,  $a^7 = a$ 

or  $a^7 = a^2 = 0$ . Therefore R is a generalized 7-like ring. By Theorem 3.16, R is strongly periodic. In this case, R is abelian but not commutative (cf. [18, Example 2]).

#### 4. J-CLEAN-LIKE RINGS

We now consider J-clean-like Morita contexts and extend Theorem 2.2 as follows.

THEOREM 4.1. Let T be the ring of a Morita context  $(A, B, M, N, \psi, \varphi)$  with  $\operatorname{im}(\psi) \subseteq J(A)$  and  $\operatorname{im}(\varphi) \subseteq J(B)$ . If A and B are J-clean-like, then so is T.

*Proof.* Let  $\begin{pmatrix} a & n \\ m & b \end{pmatrix} \in T$ . Then we have potent  $p \in A$  and  $q \in B$  such that  $a - p \in J(A)$  and  $b - q \in J(B)$ . Hence

$$\left(\begin{array}{cc} a & n \\ m & b \end{array}\right) - \left(\begin{array}{cc} p & 0 \\ 0 & q \end{array}\right) = \left(\begin{array}{cc} a - p & n \\ m & b - q \end{array}\right).$$

Let  $\begin{pmatrix} c & s \\ t & d \end{pmatrix} \in T$ . As  $1_A - (a-p)c - \psi(n \otimes t) \in U(A)$  and  $1_B - (b-q)d - \varphi(m \otimes s) \in U(B)$ , it follows by [20, Lemma 3.1] that

$$\begin{split} &\mathbf{1}_T - \left( \begin{array}{cc} a-p & n \\ m & b-q \end{array} \right) \left( \begin{array}{cc} c & s \\ t & d \end{array} \right) \\ = & \left( \begin{array}{cc} \mathbf{1}_A - (a-p)c - \psi(n \bigotimes t) & * \\ * & \mathbf{1}_B - (b-q)d - \varphi(m \bigotimes s) \end{array} \right) \in U(T). \end{split}$$

Hence, 
$$\begin{pmatrix} a-p & n \\ m & b-q \end{pmatrix} \in J(T)$$
, and therefore  $T$  is J-clean-like.  $\square$ 

As a consequence, we deduce that the  $n \times n$  lower (upper) triangular matrix ring over a J-clean-like ring is J-clean-like.

COROLLARY 4.2. Let R be J-clean-like, and let  $s \in J(R) \cap C(R)$ . Then  $M_{(s)}(R)$  is J-clean-like.

*Proof.* As in the proof of Corollary 2.3,  $M_{(s)}(R)$  can be regarded as the ring of a Morita context  $(R, R, R, R, \psi, \varphi)$  with  $\operatorname{im}(\psi) \subseteq J(R)$  and  $\operatorname{im}(\varphi) \subseteq J(R)$ . According to Theorem 4.1,  $M_{(s)}(R)$  is J-clean-like.  $\square$ 

Corollary 4.3. Let R be a J-clean-like ring. Then  $M_{(x)}(R[[x]])$  is J-clean-like.

*Proof.* For any  $f(x) \in R[[x]]$ , we can find a potent  $p \in R$  such that  $f(0) - p \in J(R)$ . Hence, f(x) = p + (f(x) - p). One easily checks that  $f(x) - p \in J(R[[x]])$ . Thus, R[[x]] is J-clean-like. Choose s = x. Applying Corollary 4.2 to R[[x]],  $M_{(x)}(R[[x]])$  is J-clean-like.  $\square$ 

Analogously, if R is a J-clean-like ring then so is  $M_{(x^m)}(R[[x]]/(x^n))$  for all  $1 \le m \le n$ .

PROPOSITION 4.4. A ring R is strongly periodic if and only if the following two conditions hold simultaneously:

- (1) R is J-clean-like;
- (2) J(R) is locally nilpotent.

*Proof.*  $\Longrightarrow$  Suppose R is strongly periodic. As  $P(R) \subseteq J(R)$ , R is J-clean-like. Let  $x \in J(R)$ . Then there exists a potent  $p \in R$  such that  $x - p \in P(R)$ ; hence,  $p = x - (x - p) \in J(R)$ . This shows that p = 0, and so  $x \in P(R)$ . As in the proof of Theorem 3.1, RxR is nilpotent. As the sum of finite nilpotent ideal is nilpotent, we prove that J(R) is locally nilpotent, as required.

 $\Leftarrow$  Let  $x \in J(R)$ . Since J(R) is locally nilpotent, RxR is nilpotent. As in the proof of Theorem 3.1, we get  $x \in P(R)$ . Hence,  $J(R) \subseteq P(R)$ . This completes the proof, by (1).  $\square$ 

Recall that a ring R is J-clean provided the for any  $a \in R$  there exists an idempotent  $e \in R$  such that  $a - e \in J(R)$  (cf. [6]). This following result explains the relation between J-clean rings and J-clean-like rings.

PROPOSITION 4.5. A ring R is J-clean if and only if the following two conditions hold:

- (1) R is J-clean-like;
- (2)  $J(R) = \{x \in R \mid 1 x \in U(R)\}.$

*Proof.* ⇒ Clearly, R is J-clean-like. It is easy to check that  $J(R) \subseteq \{x \in R \mid 1-x \in U(R)\}$ . If  $1-x \in U(R)$ , then there exists an idempotent  $e \in R$  such that  $w := x - e \in J(R)$ . Hence,  $1-e = (1-x) + w = (1-x) \left(1 + (1-x)^{-1}w\right) \in U(R)$ . This shows that 1-e = 1, and so e = 0. Therefore  $x \in J(R)$ , and so  $J(R) \supseteq \{x \in R \mid 1-x \in U(R)\}$ , as required.

Example 4.6. Let  $R = \begin{pmatrix} \mathbb{Z}_3 & \mathbb{Z}_3 \\ 0 & \mathbb{Z}_3 \end{pmatrix}$ . Then R is J-clean-like, while it is not J-clean. For any  $\begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \in R$ , we see that  $\begin{pmatrix} a & c \\ 0 & b \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} + \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix}$  is the sum of a potent element in R and an element in J(R), hence that R is J-clean-like. As  $R/J(R) \cong \mathbb{Z}_3$  is not Boolean, we conclude that R is not J-clean.

An element  $p \in R$  is *J*-potent provided that there exists some  $n \geq 2$  such that  $p - p^n \in J(R)$ . We say that every potent element lifts modulo J(R) if for any *J*-potent  $p \in R$  there exists a potent  $q \in R$  such that  $p - q \in J(R)$ .

LEMMA 4.7. A ring R is J-clean-like if and only if the following two conditions hold:

- (1) R/J(R) is potent;
- (2) Every potent element lifts modulo J(R).

*Proof.*  $\Longrightarrow$  This is obvious.

 $\Leftarrow$  Let  $a \in R$ . Then  $\overline{a} \in R/J(R)$  is potent. By hypothesis, we can find a potent  $p \in R$  such that  $a - p \in J(R)$ . Accordingly, R is J-clean-like.  $\square$ 

Recall that a ring R is right (left) quasi-duo provided that every maximal right (left) ideal is a two-sided ideal. As is well known, every right (left) duo ring (i.e., every right (left) ideal is two-sided) is right (left) quasi-duo. We come now to the main result of this section.

THEOREM 4.8. A ring R is J-clean-like if and only if the following three conditions hold:

- (1) R/J(R) is periodic;
- (2) R is right (left) quasi-duo;
- (3) Every potent element lifts modulo J(R).

 $Proof. \Longrightarrow$  In view of Lemma 4.7, R/J(R) is potent, and so it is periodic. Let M be a maximal right ideal of R, and let  $r \in R$ . Then  $J(R) \subseteq M$ , and that M/J(R) is a maximal right of R/J(R). As is well known, every potent ring is commutative, and so  $rx + J(R) \in M/J(R)$  for any  $x \in M$ . Write rx + J(R) = y + J(R) for a  $y \in M$ . hence,  $rx - y \in J(R) \subseteq M$ . This shows that  $rx \in M$ ; hence,  $rM \subseteq M$ . Therefore M is a two-sided ideal, and then R is right quasi-duo. Likewise, R is left quasi-duo. (3) is obvious, by Lemma 4.7.

 $\Leftarrow$  Let  $a \in R$ . By (1), there exists a  $p \in R$  such that  $\overline{a-p} \in N(R/J(R))$ ,  $p-p^n \in J(R)(n \geq 2)$ , by Theorem 1.1. By (3), we may assume that  $p=p^n$ . Set w=a-p. Then  $\overline{w}^m=0$ . Since R is right (left) quasi-duo, as in [7, Corollary 3.4.7], we see that  $ex-xe \in J(R)$  for any idempotent  $e \in R$  and any

element  $x \in R$ . This means that R/J(R) is abelian. Similarly to the proof of [7, COROLLARY 1.3.15], R/J(R) is reduced. Hence,  $\overline{w} = \overline{0}$ , and then  $w \in J(R)$ . Therefore  $a - p \in J(R)$ , as desired.  $\square$ 

As a consequence of Corollary 3.5, every right (left) duo periodic ring is strongly periodic. Further, we derive

COROLLARY 4.9. A ring R is strongly periodic if and only if

- (1) R is periodic;
- (2) R is right (left) quasi-duo;
- (3) J(R) is locally nilpotent.

*Proof.*  $\Longrightarrow$  Clearly, R is periodic. It follows from Proposition 4.4 that R is J-clean-like and J(R) is locally nilpotent. Thus, R is right (left) quasi-duo, by Theorem 4.8.

 $\Leftarrow$  Since R is periodic, R/J(R) is periodic. Thus, R is J-clean-like, by Theorem 4.8. By (3), J(R) = P(R), and the result follows.  $\square$ 

Example 4.10. Let  $R = \mathbb{Z}_{(5)}$ . Then R is right (left) quasi-duo, R/J(R) is periodic, while R is not J-clean-like.

Proof. Let  $R=\mathbb{Z}_{(5)}$ . Then J(R)=5R. Hence,  $R/J(R)\cong\mathbb{Z}_5$  is a finite field. Thus, R/J(R) is periodic. Suppose every potent element lifts modulo J(R). Clearly,  $2-2^5\in J(R)$ . Hence,  $\overline{2}\in R/J(R)$  is potent. Thus, we can find a potent  $w\in R$  such that  $2-w\in J(R)$ . Write  $w=\frac{m}{n}$ , where  $(m,n)=1,5\nmid n$  and  $w=w^s(s\geq 2)$ . Then  $w(1-w^{s-1})=0$ , and so w=0 or  $w^{s-1}=1$ . If w=0, then  $2\in J(R)$ , a contradiction. If  $w^{s-1}=1$ , then  $\frac{m^{s-1}}{n^{s-1}}=1$ ; whence,  $m=\pm n$ . This implies that  $w=\pm 1$ ; hence,  $2-w=1,3\not\in J(R)$ , a contradiction. Therefore R is not J-clean-like, by Lemma 4.7.  $\square$ 

LEMMA 4.11. Let R be J-clean-like. Then  $N(R) \subseteq J(R)$ .

Proof. Let  $x \in N(R)$ . Then  $x^m = 0$  for some  $m \ge 2$ . Moreover, there exists a potent  $p \in R$  such that  $w := x - p \in J(R)$ . Write  $p = p^n$  for some  $n \ge 2$ . Then  $p = p^n = (p^n)^n = p^{n^2} = (p^n)^{n^2} = p^{n^3} = \cdots = p^{n^m}$ . Clearly,  $n^m = \left(1 + (n-1)\right)^m \ge m(n-1) \ge m$ , and so  $x^{n^m} = 0$ . As  $x^{n^m} - p^{n^m} \in J(R)$ , we have  $x = p + w = p^{n^m} + w \in J(R)$ . Therefore  $x \in J(R)$ , hence the result.  $\square$ 

Lemma 4.12. Let R be a ring. Then the following are equivalent:

- (1) R is a periodic ring in which every nilpotent is contained in J(R).
- (2) R is J-clean-like and J(R) is nil.

*Proof.*  $(1) \Rightarrow (2)$  Suppose R is a periodic ring with  $N(R) \subseteq J(R)$ . Let  $x \in J(R)$ . Then we have  $m, n \in \mathbb{N}$  such that  $x^m = x^n (n > m)$ . Hence,  $x^m (1 - x^{n-m}) = 0$ , and so  $x^m = 0$ . This shows that J(R) is nil. Let  $a \in R$ . In

view of Theorem 1.1, there exists a potent  $p \in R$  such that  $a - p \in N(R)$ . By hypothesis,  $a - p \in J(R)$ . Therefore R is J-clean-like.

 $(2)\Rightarrow (1)$  For any  $a\in R$ , there exists a potent  $p\in R$  such that  $w:=a-p\in J(R)$ . Hence, a=p+w and  $p=p^n$  for some  $n\geq 2$ . Thus,  $a^n=p^n+v$  for a  $v\in J(R)$ . This implies that  $a-a^n=w-v\in J(R)\subseteq N(R)$ . Therefore R is periodic, by Theorem 1.1. In light of Lemma 4.11, every nilpotent of R is contained in J(R), as desired.  $\square$ 

THEOREM 4.13. Let R be a ring. If for any sequence of elements  $\{a_i\} \subseteq R$  there exists a  $k \in \mathbb{N}$  and  $n_1, \dots, n_k \geq 2$  such that  $(a_1 - a_1^{n_1}) \cdots (a_k - a_k^{n_k}) = 0$ , then R is J-clean-like.

*Proof.* For any  $a \in R$ , we have a  $k \in \mathbb{N}$  and  $n_1, \dots, n_k \geq 2$  such that  $(a-a^{n_1})\cdots(a-a^{n_k})=0$ . This implies that  $a^k=a^{k+1}f(a)$  for some  $f(t)\in\mathbb{Z}[t]$ . In view of Theorem 1.1, R is periodic.

Clearly, R/J(R) is isomorphic to a subdirect product of some primitive rings  $R_i$ . Case 1. There exists a subring  $S_i$  of  $R_i$  which admits an epimorphism  $\phi_i: S_i \to M_2(D_i)$  where  $D_i$  is a division ring. Case 2.  $R_i \cong M_{k_i}(D_i)$  for a division ring  $D_i$ . Clearly, the hypothesis is inherited by all subrings, all homomorphic images of R, we claim that, for any sequence of elements  $\{a_i\} \subseteq M_2(D_i)$  there exists  $s \in \mathbb{N}$  and  $m_1, \cdots, m_s \geq 2$  such that  $(a_1 - a_1^{m_1}) \cdots (a_s - a_s^{m_s}) = 0$ . Choose  $a_i = e_{12}$  if i is odd and  $a_i = e_{21}$  if i is even. Then  $(a_1 - a_1^{m_1})(a_2 - a_2^{m_2}) \cdots (a_s - a_s^{m_s}) = a_1 a_2 \cdots a_s \neq 0$ , a contradiction. Thus, Case I do not happen. Further, in Case II,  $k_i = 1$  for all i. This shows that each  $R_i$  is reduced, and then so is R/J(R). If  $a \in N(R)$ , we have some  $n \in \mathbb{N}$  such that  $a^n = 0$ , and thus  $\overline{a}^n = 0$  is R/J(R). Hence,  $\overline{a} \in J(R/J(R)) = 0$ . This implies that  $a \in J(R)$ , and so  $N(R) \subseteq J(R)$ . Therefore R is J-clean-like, by Lemma 4.12.  $\square$ 

Recall that a subset I of a ring R is left (resp., right) T-nilpotent in case for every sequence  $a_1, a_2, \cdots$  in I there is an n such that  $a_1 \cdots a_n = 0$  (resp.,  $a_n \cdots a_1 = 0$ ). Every nilpotent ideal is left and right T-nilpotent. The Jacobson radical J(R) of a ring R is left (resp., right) T-nilpotent if and only if for any nonzero left (resp., right) R-module M,  $J(R)M \neq M$ (resp.,  $MJ(R) \neq M$ ).

COROLLARY 4.14. Let R be a ring. If R/J(R) is potent and J(R) is left (resp., right) T-nilpotent, then R is J-clean-like.

Proof. We may assume R/J(R) is potent and J(R) is left T-nilpotent. For every sequence  $a_1, a_2, \cdots, a_m, \cdots$  in R, there exists some  $n_i \in \mathbb{N}$  such that  $a_i - a_i^{n_i} \in J(R)$  for all i. We choose  $b_1 = a_1 - a_1^{n_1}, b_2 = (1 - b_1)^{-1} \left(a_2 - a_2^{n_2}\right), b_3 = (1 - b_2)^{-1} \left(a_3 - a_3^{n_3}\right), \cdots, b_m = (1 - b_{m-1})^{-1} \left(a_m - a_m^{n_m}\right), \cdots$ . By hypothesis, we can find some  $k \in \mathbb{N}$  such that  $b_1(1 - b_1)b_2(1 - b_2) \cdots b_{k-1}(1 - b_{k-1}) = 0$ .

Hence,  $b_1(1-b_1)b_2(1-b_2)\cdots b_{k-1}(1-b_{k-1})b_k = 0$ . This shows that  $(a_1-a_1^{n_1})\cdots (a_s-a_k^{n_k})=0$ . Therefore R is J-clean-like, by Theorem 4.13.  $\square$ 

**Acknowledgments.** The authors are grateful to the referee for his/her helpful suggestions which make the new version clearer. Chen was supported by the Natural Science Foundation of Zhejiang Province, China (No. LY7A010018).

## REFERENCES

- [1] H. Abu-Khuzam, Commutativity results for periodic rings. Acta Math. Hungar. 58 (1991), 273–277.
- [2] A. Badawi, On abelian  $\pi$ -regular rings. Comm. Algebra **25** (1997), 1009–1021.
- [3] G.F. Birkenmeier, H.E. Heatherly and E.K. Lee, Completely prime ideals and associated radicals. In: Proceedings of the Biennial Ohio State-Denison Conference, S.K. Jain and S.T. Rizvi (Eds.), 1992, World Scientific, Singapore, 1993, pp. 102–129.
- [4] W.D. Burgess, On strongly clean matrices over commutative clean rings, arXiv: 1401. 2052v1 [math.R.A] 9 Jul 2014.
- [5] M. Chacron, On a theorem of Herstein. Canad. J. Math. 21 (1969), 1348–1353.
- [6] H. Chen, On strongly J-clean rings. Comm. Algebra 38 (2010), 3790–3804.
- [7] H. Chen, Rings Related Stable Range Conditions. Series in Algebra 11, World Scientific, Hackensack, NJ, 2011.
- [8] A.J. Diesl, Nil clean rings. J. Algebra 383 (2013), 197–211.
- [9] Y. Hirano, H. Tominaga and A. Yaqub, On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element. Math. J. Okayama Univ. 30 (1988), 33–40.
- [10] N. Jacobson, Structure of Rings. Amer. Math. Soc. Colloq. Publications 37, American Mathematical Society, Providence, RI, 1964.
- [11] N.K. Kim and Y. Lee, Extensions of reversible rings. J. Pure Appl. Algebra 185 (2003), 207–223.
- [12] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, Heidelberg, Berlin, London, 2001.
- [13] J. Luh, On the structure of J-rings. Amer. Math. Mon. 74 (1967), 164-166.
- [14] J.C. McConnell and J.C. Robson, *Noncommutative Noetherian Rings*. New York, NY: John Wiley, 1988.
- [15] N.K. Kim and Y. Lee, On rings whose prime ideals are completely prime. J. Pure Appl. Algebra 170 (2002), 255–265.
- [16] R. Mohammadi, A. Moussavi and M. Zahiri, On nil-semicommutative rings. Int. Electron. J. Algebra 11 (2012), 20-37.
- [17] B. Ma, A Generalization of Weakly Periodic-like Rings and the Study of Commutativity. M.S. Thesis, Hanzghou Normal University, Hangzhou, 2014.
- [18] H.G. Moore, Generalized n-like rings and commutativity. Canad. Math. Bull. 23 (1980), 449–452.
- [19] M. Ôhori, On strongly π-regular rings and periodic rings. Math. J. Okayama Univ. 27 (1985), 49–52.

- [20] G. Tang, C. Li and Y. Zhou, Study of Morita contexts. Comm. Algebra 42 (2014), 1668–1681.
- [21] G. Tang and Y. Zhou, Strong cleanness of generalized matrix rings over a local ring, Linear Algebra Appl. 437 (2012), 2546–2559.

Received 3 April 2015

Hangzhou Normal University, Department of Mathematics, Hangzhou 310036, China huanyinchen@aliyun.com

Statistics and Computer Science Semnan University, Faculty of Mathematics, Semnan, Iran m.sheibani1@gmail.com