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Let G be a finite p-group of order p". In 1956, Green proved that the order of
M(G), the Schur multiplier of G, is equal to p%"("_l)_t for some integer ¢t > 0.
The p-groups which satisfy 0 < ¢ < 5 are determined up to now. In this paper,
we classify all finite p-groups with ¢t = 6.
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1. INTRODUCTION

The study of the Schur multipliers of groups dates back to 1904 [20]. This
study has an impact on other aspects of group theory. There are several bounds
on the order of the Schur multiplier of a group. For instance when G is a finite
p-group of order p", Green [9] has shown that the order of M(G), the Schur
multiplier of G, is at most p%"(”_l). Another concept which is closely related
to the Schur multiplier and has been studied independently from 1987, is the
non-abelian tensor square of groups and it was introduced by R. Brown and J.-
L. Loday [4]. When G is a finite p-group of order p™ with commutator subgroup
of order p¢, Rocco [19] proved that the order of G ® G, the non-abelian tensor
square of G, cannot exceed p™("~¢). One of the interesting subjects is to classify
p-groups when the order of their Schur multipliers and their non-abelian tensor
squares is determined. If |M(G)| = p2(=D~t and |G ® G| = pMn=9-L for
some integers t,l > 0, the characterization of p-groups when 0 <t < 5 is given
(see [2,7,16] and [21]), likewise for 0 <[ < 10 and ¢ = 1, the classification may
be found in [11]. In this paper, we improve these classifications when ¢ = 6
and [ = 11,12,13.

Notations:

D,,Q,,QD, = Dihedral, Quaternion and QuasiDihedral group of or-
der n;
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E;S, Eig = Extra special group of order p? with exponent p or p?, p > 2;

EQdQWH,E;QmH = Central product of m copies of Dg’s or E;g’S;

Egzm+1 = Central product of (m — 1) copies of Dg’s and a single Qs;

EI%QWH = Central product of (m — 1) copies of E;3’s and a single Ezg,;

GE;QM = Generalized extra special group of order p?*" with exponent p”
and presentation (z,y, z|[a? = y? = 27" = 1,[z,y] = 27" [y, 2] = [z, 2] = 1);

T

GE;;;IT = Generalized extra special group of order p?>*" with exponent

. r+1 r
p"t1 and presentation (z,y|zP" =yP = 1,2Y = 21 1P");
GE;QWFT, GE;;,}M = Central product of m copies of GE;HT ’s or GE;;S}T ’s;

T;, X;,Y;, Z; = Nonabelian p-groups are described in table I.

THEOREM A. Let G be a p-group of order p" and |IM(G)| = p%”("_l)_t.
Then
t =6 if and Only ifG= Cp4, CpX (Cp2)2, (Cp)5 XCPQ, Q167 QDlﬁ, Tg, Ty XCQ,
Tio, Ti1, Qsx(C2)%, Tax(Ca)?, EfyxCa, EgyxCa, Dsx(Ca)*, X3, ElyxCppa,
X1 xCp, XexCp, Yy, E;5 x Cyp, Ezs x Cy, Eig x (Cp)3, Xa x (Cp)?, GE;4+27
Y3 x C, or E;;), x (Cp)°.

THEOREM B. Let G be a p-group of order p" with derived subgroup of
order p and |G ® G| = p»=D=L. Then
(’L) [ =11 if and only if G T13, T1 X (02)2, T2 X (02)2, Qg X 02 X 04, Dg X
(Cg)lo,
Qs X (C)', Ely x Cpa x Cp, X1 x (Cp)?, EZy x (Cy)°, Efy x (Cp)',
E;ﬂmﬂ X (Cp)H*Qm for any integer 2 <m <5 and i =1,2, or
G’Ef}m+2 x (Cp)"1=Cm+D) for any integer 1 < m < 5.

(ZZ) [ = 12 if and only if G = T147 T15, T3 X (CQ>2, T7 X CQ, Dg X CQ X
047 E2d137 Egl?m

Dgx(Ca)M, Qex(C2)'2, Vs, Yo, Xox(Cp)?, X4xC)p2, Eiiix(cp)loa E;w, Eﬁm
Eég x (Cp)2, E;MH x (Cp)272m for any integer 2 < m < 5 and i = 1,2, or

GEggmH X (Cp)m_@m“) for any integer 1 < m < 5.

(’LZZ) { =13 if and only if G = Tlﬁ, T4 X C4, Tg X CQ, Tlg, Egld X CQ, Egm X 027
Dsx(C2)'?, Qsx(C2)", Yz, B2 x Cp2 xCp, X5x(Cp)?, GElyya, Z1, Za, Zs,
B2 x (Cp)'t, By x (Cp)'?, Elypyr x (Cp)'? 7™ for any integer 2 < m < 6 and
i=1,2, or GE;2er2 X (Cp)13’(2m+1) for any integer 1 < m < 6.
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2. PRELIMINARIES

In this section, we provide the necessary preliminary results. Let G and
H be two groups equipped with an action (g,h) — 9h of G on H and an
action (h,g) + "g of H on G. The actions should be compatible, see [4]. The
non-abelian tensor product G ® H is the group generated by symbols g ® h for
g € G and h € H, subject to the relations

99 @h = (%' @ %h)(g@h), gehh' =(geh) ("go"n)
for all g,¢' € G and h,h' € H. By using the conjugation action of a group on
itself we may always define the non-abelian tensor square G ® G.

Our method which is based on direct computation of non-abelian tensor
square of groups depends on the following result.

LEMMA 2.1 ([3], Proposition 9). If Z is a central subgroup of a group G,
then the following sequence is exact:
(%) GRZ)x (Z®G) GG — G/ZxG|Z — 1,
where L(g® 2,2 @ ¢') = (9@ 2)(Z ®¢) for all z,2/ € Z and 9,9 € G. In
particular if Z C G', then the sequence
(%) 700G — GG —G/ZG/|Z —1
18 exact.

The following result gives the order of the non-abelian tensor square of a
finite group G in terms of the orders of G, M(G) and M(G®).

THEOREM 2.2 ([11], Lemma 2.3). Let G be a d-generator finite p-group.
(i) If p> 2, then |G ® G| = |G||IM(G)[|M(G™)].
d

(ii) If p=2 and G/G" = HCQ% where 1 < e; < ej, for every 1 <i < j <d.
i=1
Then |G @ G| = 2F|G||IM(G)||M(G®)|, where k < d is a non-negative
integer.
Now we recall some bounds of order of the Schur multiplier of finite p-
groups.

THEOREM 2.3 ([15]). Let G be a d-generator p-group of order p™. Then
p%d(d—l) < |G/HM(G)’ < p%n(n—l)'

THEOREM 2.4 ([8]). Let G be a d-generator group of order p", the derived
factor % of order p™ with exponent p° and the central factor % be a 6-
generator group, then

IM(G)| < pd(m_e)/2+(5—1)(”—m)—max{0,5—2}.
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3. PROOF OF THE MAIN THEOREMS

Throughout the rest of the paper, we always assume that G is a d-
generator p-group of order p™ with

(1) IM(G)| = pann==,

We also assume that % is a d-generator group, |G’| = p° and the Frattini
subgroup ®(G) is of order p® and so a = n—d. Ellis [7] established the following
inequalities:

(2) 2(t—c(d+1—5))2a2—a, a>c>0,d>9
(3) 20t —c)>a*—a

Proof of Theorem A. Suppose t = 6. Then (3) implies that (c,a) =
(0,0),(0,1),(0,2),(0,3),(0,4), (1,1), (1,2), (1,3),(2,2), (2,3) or (3,3).

Suppose (c,a) = (0,0), then n > 1, IM(G)| = p
hold. Suppose (¢,a) = (0,1), then n > 2, IM(G)| =
if and only if n =7 and G = Cj2 x (Cp)®.

Using the same method for cases (0,2) and (0, 3), one can observe that
(1) holds if and only if G = (C)2)? x Cp, or G = Cpu, respectively. Also (1)
cannot hold when (c,a) = (0,4).

Suppose (¢,a) = (1,1). If Z(G) is cyclic then G is generalized extraspecial
and n = 2m + 2. Thus by [13, Theorem 4.2], |G| = p% and G = GE;G.

If Z(G) is non-cyclic, then G = M x C), where M is a maximal subgroup
of G and t(M) = t(G) — 1. So it follows from [16] that (1) holds if and only if
G is isomorphic with one of the following groups.

Qg X (02)3, Dg X (02)4, Ty x (02)2, Eng XCQ, EgQ XCQ, E;3 X (Cp>5, E§3 X (Cp)?’,
Els x Cp, B2 x Cp or Xy X (Cp)2.

3n(m=1) and (1) cannot
p2= D=2 and (1) holds

Suppose (c,a) = (1,2). Then G* = Cj» x (Cp)"~* and Theorem 2.4
implies that 2n — 4 < 6, hence n = 4,5. For odd prime p, it follows from [11,
Theorem 3.1] that G = X3, X; x C, or E;3 X Cp2. If p =2 then G = Tj or
T, x Cy by GAP.

Suppose (¢,a) = (1,3). If G = Cs x (Cp)"~* or (Cp2)? x (Cp)"5, then
by Theorem 2.4, n < 4 which is a contradiction.

Suppose (¢,a) = (2,2). Thend=3dor §+1by (2). f d =0 thenn <7
by Theorem 2.4. If n =7 then d = 5 and G has exponent p. By [18] if G may
be described as the direct product of its subgroups, the straightforward direct
computation of the non-abelian tensor square together with [13, Theorem 2.3]
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and Theorem 2.2 imply that (1) cannot hold. In other cases if G is a descendant
of algebra 5.1 discussed in [18], i.e.

(7.27)
(a,b,c,d, e |[d,al=[e, a]=][c, b]=]d, b]=]e, b]=[d, c|=[e, c|=0, [e, d]=[b, a], class2),

(7.28)
(a,b,c,d, el|ld,al=[e,a]=][c,b]=[e,b]=]d,c]=[e,c]=0, [d,b]=[c,a], [e,d]=]b,a], class2),

then the equalities [b,a] ® e = 1 and [c,a] ® d = 1, respectively, together with

the exact sequence (xx), [13, Theorem 2.3] and Theorem 2.2 imply that (1)

cannot hold. If G is a descendant of algebra 6.3 discussed in [18], i.e.

(7.191)  (a,b,c,d,e | [b,a,b] = [c,a] = [c,b] = [d,a] = [d,b] = [e,a] = [e, ]
=le,d] =0,l[d,c] = [e,b] = [b,a,a], class 3),

then similarly by the relation [b,a,a] ® ¢ = 1 we have t > 6.

Throughout the rest of this section, all the notations and group presen-
tations of James’s classification for p-groups of order less than or equal to p%,
p # 2 will be used (see [14]). If n = 6 then G belongs to one of the families of
D19, P13, P15 or Doy, At the first family put Z = (v1) in sequence (xx*) and
observe that 71 ® ag = 71 ® B2 = 1. Hence |Im(Z ® G — G ® G)| < p?. As
|G/Z ® G/Z| < p'® by [13, Theorem 2.3], it follows that |G ® G| < p?° which
is a contradiction by Theorem 2.2. If G is a direct product of its subgroups,
one can easily check that such groups does not satisfy our condition.

Similarly in families ®13 and ®15, put Z = (82) and Z = Z(G), respec-
tively, and observe that either [Im(Z ® G — G ® G)| < p? or pt. Finally, in
family ®99, put Z = (a3). It is clear that a3 ® 1 = a3 ® B2 = 1 and the same
result holds.

Let n = 5. Then G may be in the families &4 or ®7. If put Z = Z(G) in
the first family, one concludes that [Im((Z ® G) x (G ® Z) = G ® G)| < p*.
For instance, in group ®4(221)a we have 81 ® a1 = 1, /1 ® ag = f2 ® ay and
fi@a=ad @a=a ®aP = a; ® B2, because G has nilpotency class 2
(see [1, Lemma 2.6]). Also 8 ® « = 1. So the desired assertion holds and
|G ® G| < p*!, which is a contradiction by the Theorem 2.2. For the group
®4(221)b we have B1®a1 = db®@a; = a®al =1, f1Ras = 1, B1®a = db®a =
(e ® a)P (g ® 52)%p(p71) =@ (@ =as® Py and Sy @ a1 = fo @ a = 1.
Hence |G ® G| < p'°. In other groups of this family, the same result holds and
exceptionally the order of non-abelian tensor square of ®4(1°) is equal to p'4
by [13, Theorem 3.1].

In family ®7, put Z = Z(G) = (a3). We can see that Im(Z @ G —
G ® G) = 1 for all groups G of this family except ®7(1°). So by the same
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method discussed above, the desired result holds. In particular for the group
P7(2111)b,, (a3 @ )" =) @ a = (1 ® )P = (a1 @ o) (a3 ® a)_%p(p_l)(p_m
and when p > 3, (a3 ® a)_ép(p_l)(p_z) =1. Soag®a =1. If p = 3 then
GAP calculation shows that the order of the Schur multiplier of this group is
at most p3.

When G = ®7(1°5) = Yj, we first use the method of [5] to determine
a presentation of its Lazard correspondence Lie ring L,, which has the same
order and nilpotency class for p > 5, i.e.

Lp = <CL, a17a27a‘37b | [G;l,a} = a2 — %a37 [CLQ,CL] = as, [al,b] = a/3>'

Since this group has exponent p, the Lie ring L, may be regarded as a Lie
algebra over the field Z, and hence it is isomorphic to the nilpotent Lie algebra
L(4, 5, 1, 6) of dimension 5 given in [10] which has the Schur multiplier of
dimension 4. In addition, the Schur multipliers of L, and G are isomorphic
by [6, Theorem 1]. Therefore |M(G)| = p*, as desired. Also, GAP shows that
the group G does satisfy our condition when p = 3.

If n = 4 then G belongs to the family ®3 and there is no group which
satisfies (1).

Now suppose d = d + 1, then by Theorem 2.4, it follows that n < 6.
Thus our group G must be in one of the families of &3, &4 or &7. If d = 4
and n = 6, then by Theorem 2.4, G may belong to &4 or ®;. In the first
family for groups ®4(2211)g, ®4(2211)h and ®4(2211)i take Z = (f2). So
Im(Z @ G - G ®G)| < p? and |G ® G| cannot equal to p?'. For group
®4(21%)d it is enough to consider Z = (8;). If G = H x C, then the order
of H® H should be p'* and by [13, Theorem 3.1], we have H = ®4(1°) = Y3
whence G = Y3 x C). If G is in the family ®7, just the group ®7(21%)d has four
generators and by putting Z = («3) in sequence (#x) the desired result holds.

If d = 3 and n = 5, then the group G should belong to family ®35. When
G is a direct product of its subgroups, only the group ®3(1*) x C, = Xg x C,
satisfies our condition. In other groups, only the group ®3(2111)c has three
generators. If take Z = (a3) then sequence (*) implies that |G ® G| < p'!,
which is again a contradiction.

For the case (¢,a) = (2,2) if p is even, then G = Q16, Q@D16, T10 or 111
by GAP and in all groups we have d = 9.

Suppose (¢,a) = (2,3). As d =n — 3 it follows that n > 5. On the other
hand n < 4 by Theorem 2.4, so there is not any group in this case.

Suppose (¢,a) = (3,3). Asd =0 =n —3,s0n =5 by Theorem 2.4 and
d = 2. In this case the order of non-abelian tensor square of our group must
be p' by Theorem 2.2. But by [12] the order of a non-abelian p-group which
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attains the upper bound of tensor given by Rocco in [19], cannot exceed p.
Therefore the proof is complete. [

Proof of Theorem B. Let a = 1. If G is an extraspecial p-group of order
p?™*+1 then by [11, Corollary 2.4 and Proposition 2.6] we have

(2m +1)2m — [ = 4m?.

This equality holds if m = 6 and | = 12. Therefore |G| = p'* and G = Ezl)lg,,
Ezw, Ed; or El,.

If G is not extraspecial and Z(G) is cyclic, then by [13, Theorem 4.2],
|Z(G)| = p? and n = 2m +2. Thus [ = 11 if and only if G = GEI%12 and [ = 13
if and only if G = GE;M. Note that the case [ = 12 does not hold here.

If Z(G) is non-cyclic then G = M x Cj, where M is a maximal subgroup
of G and (M) = I(G) — 1. Sol = 11 if and only if G is isomorphic to
E;:a X (Cp)lla Qs % (02)117 E§3 X (Cp)ga Dsg x (02)1(), E;2m+1 X (Cp)ll_Qm for
any integer 2 < m < bandi=1,2, or GE;M+2 X (Cp)11*(2m+1) for any integer
1 <m < 4. For [ = 12,13 the method is similar.

Let a > 1. By [13, Theorem 2.3] we have 2 +a < n < é(l +a+2). If
11 <1 <13 then a = 2 or 3 and consequently 4 < n < 8.

Let a = 2 and p # 2. Then G = C,2 x (Cp)"~3. By Theorems 2.2 and
2.4 we should have 2n —4 <t =1—n+3. Thus n = 4, 5 or 6. But as in
Theorem 2.3, n must be 6. Now by James’s classification of p-groups if G is

a direct product of its subgroups, one can easily observe by [11, Theorems 3.1
and 3.2] that

[ =11 if and only if G = ®3(211)c x (Cp)? or P2(111) x Cp2 x Cp;

[ =12 if and only if G = ®3(22) x (C},)? or ®3(211)b x Cp2;

[ =13 if and only if G = ®5(31) x (Cp)? or P3(21) x Cp2 x Cp.

For groups G = ®5(2211)a = 7, ®5(2211)b = Z,, ®5(21*)c = Z3 and
d5(311) = GE24+2, put Z = G’ in sequence (*x). Therefore |G ® G| = |G ®
G| = p!7 and we must have [ = 13.

If @ = 3 and p # 2. Then by the same argument we should have n = 5.
Hence | = 12 if and only if G = ®9(32)a; = Y5 or ®3(311)c = Y5 and [ = 13 if
and only if G = ®3(32)ag = Y7. Note that the case p = 2 may be verified by
GAP.

Remark. When | = 10 and (¢,a) = (1,3) it follows by [17] that G =
Gp(2,2,1,1,1) = (a,bla”” = b*° = 1,[a,b]” = [a,b,a) = [a,b,b] = 1). This was
missed in [11].
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Table 1
Name Relations NumberOfSmallGroup | (c,a)
Ty af=bv"=c"=1,[a,c] =0, [a,b] = [b,c] = 1 (16,3) (1,2)
Ty a*=b*=1, [a,b] = d? (16, 4) (1,2)
Ts a®=b"=1, [a,b] = a” (16, 6) (1,2)
Ty at=bv"=c"=1, b,c]=d%[a,b = [a,c] =1 (16, 13) (1,1)
Ty at=0"=c"=1, [a,b] = (32,24) (1,2)
Ty ¥ =c =1, [c,b] = a'[a,b] = [c,a] = 1 (32, 38) (1,2)
a?=b"=c=1, [a,b] =1,
Tio [a,c,b] =1, [b,c,a] =1, [be,b] =1 (32,27) (1,2)
at=pt=c2=1,
T4 [a,b] = 1,[a,c] = a®, [b,c] = b* (32,34) (1,2)
T13 a"=b"=1, [a,b]p? =1 (32,4) (1,3)
T4 a>=0b"=1, [a,b,a] = [a,b,b] = 1 (32,5) (1,3)
Tis a' =0 =1, [a,b]a® =1 (32,12) (1,3)
ny a? =0 [a,b]a® =1 (32,17) (1,3)
la1, az] = [a1, as] = [a2, a3] = a3,
Tis al = a3 =a3 =1,d} = d? (64, 200) (1,2)
at” =W=c==1,
X1 la,c] =, [a,b] = [b,c] =1,p > 2 (1,2)
Xo a” =" =1, [a,b] = aP,p > 2 (1,2)
X3 a?’ = b =1, [a,b]:aPZ,p>2 (1,2)
at” =W =c==1,
X4 [b,c] = a®,[a,b] = [a,c] =1,p > 2 (1,1)
[aiva] = Qi+1,
X a? =a® =al =1, (i=1,2),p>2 (2,2)
Ys lai,al = b;, a? =al =b7 =1, (i=1,2),p>2 (2,2)
[ai,a} = Qj+1, [al,b} = as,
Y, o =al’ =a? = =1, (i=1,2),p>2 (2,2)
Ys [aha]:a”2 = ag, a’l72 =ab=1,p>2 (1,3)
Ys [a1,a] = a2, apsza’f:ag:l,p>2 (1,3)
Y7 [a1,a] = a} = az, ap3:a§:1,p>2 (1,3)
[a1, az] = [as, asa] = a§ = b,
Z1 a’fQ:ag:aZ:bp:Lp22 (1,2)
[a1,a2] = [as,a4] = a§ =D,
Zs & =l =l =b=1,p>2 (1,2)
[a1, az] = [as, as] =D,
Zs aﬁ’z:ag:aé’:ai’:bpzl,p>2 (1,2)
- p G () : :
Here a;; will denote the word a;, a;75...a; 1} ...ai4p discussed in [14].
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