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Let G be a finite p-group of order pn. In 1956, Green proved that the order of

M(G), the Schur multiplier of G, is equal to p
1
2
n(n−1)−t for some integer t ≥ 0.

The p-groups which satisfy 0 ≤ t ≤ 5 are determined up to now. In this paper,
we classify all finite p-groups with t = 6.
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1. INTRODUCTION

The study of the Schur multipliers of groups dates back to 1904 [20]. This
study has an impact on other aspects of group theory. There are several bounds
on the order of the Schur multiplier of a group. For instance when G is a finite
p-group of order pn, Green [9] has shown that the order of M(G), the Schur

multiplier of G, is at most p
1
2
n(n−1). Another concept which is closely related

to the Schur multiplier and has been studied independently from 1987, is the
non-abelian tensor square of groups and it was introduced by R. Brown and J.-
L. Loday [4]. When G is a finite p-group of order pn with commutator subgroup
of order pc, Rocco [19] proved that the order of G⊗G, the non-abelian tensor
square of G, cannot exceed pn(n−c). One of the interesting subjects is to classify
p-groups when the order of their Schur multipliers and their non-abelian tensor
squares is determined. If |M(G)| = p

1
2
n(n−1)−t and |G ⊗ G| = pn(n−c)−l for

some integers t, l ≥ 0, the characterization of p-groups when 0 ≤ t ≤ 5 is given
(see [2,7,16] and [21]), likewise for 0 ≤ l ≤ 10 and c = 1, the classification may
be found in [11]. In this paper, we improve these classifications when t = 6
and l = 11, 12, 13.

Notations:
Dn, Qn, QDn = Dihedral, Quaternion and QuasiDihedral group of or-

der n;
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E1
p3 , E

2
p3 = Extra special group of order p3 with exponent p or p2, p > 2;

Ed22m+1 , E
1
p2m+1 = Central product of m copies of D8’s or E1

p3 ’s;

Eq
22m+1 = Central product of (m− 1) copies of D8’s and a single Q8;

E2
p2m+1 = Central product of (m− 1) copies of E1

p3 ’s and a single E2
p3 ;

GErp2+r = Generalized extra special group of order p2+r with exponent pr

and presentation 〈x, y, z|xp = yp = zp
r

= 1, [x, y] = zp
r−1
, [y, z] = [x, z] = 1〉;

GEr+1
p2+r = Generalized extra special group of order p2+r with exponent

pr+1 and presentation 〈x, y|xpr+1
= yp = 1, xy = x1+p

r〉;
GErp2m+r , GE

r+1
p2m+r = Central product ofm copies ofGErp2+r ’s orGEr+1

p2+r ’s;

Ti, Xi, Yi, Zi = Nonabelian p-groups are described in table I.

Theorem A. Let G be a p-group of order pn and |M(G)| = p
1
2
n(n−1)−t.

Then

t = 6 if and only if G ∼= Cp4 , Cp×(Cp2)2, (Cp)
5×Cp2 , Q16, QD16, T3, T1×C2,

T10, T11, Q8×(C2)
3, T4×(C2)

2, Ed32×C2, E
q
32×C2, D8×(C2)

4, X3, E
1
p3×Cp2 ,

X1×Cp, X6×Cp, Y4, E1
p5 ×Cp, E

2
p5 ×Cp, E

2
p3 × (Cp)

3, X4× (Cp)
2, GE2

p4+2 ,

Y3 × Cp or E1
p3 × (Cp)

5.

Theorem B. Let G be a p-group of order pn with derived subgroup of
order p and |G⊗G| = pn(n−1)−l. Then

(i) l = 11 if and only if G ∼= T13, T1 × (C2)
2, T2 × (C2)

2, Q8 ×C2 ×C4, D8 ×
(C2)

10,
Q8 × (C2)

11, E1
p3 × Cp2 × Cp, X1 × (Cp)

2, E2
p3 × (Cp)

9, E1
p3 × (Cp)

11,

Eip2m+1 × (Cp)
11−2m for any integer 2 ≤ m ≤ 5 and i = 1, 2, or

GE2
p2m+2 × (Cp)

11−(2m+1) for any integer 1 ≤ m ≤ 5.

(ii) l = 12 if and only if G ∼= T14, T15, T3 × (C2)
2, T7 × C2, D8 × C2 ×

C4, E
d
213 , E

q
213
,

D8×(C2)
11, Q8×(C2)

12, Y5, Y6, X2×(Cp)
2, X4×Cp2 , E2

p3×(Cp)
10, E1

p13 , E
2
p13 ,

E1
p3 × (Cp)

12, Eip2m+1 × (Cp)
12−2m for any integer 2 ≤ m ≤ 5 and i = 1, 2, or

GE2
p2m+2 × (Cp)

12−(2m+1) for any integer 1 ≤ m ≤ 5.

(iii) l = 13 if and only if G ∼= T16, T4×C4, T9×C2, T18, E
d
213×C2, E

q
213
×C2,

D8×(C2)
12, Q8×(C2)

13, Y7, E
2
p3×Cp2×Cp, X3×(Cp)

2, GE3
p4+2 , Z1, Z2, Z3,

E2
p3× (Cp)

11, E1
p3× (Cp)

13, Eip2m+1× (Cp)
13−2m for any integer 2 ≤ m ≤ 6 and

i = 1, 2, or GE2
p2m+2 × (Cp)

13−(2m+1) for any integer 1 ≤ m ≤ 6.
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2. PRELIMINARIES

In this section, we provide the necessary preliminary results. Let G and
H be two groups equipped with an action (g, h) 7→ gh of G on H and an
action (h, g) 7→ hg of H on G. The actions should be compatible, see [4]. The
non-abelian tensor product G⊗H is the group generated by symbols g⊗h for
g ∈ G and h ∈ H, subject to the relations

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h), g ⊗ hh′ = (g ⊗ h) (hg ⊗ hh′)

for all g, g′ ∈ G and h, h′ ∈ H. By using the conjugation action of a group on
itself we may always define the non-abelian tensor square G⊗G.

Our method which is based on direct computation of non-abelian tensor
square of groups depends on the following result.

Lemma 2.1 ([3], Proposition 9). If Z is a central subgroup of a group G,
then the following sequence is exact:

(∗) (G⊗ Z)× (Z ⊗G)
ι−→ G⊗G −→ G/Z ⊗G/Z −→ 1,

where ι(g ⊗ z, z′ ⊗ g′) = (g ⊗ z)(z′ ⊗ g′) for all z, z′ ∈ Z and g, g′ ∈ G. In
particular if Z ⊆ G′, then the sequence

(∗∗) Z ⊗G −→ G⊗G −→ G/Z ⊗G/Z −→ 1

is exact.

The following result gives the order of the non-abelian tensor square of a
finite group G in terms of the orders of G, M(G) and M(Gab).

Theorem 2.2 ([11], Lemma 2.3). Let G be a d-generator finite p-group.

(i) If p > 2, then |G⊗G| = |G||M(G)||M(Gab)|.

(ii) If p = 2 and G/G′ =

d∏
i=1

C2ei where 1 ≤ ei ≤ ej, for every 1 ≤ i ≤ j ≤ d.

Then |G ⊗ G| = 2k|G||M(G)||M(Gab)|, where k ≤ d is a non-negative
integer.

Now we recall some bounds of order of the Schur multiplier of finite p-
groups.

Theorem 2.3 ([15]). Let G be a d-generator p-group of order pn. Then

p
1
2
d(d−1) ≤ |G′||M(G)| ≤ p

1
2
n(n−1).

Theorem 2.4 ([8]). Let G be a d-generator group of order pn, the derived
factor G

G′ of order pm with exponent pe and the central factor G
Z(G) be a δ-

generator group, then

|M(G)| ≤ pd(m−e)/2+(δ−1)(n−m)−max{0,δ−2}.
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3. PROOF OF THE MAIN THEOREMS

Throughout the rest of the paper, we always assume that G is a d-
generator p-group of order pn with

(1) |M(G)| = p
1
2
n(n−1)−t.

We also assume that G
Z(G) is a δ-generator group, |G′| = pc and the Frattini

subgroup Φ(G) is of order pa and so a = n−d. Ellis [7] established the following
inequalities:

(2) 2(t− c(d+ 1− δ)) ≥ a2 − a, a ≥ c ≥ 0, d ≥ δ

(3) 2(t− c) ≥ a2 − a

Proof of Theorem A. Suppose t = 6. Then (3) implies that (c, a) =
(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3) or (3, 3).

Suppose (c, a) = (0, 0), then n ≥ 1, |M(G)| = p
1
2
n(n−1) and (1) cannot

hold. Suppose (c, a) = (0, 1), then n ≥ 2, |M(G)| = p
1
2
(n−1)(n−2) and (1) holds

if and only if n = 7 and G ∼= Cp2 × (Cp)
5.

Using the same method for cases (0, 2) and (0, 3), one can observe that
(1) holds if and only if G ∼= (Cp2)2 × Cp or G ∼= Cp4 , respectively. Also (1)
cannot hold when (c, a) = (0, 4).

Suppose (c, a) = (1, 1). If Z(G) is cyclic then G is generalized extraspecial
and n = 2m+ 2. Thus by [13, Theorem 4.2], |G| = p6 and G = GE2

p6 .

If Z(G) is non-cyclic, then G ∼= M ×Cp where M is a maximal subgroup
of G and t(M) = t(G)− 1. So it follows from [16] that (1) holds if and only if
G is isomorphic with one of the following groups.

Q8×(C2)
3, D8×(C2)

4, T4×(C2)
2, Ed32×C2, E

q
32×C2, E

1
p3×(Cp)

5, E2
p3×(Cp)

3,

E1
p5 × Cp, E

2
p5 × Cp or X4 × (Cp)

2.

Suppose (c, a) = (1, 2). Then Gab ∼= Cp2 × (Cp)
n−3 and Theorem 2.4

implies that 2n − 4 ≤ 6, hence n = 4, 5. For odd prime p, it follows from [11,
Theorem 3.1] that G = X3, X1 × Cp or E1

p3 × Cp2 . If p = 2 then G = T3 or
T1 × C2 by GAP.

Suppose (c, a) = (1, 3). If Gab ∼= Cp3 × (Cp)
n−4 or (Cp2)2× (Cp)

n−5, then
by Theorem 2.4, n ≤ 4 which is a contradiction.

Suppose (c, a) = (2, 2). Then d = δ or δ + 1 by (2). If d = δ then n ≤ 7
by Theorem 2.4. If n = 7 then d = 5 and G has exponent p. By [18] if G may
be described as the direct product of its subgroups, the straightforward direct
computation of the non-abelian tensor square together with [13, Theorem 2.3]
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and Theorem 2.2 imply that (1) cannot hold. In other cases if G is a descendant
of algebra 5.1 discussed in [18], i.e.

(7.27)
〈a, b, c, d, e |[d, a]=[e, a]=[c, b]=[d, b]=[e, b]=[d, c]=[e, c]=0, [e, d]=[b, a], class 2〉,

(7.28)
〈a, b, c, d, e |[d,a]=[e,a]=[c,b]=[e,b]=[d,c]=[e,c]=0, [d,b]=[c,a], [e,d]=[b,a], class 2〉,

then the equalities [b, a]⊗ e = 1 and [c, a]⊗ d = 1, respectively, together with
the exact sequence (∗∗), [13, Theorem 2.3] and Theorem 2.2 imply that (1)
cannot hold. If G is a descendant of algebra 6.3 discussed in [18], i.e.

(7.191) 〈a, b, c, d, e | [b, a, b] = [c, a] = [c, b] = [d, a] = [d, b] = [e, a] = [e, c]

= [e, d] = 0, [d, c] = [e, b] = [b, a, a], class 3〉,

then similarly by the relation [b, a, a]⊗ c = 1 we have t > 6.

Throughout the rest of this section, all the notations and group presen-
tations of James’s classification for p-groups of order less than or equal to p6,
p 6= 2 will be used (see [14]). If n = 6 then G belongs to one of the families of
Φ12, Φ13, Φ15 or Φ22. At the first family put Z = 〈γ1〉 in sequence (∗∗) and
observe that γ1 ⊗ α2 = γ1 ⊗ β2 = 1. Hence |Im(Z ⊗ G → G ⊗ G)| ≤ p2. As
|G/Z ⊗G/Z| ≤ p18 by [13, Theorem 2.3], it follows that |G ⊗G| ≤ p20 which
is a contradiction by Theorem 2.2. If G is a direct product of its subgroups,
one can easily check that such groups does not satisfy our condition.

Similarly in families Φ13 and Φ15, put Z = 〈β2〉 and Z = Z(G), respec-
tively, and observe that either |Im(Z ⊗ G → G ⊗ G)| ≤ p2 or p4. Finally, in
family Φ22, put Z = 〈α3〉. It is clear that α3 ⊗ β1 = α3 ⊗ β2 = 1 and the same
result holds.

Let n = 5. Then G may be in the families Φ4 or Φ7. If put Z = Z(G) in
the first family, one concludes that |Im((Z ⊗ G) × (G ⊗ Z) → G ⊗ G)| ≤ p2.
For instance, in group Φ4(221)a we have β1 ⊗ α1 = 1, β1 ⊗ α2 = β2 ⊗ α1 and
β1 ⊗ α = αp1 ⊗ α = α1 ⊗ αp = α1 ⊗ β2, because G has nilpotency class 2
(see [1, Lemma 2.6]). Also β2 ⊗ α = 1. So the desired assertion holds and
|G ⊗ G| ≤ p11, which is a contradiction by the Theorem 2.2. For the group
Φ4(221)b we have β1⊗α1 = αp2⊗α1 = α2⊗αp1 = 1, β1⊗α2 = 1, β1⊗α = αp2⊗α =

(α2 ⊗ α)p(α2 ⊗ β2)
1
2
p(p−1) = α2 ⊗ (α)p = α2 ⊗ β2 and β2 ⊗ α1 = β2 ⊗ α = 1.

Hence |G⊗G| ≤ p10. In other groups of this family, the same result holds and
exceptionally the order of non-abelian tensor square of Φ4(1

5) is equal to p14

by [13, Theorem 3.1].

In family Φ7, put Z = Z(G) = 〈α3〉. We can see that Im(Z ⊗ G →
G ⊗ G) = 1 for all groups G of this family except Φ7(1

5). So by the same
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method discussed above, the desired result holds. In particular for the group
Φ7(2111)br, (α3 ⊗ α)r = αp1 ⊗ α = (α1 ⊗ α)p = (α1 ⊗ αp)(α3 ⊗ α)−

1
6
p(p−1)(p−2)

and when p > 3, (α3 ⊗ α)−
1
6
p(p−1)(p−2) = 1. So α3 ⊗ α = 1. If p = 3 then

GAP calculation shows that the order of the Schur multiplier of this group is
at most p3.

When G = Φ7(1
5) = Y4, we first use the method of [5] to determine

a presentation of its Lazard correspondence Lie ring Lp, which has the same
order and nilpotency class for p ≥ 5, i.e.

Lp = 〈a, a1, a2, a3, b | [a1, a] = a2 − 1
2a3, [a2, a] = a3, [a1, b] = a3〉.

Since this group has exponent p, the Lie ring Lp may be regarded as a Lie
algebra over the field Zp and hence it is isomorphic to the nilpotent Lie algebra
L(4, 5, 1, 6) of dimension 5 given in [10] which has the Schur multiplier of
dimension 4. In addition, the Schur multipliers of Lp and G are isomorphic
by [6, Theorem 1]. Therefore |M(G)| = p4, as desired. Also, GAP shows that
the group G does satisfy our condition when p = 3.

If n = 4 then G belongs to the family Φ3 and there is no group which
satisfies (1).

Now suppose d = δ + 1, then by Theorem 2.4, it follows that n ≤ 6.
Thus our group G must be in one of the families of Φ3, Φ4 or Φ7. If d = 4
and n = 6, then by Theorem 2.4, G may belong to Φ4 or Φ7. In the first
family for groups Φ4(2211)g, Φ4(2211)h and Φ4(2211)i take Z = 〈β2〉. So
|Im(Z ⊗ G → G ⊗ G)| ≤ p2 and |G ⊗ G| cannot equal to p21. For group
Φ4(214)d it is enough to consider Z = 〈β1〉. If G ∼= H × Cp then the order
of H ⊗H should be p14 and by [13, Theorem 3.1], we have H = Φ4(1

5) = Y3
whence G ∼= Y3×Cp. If G is in the family Φ7, just the group Φ7(214)d has four
generators and by putting Z = 〈α3〉 in sequence (∗∗) the desired result holds.

If d = 3 and n = 5, then the group G should belong to family Φ3. When
G is a direct product of its subgroups, only the group Φ3(1

4)× Cp = X6 × Cp
satisfies our condition. In other groups, only the group Φ3(2111)c has three
generators. If take Z = 〈α3〉 then sequence (∗∗) implies that |G ⊗ G| ≤ p11,
which is again a contradiction.

For the case (c, a) = (2, 2) if p is even, then G = Q16, QD16, T10 or T11
by GAP and in all groups we have d = δ.

Suppose (c, a) = (2, 3). As d = n− 3 it follows that n ≥ 5. On the other
hand n ≤ 4 by Theorem 2.4, so there is not any group in this case.

Suppose (c, a) = (3, 3). As d = δ = n− 3, so n = 5 by Theorem 2.4 and
d = 2. In this case the order of non-abelian tensor square of our group must
be p10 by Theorem 2.2. But by [12] the order of a non-abelian p-group which
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attains the upper bound of tensor given by Rocco in [19], cannot exceed p3.
Therefore the proof is complete. �

Proof of Theorem B. Let a = 1. If G is an extraspecial p-group of order
p2m+1, then by [11, Corollary 2.4 and Proposition 2.6] we have

(2m+ 1)2m− l = 4m2.

This equality holds if m = 6 and l = 12. Therefore |G| = p13 and G = E1
p13 ,

E2
p13 , Ed213 or Eq

213
.

If G is not extraspecial and Z(G) is cyclic, then by [13, Theorem 4.2],
|Z(G)| = p2 and n = 2m+ 2. Thus l = 11 if and only if G = GE2

p12 and l = 13

if and only if G = GE2
p14 . Note that the case l = 12 does not hold here.

If Z(G) is non-cyclic then G ∼= M ×Cp where M is a maximal subgroup
of G and l(M) = l(G) − 1. So l = 11 if and only if G is isomorphic to
E1
p3 × (Cp)

11, Q8 × (C2)
11, E2

p3 × (Cp)
9, D8 × (C2)

10, Eip2m+1 × (Cp)
11−2m for

any integer 2 ≤ m ≤ 5 and i = 1, 2, or GE2
p2m+2×(Cp)

11−(2m+1) for any integer
1 ≤ m ≤ 4. For l = 12, 13 the method is similar.

Let a > 1. By [13, Theorem 2.3] we have 2 + a ≤ n ≤ 1
a(l + a + 2). If

11 ≤ l ≤ 13 then a = 2 or 3 and consequently 4 ≤ n ≤ 8.

Let a = 2 and p 6= 2. Then Gab ∼= Cp2 × (Cp)
n−3. By Theorems 2.2 and

2.4 we should have 2n − 4 ≤ t = l − n + 3. Thus n = 4, 5 or 6. But as in
Theorem 2.3, n must be 6. Now by James’s classification of p-groups if G is
a direct product of its subgroups, one can easily observe by [11, Theorems 3.1
and 3.2] that

l = 11 if and only if G ∼= Φ2(211)c× (Cp)
2 or Φ2(111)× Cp2 × Cp;

l = 12 if and only if G ∼= Φ2(22)× (Cp)
2 or Φ2(211)b× Cp2 ;

l = 13 if and only if G ∼= Φ2(31)× (Cp)
2 or Φ2(21)× Cp2 × Cp.

For groups G = Φ5(2211)a = Z1, Φ5(2211)b = Z2, Φ5(214)c = Z3 and
Φ5(311) = GE3

p4+2 , put Z = G′ in sequence (∗∗). Therefore |G⊗G| = |Gab ⊗
Gab| = p17 and we must have l = 13.

If a = 3 and p 6= 2. Then by the same argument we should have n = 5.
Hence l = 12 if and only if G ∼= Φ2(32)a1 = Y5 or Φ2(311)c = Y6 and l = 13 if
and only if G = Φ2(32)a2 = Y7. Note that the case p = 2 may be verified by
GAP.

Remark. When l = 10 and (c, a) = (1, 3) it follows by [17] that G =
Gp(2, 2, 1, 1, 1) = 〈a, b|ap2 = bp

2
= 1, [a, b]p = [a, b, a] = [a, b, b] = 1〉. This was

missed in [11].
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Table 1

Name Relations NumberOfSmallGroup (c, a)

T1 a4 = b2 = c2 = 1, [a, c] = b, [a, b] = [b, c] = 1 (16, 3) (1, 2)

T2 a4 = b4 = 1, [a, b] = a2 (16, 4) (1, 2)

T3 a8 = b2 = 1, [a, b] = a4 (16, 6) (1, 2)

T4 a4 = b2 = c2 = 1, [b, c] = a2, [a, b] = [a, c] = 1 (16, 13) (1, 1)

T7 a4 = b2 = c4 = 1, [a, b] = c2 (32, 24) (1, 2)

T9 b2 = c2 = 1, [c, b] = a4[a, b] = [c, a] = 1 (32, 38) (1, 2)

T10

a2 = b2 = c2 = 1, [a, b] = 1,

[a, c, b] = 1, [b, c, a] = 1, [b, c, b] = 1 (32, 27) (1, 2)

T11

a4 = b4 = c2 = 1,

[a, b] = 1, [a, c] = a2, [b, c] = b2 (32, 34) (1, 2)

T13 a4 = b8 = 1, [a, b]b4 = 1 (32, 4) (1, 3)

T14 a2 = b8 = 1, [a, b, a] = [a, b, b] = 1 (32, 5) (1, 3)

T15 a4 = b8 = 1, [a, b]a2 = 1 (32, 12) (1, 3)

T16 a2 = b16, [a, b]a8 = 1 (32, 17) (1, 3)

T18

[a1, a2] = [a1, a4] = [a2, a3] = a2
2,

a4
1 = a4

3 = a2
4 = 1, a2

2 = a2
3 (64, 200) (1, 2)

X1

ap2 = bp = cp = 1,

[a, c] = b, [a, b] = [b, c] = 1, p > 2 — (1, 2)

X2 ap2 = bp
2

= 1, [a, b] = ap, p > 2 — (1, 2)

X3 ap3 = bp = 1, [a, b] = ap2 , p > 2 — (1, 2)

X4

ap2 = bp = cp = 1,

[b, c] = ap, [a, b] = [a, c] = 1, p > 2 — (1, 1)

X6

[ai, a] = ai+1,

ap = a
(p)
i = ap

3 = 1, (i = 1, 2), p > 2 — (2, 2)

Y3 [ai, a] = bi, ap = ap
i = bpi = 1, (i = 1, 2), p > 2 — (2, 2)

Y4

[ai, a] = ai+1, [a1, b] = a3,

ap = a
(p)
1 = ap

i+1 = bp = 1, (i = 1, 2), p > 2 — (2, 2)

Y5 [a1, a] = ap2 = a2, ap2

1 = ap
2 = 1, p > 2 — (1, 3)

Y6 [a1, a] = a2, ap3 = ap
1 = ap

2 = 1, p > 2 — (1, 3)

Y7 [a1, a] = ap
1 = a2, ap3 = ap

2 = 1, p > 2 — (1, 3)

Z1

[a1, a2] = [a3, a4] = ap
2 = b,

ap2

1 = ap
3 = ap

4 = bp = 1, p ≥ 2 — (1, 2)

Z2

[a1, a2] = [a3, a4] = ap
3 = b,

ap2

1 = ap
2 = ap

4 = bp = 1, p ≥ 2 — (1, 2)

Z3

[a1, a2] = [a3, a4] = b,

ap2

1 = ap
2 = ap

3 = ap
4 = bp = 1, p > 2 — (1, 2)

Here a
(p)
i+1 will denote the word api+1a

(p2)
i+2...a

(pk)
i+k...ai+p discussed in [14].
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