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In this paper, we obtain some properties of pushout diagrams of H∗-algebras.
We also prove that, in the commutative diagram of proper H∗-algebras and
morphisms,

0 −−−−−→ kerβ
ι−−−−−→ C

β−−−−−→ B −−−−−→ 0yα|ker β

yα yγ
0 −−−−−→ ker δ

ι−−−−−→ A
δ−−−−−→ X −−−−−→ 0

if the right square is pushout, α is surjective and kerα∩ kerβ⊥ = {0}, then γ is
injective and γ∗δ(α(kerβ)⊥) = β(kerβ⊥). Conversely if α is surjective and γ is
injective, then the right diagram is pushout. Finally, we deal with the pushout
constructions in locally multiplicatively convex H∗-algebras.
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1. INTRODUCTION AND PRELIMINARIES

The notion of a pushout diagram was introduced by Pedersen [9] in the
category of C∗-algebras and some properties of these diagrams were investi-
gated. Some results of pushout diagrams are stable under H∗-algebras. In
this paper, we use these properties to discover new ones for pushout diagrams
of H∗-algebras. An H∗-algebra, introduced by Ambrose [1] in the associative
case, is a Banach algebra A (over C or R), satisfying the following conditions:
(i) A is itself a Hilbert space under an inner product 〈., .〉;
(ii) For each a in A there is an element a∗ in A, the so-called adjoint of a
such that 〈ab, c〉 = 〈b, a∗c〉 and 〈ab, c〉 = 〈a, cb∗〉 for all b, c ∈ A. In the rest
of the paper, we assume that all H∗-algebras are complex H∗-algebras, unless
otherwise specified.

Example 1.1. Any Hilbert space is an H∗-algebra, where the product of
each pair of elements is zero. Of course, in this case the adjoint a∗ of a need
not be unique, in fact, every element is an adjoint of every element.
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Recall that A0 = {a ∈ A : aA = {0}} = {a ∈ A : Aa = {0}} is
called the annihilator ideal of A. A proper H∗-algebra is an H∗-algebra with
zero annihilator ideal. Ambrose [1] proved that an H∗-algebra is proper if
and only if every element has a unique adjoint. The trace-class τ(A) of A
is defined by the set τ(A) = {ab : a, b ∈ A}. The trace functional tr on
τ(A) is defined by tr(ab) = 〈a, b∗〉 = 〈b, a∗〉 = tr(ba) for each a, b ∈ A. In
particular, tr(aa∗) = 〈a, a〉 = ‖a‖2 for all a ∈ A. Many mathematicians worked
on H∗-algebras and developed them in several directions, see ( [2, 3, 7, 8]) and
references cited therein.

The notion of locally multiplicatively convex H∗-algebra (l.m.c. H∗-
algebra in short) was introduced in [6] as a natural extension of the H∗-algebra.
A locally multiplicatively convex algebra (l.m.c.a. in short) is a topological
algebra (A, τ), whose topology τ is determined by a family {|.|λ}λ∈Λ of sub-
multiplicative seminorms. If A is endowed with an involution a 7→ a∗ such
that |a|λ = |a∗|λ, for any a ∈ A, λ ∈ Λ, then (A, {|.|λ}λ∈Λ) is called an l.m.c.
∗-algebra.

Definition 1.2. Suppose that (A, {|.|λ}λ∈Λ) is a complete l.m.c. ∗-algebra
on which a family of positive semi-inner products (〈., .〉λ)λ∈Λ is defined such
that the following properties hold (i) |a|2λ = 〈a, a〉λ,
(ii) 〈ab, c〉λ = 〈b, a∗c〉λ = 〈a, cb∗〉λ, for all x, y, z ∈ E and λ ∈ Λ.
Then (A, {|.|λ}λ∈Λ) is called an l.m.c. H∗-algebra.

Example 1.3. For each n ∈ N, put An = R and A = ⊕∞n=1An. Then A is a
real l.m.c. H∗-algebra, whose topology is determined by the family {|.|n}n∈N of
submultiplicative seminorms such that |.|n0 is defined by |(xn)n∈N|n0 = |xn0 |n0

for each n0 ∈ N. On the other hand, A is not a real H∗-algebra with usual ad-

dition and multiplication. Since the norm ‖{n}‖ = (

∞∑
n=1

n2)
1
2 is not convergent.

For every λ ∈ Λ, Nλ = {a ∈ A : | a |λ = 0} is a closed self-adjoint
ideal in A and the quotient space Aλ = A/Nλ is an inner product space under
〈aλ, bλ〉λ = 〈a, b〉λ, where aλ = a+Nλ, bλ = b+Nλ are in Aλ. The completion
Âλ of Aλ, , is a Hilbert space. Moreover, the Banach ∗-algebra (Âλ, ‖.‖λ) is an
H∗-algebra, where ‖a‖λ = |a|λ, (a ∈ Âλ).

If A and B are H∗-algebras (l.m.c. H∗-algebras), then a continuous ∗-
homomorphism ϕ : A→ B is called a morphism. For more details on l.m.c. H∗-
algebras, see [4, 5]. In the present, work we generalize the concept of pushout
diagram in the framework of H∗-algebras and l.m.c. H∗-algebras. This paper is
organized as follows: in Section 2, we introduce the concept of pushout diagram
in the framework of H∗-algebras and investigate some conditions under which
a diagram of H∗-algebras is pushout. In Section 3, we consider a commutative
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diagram of l.m.c. H∗-algebras and obtain some conditions under which the
corresponding diagrams of H∗-algebras are pushout. Throughout this paper,
H∗-algebras are proper and if E is a subset of an H∗-algebra A, then E⊥ and
Id(E) are denoted the orthogonal complement of E and the smallest closed
ideal generated by E, respectively.

2. PUSHOUT CONSTRUCTIONS IN H∗-ALGEBRAS

In this section, we introduce a pushout diagram of H∗-algebras and in-
vestigate some of their properties.

Definition 2.1. A commutative diagram of H∗-algebras and morphisms

C
β−−−−→ Byα yγ

A
δ−−−−→ X

is pushout if X is generated by γ(B) ∪ δ(A) and for every other pair of mor-
phisms ϕ : A → Y and ψ : B → Y into an H∗-algebra Y satisfying condition
ϕoα = ψ ◦ β, there is a unique morphism σ : X → Y such that ϕ = σ ◦ δ and
ψ = σ ◦ γ.

YSS

ϕ

``

σ

kk
ψ

X Bγ
oo

A

δ

OO

C
αoo

β

OO

The following theorem is proved in the framework of C∗-algebras ( [9,
Theorem 2.5.]). It is easy to show that it holds in the category of H∗-algebras.

Theorem 2.2. In a commutative diagram of extensions of H∗-algebras
and morphisms together with inclusion map i

0 −−−−→ I
ι−−−−→ C

β−−−−→ B −−−−→ 0yα|I yα yγ
0 −−−−→ J

ι−−−−→ A
δ−−−−→ X −−−−→ 0

the right square is pushout if and only if α(I) generates J as an ideal.
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Proof. Let Y be an H∗-algebra and ϕ : A → Y and ψ : B → Y are
a pair of morphisms such that ϕ ◦ α = ψ ◦ β. Since I = kerβ, we have
I ⊂ kerψ ◦ β = kerϕ ◦ α. Then α(I) ⊂ kerϕ, since Id(α(I)) = J we have
J ⊂ kerϕ. Suppose that b ∈ B is arbitrary. Then there exists an element
c ∈ C such that β(c) = b. Hence

ψ(b) = ψ(β(c)) = ϕ(α(c)) = σ(δ(α(c))) = σ(γ(β(c))) = σ(γ(b))),

whence ψ = σ ◦ γ.
Conversely, let the diagram be pushout and J0 = Id(α(I)). Then Jo ⊂ J

and consider the pair of morphisms (ϕ,ψ) consisting of the quotient morphism
ϕ : A → A

J0
and the induced morphism ψ : B → A

J0
defined by ψ(c + I) =

α(c) + J0 for each c ∈ C. By the assumption, ϕ = σ ◦ δ for some morphism
σ : X → A

J0
, which insures that

J = kerσ ⊂ kerσ ◦ δ = kerϕ = J0 = Id(α(I). �

Remark 2.3. If I is an arbitrary ideal in H∗-algebra A, then for a ∈ I and
b ∈ I⊥, we have ab ∈ I ∩ I⊥ = {0}.

Lemma 2.4. Let A and B be H∗-algebras and α : A → B be a surjective
morphism. If I is a closed, self adjoint ideal in A such that I ∩ kerα = {0},
then α(I⊥) = α(I)⊥.

Proof. Let b ∈ I⊥. Then by Remark 2.3, we have 〈α(b), α(a)〉 =
tr(α(b)(α(a))∗) = tr(α(ba∗)) = 0 for each a ∈ I. So α(I⊥) ⊆ α(I)⊥. Con-
versely, let c ∈ α(I)⊥ ⊆ B. By surjectivity of α, c = α(d) for some d ∈ A.
Also, surjectivity of morphism α implies that α(I) is an ideal in B. Applying
Remark 2.3, we get α(di) = cα(i) = 0 for each i ∈ I. Hence for each i ∈ I,
di ∈ kerα ∩ I = {0} and so 〈d, i〉 = tr(di∗) = 0. It yields that d ∈ I⊥ and
c = α(d) ∈ α(I⊥). �

Theorem 2.5. Let

0 −−−−→ kerβ
ι−−−−→ C

β−−−−→ B −−−−→ 0yα|ker β

yα yγ
0 −−−−→ ker δ

ι−−−−→ A
δ−−−−→ X −−−−→ 0

be a commutative diagram of extensions of H∗-algebras and morphisms. If the
right square is pushout, α is surjective and kerα ∩ kerβ⊥ = {0}, then γ is

injective and γ∗δ(α(kerβ)⊥) = β(kerβ⊥). Conversely if α and γ are surjective
and injective, respectively, then the right diagram is pushout.

Proof. By the surjectivity of α and Theorem 2.2, it is easy to verify that
Id(α(kerβ)) = ker δ is a closed ideal in A. By applying Lemma 2.4, where
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I = kerβ⊥ we conclude that α(kerβ) = α(kerβ⊥⊥) = α(kerβ⊥)⊥. Then
α(kerβ) is a closed ideal in A and

A = α(kerβ)⊕ α(kerβ)⊥.(2.1)

On the other hand α is onto and

(2.2) A = α(kerβ ⊕ kerβ⊥) = α(kerβ)⊕ α(kerβ⊥)

As in the proof of Lemma 2.4, we get α(kerβ⊥) ⊆ α(kerβ)⊥. By (2.1) and
(2.2), we shall show that γ is injective. Let b be a non zero element in B. Since
B = β(C) = β(kerβ ⊕ kerβ⊥) = β(kerβ⊥), there exists a non zero element
c1 in kerβ⊥ such that b = β(c1). In addition, by the commutativity of the
diagram, we get γ(b) = γ(β(c1)) = δα(c1). By the assumption, c1 is not in
kerα and α(c1) ∈ α(kerβ⊥) = α(kerβ)⊥ = ker δ⊥. Hence γ(b) = δα(c1) 6= 0.

By the injectivity of γ we have γ∗(X)
⊥

= ker γ = {0}, so γ∗(X) = B. The
commutativity of diagram, surjectivity of β and ker δ⊥ = α(kerβ⊥) ensure that

γ∗δα(kerβ⊥) = γ∗δ(ker δ⊥)

= γ∗δ(ker δ ⊕ ker δ⊥)

= γ∗δ(A)

= γ∗(X)

= B

= β(C)

= β(kerβ ⊕ kerβ⊥)

= β(kerβ⊥).

Conversely, suppose that γ and α are injective and surjective, respectively.
The surjectivity of α implies that α(kerβ) is an ideal in A. By Theorem 2.2,
it is enough to show that α(kerβ) = ker δ. Let c ∈ kerβ. The commutativity
of diagram implies that δα(c) = γβ(c) = 0, so α(c) ∈ ker δ. This implies
that, α(kerβ) ⊆ ker δ. For the reverse direction, assume that a ∈ ker δ. By
the surjectivity of α, there exists c ∈ C such that α(c) = a. Hence γβ(c) =
δα(c) = δ(a) = 0. The injectivity of γ, yields that β(c) = 0. So c ∈ kerβ and
a = α(c) ∈ α(kerβ). �

In the following example, we show that the surjectivity of α in Theorem
2.5 is a necessary condition.

Example 2.6. The Hilbert space Rn is a real H∗-algebra, where for each
(a1, ..., an) and (b1, ..., bn) in Rn, (a1, ..., an)(b1, ..., bn) = (a1b1, ..., anbn),

〈(a1, ..., an), (b1, ..., bn)〉 =
n∑
i=1

aibi and (a1, ..., an)∗ = (a1, ..., an). Let 2 < m <
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n and λ0 ∈ {2, ...,m−1} be fixed. Consider the following commutative diagram
of the H∗-algebras and morphisms,

Rm β−−−−→ Rm−1yα yγ
Rn δ−−−−→ Rm−1

where α, β, δ and γ are defined as follows.
(i) α((a1, ..., am)) = (a1, ..., am, 0, ..., 0).
(ii) β((a1, ..., am)) = (a1, ..., aλ0−1, aλ0+1, ..., am).
(iii) δ((a1, ..., an)) = (a1, ..., aλ0−1, aλ0+1, ..., am).
(iv) γ is the identity operator.
Clearly, α is not surjective and kerβ =

{(a1, ..., am) : a1 = ... = aλ0−1 = aλ0+1 = ... = am = 0}. Hence α(kerβ) =
{(a1, ..., an) : ai = 0, for every i ∈ {1, ..., λ0 − 1, λ0 + 1, ..., n}}, which it is an
ideal in Rn.

On the other hand, ker δ = {(a1, ..., an) : ai = 0 for every i ∈ {1, ..., λ0 −
1, λ0 + 1, ...,m}. Then α(kerβ) 6= ker δ and so, by Theorem 2.2, the above
diagram is not pushout, although, β and δ are surjective and γ is injective.

3. PUSHOUT CONSTRUCTIONS IN l.m.c. H∗-ALGEBRAS

In this section, we consider a commutative diagram of l.m.c. H∗-algebras
and morphisms and obtain some conditions under which the corresponding
diagrams of H∗-algebras and morphisms are pushout.

Theorem 3.1. Let (A,{|.|λA}λA∈ΛA), (B,{|.|λB}λB∈ΛB ), (C,{|.|λC}λC∈ΛC )
and (X, {|.|λX}λX∈ΛX ) be l.m.c. H∗-algebras and let

C
β−−−−→ Byα yγ

A
δ−−−−→ X

be a commutative diagram of l.m.c. H∗-algebras and morphisms. Fix λC ∈
ΛC . If there exist λB ∈ ΛB, λA ∈ ΛA and λX ∈ ΛX such that the following
conditions hold

(i) α(NλC ) ⊆ NλA,
(ii) β(NλC ) ⊆ NλB ,
(iii) δ(NλA) ⊆ NλX ,
(iv) γ(NλB ) ⊆ NλX ,
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(v) γ−1({x}) ∩NλB 6= φ for each x ∈ NλX ,

(vi) δ and β are bijective and surjective morphisms, respectively,

then the right square in the following diagram of pre-H∗-algebras is pushout,

where I ′ =
β−1(NλB )

NλC
, J ′ =

δ−1(NλX )

NλA
and α′(c+NλC ) = α(c) +NλA for each

c ∈ C. The maps β′, δ′ and γ′ are defined similarly.

0 −−−−→ I ′
i−−−−→ C

NλC

β′−−−−→ B
NλB

−−−−→ 0 B
NλByα′|I′ yα′ yγ′

0 −−−−→ J ′
i−−−−→ A

NλA

δ′−−−−→ X
NλX

−−−−→ 0 X
NλX

Proof. Consider c + NλC ∈ ker(β′) if and only if c ∈ β−1(NλB ). This
ensures that I ′ = ker(β′). A similar argument shows that J ′ = ker(δ′). The
diagram of extensions on pre-H∗-algebras is commutative since the initial di-
agram is commutative. By Theorem 2.2, the right square of the diagram is
pushout if and only if Id(α′(I ′)) = J ′. We shall show that this equation holds
if and only if δ(Id(α(β−1(NλB )))) = NλX .

If Y ⊆ A, then for each finite subset F of N

Id(δ(Y )) =

{∑
i∈F

λiδ(yi)
mixiδ(zi)

ni , λi ∈ C, mi, ni ∈ N, yi, zi ∈ Y, xi ∈ X

}
.

By the surjectivity of δ, for each i ∈ F , there exists ai ∈ A such that xi = δ(ai).
Hence

Id(δ(Y )) =

{
δ(
∑
F

λiy
mi
i aiz

ni
i ), λi ∈ C, mi, ni ∈ N, yi, zi ∈ Y, ai ∈ A

}
= δ(Id(Y )).

Since α(β−1(NλB )) ⊆ A, by the above discussion, we get

δ(Id(α(β−1(NλB )))) = Id(δ(α(β−1(NλB )))).(3.1)

Conditions (iv), (vi) and commutativity of the diagram imply that

δ(α(β−1(NλB ))) = γ(ββ−1(NλB ) = γ(NλB ) ⊆ NλX .

Since NλX is an ideal in X, we get Id(δ(α(β−1(NλB )))) ⊆ NλX .

Conversely, suppose that there exists x ∈ NλX such that x /∈ δ(Id(α(β−1

(NλB )))). Thus δ−1(x) /∈ Id(α(β−1(NλB ))). Condition (v) implies that x =
γ(b) for some b ∈ NλB . By the surjectivity of β, there is an element c ∈ C such
that b = β(c). Hence c ∈ β−1(NλB ). On the other hand, it follows from the
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commutativity of the diagram and bijectivity of δ that δ−1(x) = δ−1(γ(b)) =
δ−1(γβ(c)) = δ−1(δα(c)) = α(c). Therefore, δ−1(x) = α(c) ∈ αβ−1(NλB ),
so δ−1(x) ∈ Id(α(β−1(NλB ))). This is a contradiction. Therefore NλX ⊆
Id(δ(α(β−1(NλB )))). Hence Id(δ(α(β−1(NλB )))) = NλX . By (3.1), we reach
δ(Id(α(β−1(NλB )))) = NλX . Since δ is one to one, we have Id(α(β−1(NλB ))) =
δ−1(NλX ). So

J ′ =
δ−1(NλX )

NλA

=
Id(α(β−1(NλB )))

NλA

= Id

(
α(β−1(NλB ))

NλA

)
= Id

(
α′
(
β−1(NλB )

NλC

))
= Id(α′(I ′)).

Note that the condition (v) implies that NλA ⊆ α(β−1(NλB )). �

Corollary 3.2. If the assumptions of Theorem 3.1 hold, then the right

square in the following diagram of H∗-algebras is pushout, where I ′ =
̂β−1(NλB )

NλC

and J ′ =
̂δ−1(NλX )

NλA
.

0 −−−−→ I ′
ι−−−−→ Ĉ

NλC

β′−−−−→ B̂
NλB

−−−−→ 0 B
NλByα′|I′ yα′ yγ′

0 −−−−→ J ′
ι−−−−→ Â

NλA

δ′−−−−→ X̂
NλX

−−−−→ 0 X
NλX

Proof. We show that α′, β′, δ′, γ′ are well-defined. Assume that x ∈ Ĉ
NλC

.

Then x = lim
n→∞

(cn + NλC ) for some sequence {cn}n in C. The morphism

α is continuous, so it is bounded. For each λC ∈ ΛC , λA ∈ ΛA, there exists
MλC ,λA ≥ 0 such that ‖α(x)‖λA ≤MλC ,λA‖x‖λC for each x ∈ C. Since {cn+
NλC}n is Cauchy and α is bounded, it is easy to show that {α(cn)+NλA}n is a

Cauchy sequence in Â
NλA

and so it is convergent. Set α′(x) = lim
n→∞

α(cn)+NλA .

The proof can be complemented by using the same argument as in the proof
of Theorem 3.1, so we omit it. �

In the next example, we show that the condition (v) of Theorem 3.1 is
necessary.

Example 3.3. Let Λ = {1, . . . , n}, where n ≥ 2 and {(Aλ, ‖.‖λ)}λ∈Λ be a
family ofH∗-algebras, in which An−1 = An. Then �λ∈ΛAλ = {(xλ); xλ ∈ Aλ}
is an l.m.c. H∗-algebra, whose topology is determined by a family {|.|λ}λ∈Λ of
submultiplicative seminorms such that |.|λ0 is defined by |(xλ)λ∈Λ|λ0 = ‖xλ0‖λ0
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for each λ0 ∈ Λ. Further, ⊕λ∈ΛAλ is an l.m.c. H∗-algebra, whose topology
is determined by the family {|.|λ,µ}λ,µ∈Λ of submultiplicative seminorms such
that |.|λ0,µ0 is defined by |(xλ)λ∈Λ|2λ0,µ0

= ‖xλ0‖2λ0
+‖xµ0‖2µ0

for each λ0, µ0 ∈ Λ.
Note that �λ∈ΛAλ and ⊕λ∈ΛAλ are both H∗-algebras with usual addition and
multiplication. Consider the following commutative diagram of l.m.c. H∗-
algebras and morphisms.

⊕λ∈ΛAλ
β−−−−→ �λ∈ΛAλyα yγ

λ∈ΛAλ
δ−−−−→ �λ∈ΛAλ

The morphisms α, β, δ and γ are defined as follow.

(i) α((xλ)λ∈Λ) = (yλ)λ∈Λ, where yλ = xλ for λ 6= n and yn = 0.

(ii) β((xλ)λ∈Λ) = (zλ)λ∈Λ, where zλ = xλ for λ ∈ {1, 2, ..., n − 2} and
zn−1 = xn, zn = xn−1.

(iii) γ((zλ)λ∈Λ) = (wλ)λ∈Λ such that wλ = zλ for λ 6= n−1 and wn−1 = 0.

(iv) δ is defined in the same way as β.

Now consider the diagram of extensions,

0 −−−−→ I ′
i−−−−→ ⊕λ∈ΛAλ

Nn−1,n

β′−−−−→ �λ∈ΛAλ
Nn

−−−−→ 0yα′ yα′ yγ′
0 −−−−→ J ′

i−−−−→ ⊕λ∈ΛAλ
Nn−1,n

δ′−−−−→ �λ∈ΛAλ
Nn−1

−−−−→ 0

where

Nn−1 = {(aλ)λ∈Λ : |(aλ)λ∈Λ|n−1 = 0} = {(aλ)λ∈Λ : an−1 = 0},

Nn = {(aλ)λ∈Λ : |(aλ)λ∈Λ|n = 0} = {(aλ)λ∈Λ : an = 0},
Nn−1,n = {(aλ)λ∈Λ : |(aλ)λ∈Λ|n−1,n = 0} = {(aλ)λ∈Λ : an−1 = an = 0},

I ′ = kerβ′ = {(a1, ..., an−2, 0, an) +Nn−1,n : ai ∈ A, i ∈ {1, 2, ...., n− 2, n}},
and J ′ = ker δ′ = {(a1, a2, ..., an−1, 0) +Nn−1,n : ai ∈ A, i ∈ {1, 2, ...., n−1}}.

Clearly, conditions (i), (ii), (iii), (iv) and (vi) of the preceding theo-
rem hold. If a = (a1, a2, ..., 0, an) ∈ Nn−1 in which an 6= 0, then γ−1(a) =
(a1, a2, ..., an−1, an) for arbitrary element an−1 ∈ A and γ−1(a) ∩Nn = ∅.

We are going to show that the right square in the diagram above, is
not pushout. It is enough to show that Id(α′(I ′)) 6= J ′. This holds, since
α′(I ′) = {(a1, a2, ..., an−2, 0, 0) + Nn−1,n : ai ∈ A for i ∈ {1, 2, ...., n − 2}},
which is an ideal in ⊕λ∈ΛAλ

Nn−1,n
and not equal to ker δ′.

In the special case of above example, where n = 2 we have the following
diagram
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0 −−−−→ I ′
i−−−−→ A⊕A β′−−−−→ A�A

A�0 −−−−→ 0yα′ yα′ yγ′
0 −−−−→ J ′

i−−−−→ A⊕A δ′−−−−→ A�A
0�A −−−−→ 0

where A = A1 = A2, so that A⊕A
N1,2

= A⊕A, A�A
N1

= A�A
0�A ,

A�A
N2

= A�A
A�0 ,

α′((x1, x2)) = (x1, 0),

β′((x1, x2)) = (x2, x1) +A� 0,

γ′((x1, x2) +A10) = (0, x2) + 0 �A

δ′(x1, x2) = (x2, x1) + 0 �A

Also I ′ = kerβ′ = 0 ⊕ A and J ′ = ker δ′ = A ⊕ 0. It is easy to see that all
conditions of the preceding theorem hold except (v). In addition, α′(I ′) =
α′(0 ⊕ A) = 0 ⊕ 0 and J ′ = A ⊕ 0 are valid. The right square in the diagram
above, however is not pushout, since Id(α′(I ′)) 6= J ′.
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