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Let d(u, v) denote the distance between two distinct vertices of a connected graph
G, and diam(G) be the diameter of G. A radio labeling c of G is an assignment of
positive integers to the vertices of G satisfying d(u, v)+|c(u)—c(v)| > diam(G)+1
for every two distinct vertices u, v. The maximum integer in the range of the
labeling is its span. The radio number of G, rn(G), is the minimum possible
span of any radio labeling for G. In this paper, the radio numbers of Mongolian
tent graph, diamond graph, fan and double fan are determined.
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1. INTRODUCTION

Radio labeling (cf. [2,3]) is motivated by the channel assignment problem
introduced by Hale [7]. Suppose we are given a set of stations or transmitters;
the task is to assign to each station (or transmitter) a channel (non-negative
integer) such that the interference is avoided. The interference is closely rela-
ted to the geographical locations of the stations — the closer are the stations
the stronger the interference that might occur. To avoid interference, the se-
paration of the channels assigned to nearby stations must be large enough. To
model this problem, we construct a graph so that each station is represented by
a vertex, and two vertices are adjacent when their corresponding stations are
close. The ultimate goal is to find a wvalid labeling such that the span (range)
of the channels used is minimized.

Let G be a connected graph. For any two vertices u and v, the distance
between u and v, denoted by dg(u,v) (or d(u,v) when G is understood in the
context), is the length of a shortest (u,v)—path in G. A distance-two labeling
(or A-labeling) with span k is a function ¢ : V(G) — {1,2,...,k} having the

* The work was supported by Jazan University, KSA.

MATH. REPORTS 19(69), 1 (2017), 107-119



108 A. Ahmad and R. Marinescu-Ghemeci 2

maximum value k such that the following relations are satisfied for any two
distinct vertices u and v:

2, if d(u,v)=1
lelw) = el =91 i gu,v) = 2.

The A-number of G is the smallest k£ such that G admits a distance-two
labeling with span k. Since introduced by Griggs and Yeh [6] in 1992, distance-
two labeling has been studied extensively (see [1,14]).

Radio labeling extends the number of interference levels considered in
distance-two labeling from two to the largest possible - the diameter of G. The
diameter of G, denoted by diam(G), is the maximum distance among all pairs
of vertices in G.

A radio labeling or multi-level distance labeling [11,12] with span k for a
graph G is a function ¢ : V(G) — {1,2,...,k} having the maximum value k
such that the following condition holds for any two distinct vertices u and v:

(1) d(u,v) + |e(u) — c(v)| > 1+ diam(G).

This condition is referred to as radio condition.

We denote by S(G, ¢) the set of consecutive integers {m,m + 1,..., M},
where m = min,cy(g) c(u) and M = max,cy () c(u) is the span of ¢, denoted
span(c).

The radio number of G, denoted by rn(G), is the minimum span of a
radio labeling for G. A radio labeling ¢ of G with span(c) = rn(G) will be
called optimal radio labeling for G.

Note that if diam(G) = 2, then radio labeling and A—labeling become
identical.

A graph G with n vertices is called radio graceful if rn(G) = n.

Besides its motivation by the channel assignment, radio labeling itself is
an interesting graph labeling problem and has been studied by several authors.
It is computationally complex to calculate the radio number on general graph.
The problem is known to be NP-hard for graphs with diameter 2, but the
complexity in general is not known [9]. Therefore, research in this area has
focused on special classes of graphs, the problem proving to be difficult even
for basic families of graphs [12]. The radio numbers for paths and cycles
were investigated in [2,3,15], and were completely solved by Liu and Zhu [12].
Sooryanarayana and Raghunath [13] determined the radio number of the cube
of Cy, for alln <20 and forn =0o0r 2 or 4 (mod 6). They also determine the
values of n for which this graph is radio graceful.

For many types of labelings, studying the problem on cartesian product
of graphs and graphs is related to that present interest. For example, in [5],
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the A-labeling for product of complete graph is considered. Also, the radio
number for grid graphs, which is the cartesian product P, x P,, was completely
determined in [8], after only upper and lower bounds were previously found.
Also, some families of graphs obtained from grids by adding extra vertices (such
as Mongolian tent and diamond graph) proved to be interesting for different
types of labelings. For example, Lee determined in [10] that some of these
graphs are graceful.

In this article, we consider graphs related to the ladder graph, which is
the grid P» x P,. We completely determine the radio number for Mongolian
tent graph, diamond graph, fan and double fan.

We will use only the positive integers as labels.

The ladder graph, denoted by L, is the graph with vertex set

V(L) = {us,v;: 1 <i<n}
and edge set
E(Ly) = {uivjt1,vvi41 1 1 <i <n—1}U{uv; : 1 <i<n}.

L,, is isomorphic to the grid P x P,.

Mongolian tent, denoted by Mt,, is the graph obtained from the ladder
graph L, by adding a new vertex z and joining each vertex v;, 1 < i < n
with z.

Diamond graph, denoted by d,,, is the graph obtained from the Mongolian
tent graph Mt, by adding a new vertex z; and joining each vertex u;, 1 <7 < n
with z7.

Fan graph, denoted by f,, is the graph obtained from the path with n
vertices P,, where V(P,) = {v1,v2,...,v,} and E(P,) = {vvi41 : 1 < i <
n — 1} by adding a new vertex z and joining each v;, 1 <14 <n with z.

Double fan graph, denoted by dfy,, is the graph obtained from the fan f,
by adding a new vertex z; joining each v;, 1 <1 < n with z;.

The following remark will be useful in our proofs.

Remark 1.1. Let ¢ be an optimum radio labeling of graph G. We can
associate to ¢ an ordering of the vertices of G, increasing by their labels. Denote
by ai,...,a, the vertices of G in this order:

clar) < claz) < ... <c(ap).
We have
o cla)) =1

n—1
e (@) = span(c) =1+ Z(C(ai—H) —c(a;))
=1

o If ¢(a;j+1) — c(a;) = 1, then we must have d(a;,a;+1) = diam(G).
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In order to find a lower bound for rn(G), for graphs with small diameter is
sometimes useful to determine how many pairs (a;, a;+1) with ¢(a;+1) —c(a;) =
1 we can have. If there can be at most x such pairs, then we have:

™m(G)>1+z+2(n—1-z).

Next, we introduce the notion of forbidden values associated to a vertex
v for a radio labeling c¢. Let ¢ be a radio labeling of graph G. Since vertex v
has label ¢(v) then, by radio condition, some values from S(G, ¢) that are close
to ¢(v) cannot be labels for other vertices. We will call these values forbidden
values associated to vertex v.

2. RADIO NUMBER FOR MONGOLIAN TENT GRAPH

THEOREM 2.1. a) Mongolian tent Mty is radio graceful.
b) The radio number of Mongolian tent Mts is 11.
c¢) The radio number of Mongolian tent Mty is 12.

Proof. In order to prove that the values stated in the Theorem are lower
bounds for the radio number, we will use the idea from Remark 1.1. Consider
¢ an optimal radio labeling and denote by aq,ao,...,a; the vertices of the
graph in increasing order of their labels. We investigate the maximum number
of pairs (a;, a;+1) with ¢(a;+1) —c(a;) = 1. By radio condition, these pairs must
have the property that d(a;, a;+1) = diam(G).

For proving that the claimed values are upper bounds for the radio num-
bers of considered graphs, we will provide radio labelings having spans equal
to these values.

a) The Mongolian tent Mto, is a planar graph with 5 vertices, 6 edges
and diameter 2. We have rn(Mty) > |V (Mts)| = 5.

The radio labeling ¢ of Mty represented in Fig. 1 (a), shows that rn(Mtz)
< 5. It implies that rn(Mty) = 5. Therefore Mt, is radio graceful.

3 9 12
1 5 6 1 4 9 1 4 7
4 2 3 11 7 3 6 10 2
(a) Mt, (b) Mt; (C) Mt,

Fig. 1 — Radio labelings for Mongolian tent graphs.
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b) Mt3 has m = 7 vertices and diam(Mt3) = 3. There are only two pairs
of vertices at distance 3 in Mt3, hence we have

rn(Mt3) >142-14(m—-1-2)-2=1+2+8=11.

The radio labeling of Mts illustrated in Fig. 1 (b) shows that rn(Mts) < 11.
We conclude that rn(Mts) = 11.

¢) Mongolian tent Mt4 has m = 9 vertices and diam(Mt4) = 3. There are
7 pairs of vertices at distance 3 in Mty. In order to easily observe these pairs,
consider the distance-3 graph associated to Mt4, that is the graph having the
same vertices as Mt and the edge set consisting of the pairs of vertices that
are at distance 3 in M4, shown in Fig. 2.

Vi Vo V3 V4

N>

<S>

Fig. 2 — Distance-3 graph of Mt4.

In order to obtain a more precise estimation of the maximum num-
ber of pairs (a;,a;+1) with ¢(a;+1) — ¢(a;) = 1, we study how many triplets
(@i, ai+1,ai+2) may have consecutive labels: ¢(a;), ¢(a;)+1, ¢(a;) +2. By radio
condition we must have d(a;,a;12) > 2. Such a triplet corresponds to a path
of length 2 in the distance-3 graph associated to Mt4, whose extremities are at
distance at least 2 in Mt4. It is easy to see that there are only two such path:
[vg, uq,u1] and [ug, w1, vs], which have 2 vertices in common.

It follows that we can have at most 5 pairs (a;,a;41) with consecutive
labels (otherwise more triplets with consecutive labels will occur), hence

rn(Mty) >14+5-14(m—1-5)-2=1+5+4+6=12.
The radio labeling of Mt represented in Fig. 1 (c¢) shows that rn(Mty) < 12,
hence rn(Mty) =12. O
THEOREM 2.2. Forn > 5, rn(Mt,) > 4n + 2.

Proof. Assume n > 5. Then diam(Mt,) = 4, so any radio labeling ¢ of
Mt,, must satisfy the radio condition

d(u,v) + |e(u) — c(v)| > 5

for all distinct vertices u,v € V(Mt,).

Let ¢ be an optimal radio labeling for Mt,. We count the number of
values needed for labels and add the minimum number of forbidden values
for c.
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Thus, since d(z,r) < 2 for all vertices r # z, the values {¢(z) — 2,¢(z) —
1,¢(z) +1,¢(2) + 2} N S(Mty, c) are forbidden. Similarly, as d(v;,r) < 3 for all
v; and for any r # v;, the values {c(v;) — 1, ¢(v;) +1}NS(Mt,, ¢) are forbidden,

for every i € {1,2,...,n}. However, as d(u;,r) = 4 for some vertex r, it is
possible to use consecutive labels on w; and 7. (i.e. there are no forbidden
values associated with the vertices {u1,ug,...,un}.)

Remark that the number of forbidden values associated to z is [{c(z) —
2,¢(z) — Le(z) + 1,¢(2) + 2} N S(Mty,,c)| > 2, with equality only if ¢(z) €
{1, span(c)}. Also, [{c(vi) — 1,c(v;) + 1} N S(Mtp,c)| > 1, with equality only
if ¢(vi) € {1,span(c)}. Moreover, these forbidden values are distinct, since
by radio condition we must have |c(z) — c¢(v;)| > 3 and |c(v;) — ¢(v;)| > 2 for
every ¢ # j. The minimum number of forbidden values for ¢ is then obtained
in two situations (when there exists ¢ such that {c(v;),c(2)} = {1, span(c)}
or there exists ¢ # j such that {c(v;),c(v;)} = {1, span(c)}) and this number
is 34+ 2n —2 = 2n + 1. Adding in the 2n + 1 values needed to label the
2n + 1 vertices provides a total of 4n + 2 labels, hence rn(Mt,) > 4n + 2, for
n>5 U

THEOREM 2.3. Forn > 5, rn(Mt,) < 4n + 2.

Proof. We shall propose a radio labeling of Mt, with span 4n + 2, which
implies rn(Mt,) < 4n + 2. Let n > 5. The radio labeling ¢ : V(Mt,) — Z7T is
defined as follows:

c(z) =4n+2
4, f1<i<n-—1
W) =93 ii—n

Case A - n is odd:

2n+4i, if1<i<ml -1
e |

1, if i = "5~

2(2i—n), if 2 +1<i<n

c(v;) =

Case B - n is even:
2(n+2i+ 1), if1<i<g -1

ctvi) =4 b if i =

In both cases the span of ¢ is equal to 4n + 2 and it is reached for ¢(z).
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Claim: The labeling c is a valid radio labeling.
We must show that the radio condition

d(u,v) + |e(u) — ¢(v)| > diam(Mt,)+1=5

holds for all pairs of vertices (u,v) (where u # v).

1: Consider the pair (z,7) (for any vertex r # z). As d(z,r) > 1 and
c(r) < 4n — 2, we have d(z,r) + |c(z) —c(r)| > 1+ |4n + 2 — (4n — 2)| > 5 for
any r # z. The radio condition is satisfied.

2: Consider the pairs (v;,v;) (with @ # j). Note that d(v;,v;) > 1 for
i # j. |e(v;) — c(vj)| > 4 for all v; # v;. Hence, again, the radio condition is
satisfied.

3: Consider the pairs (u;, u;) (with @ # j). We have d(uq,uy,) = 4, and
the labels difference for this pair is |¢(u1) — ¢(uy)| = 1; so the radio condition
for (u1,uy) is satisfied. Note that d(u;, u;) > 1 for i # j and the label difference
for each pair is |e(u;) —c(uj)| > 4, except the pair (u1,uy). The radio condition
is then satisfied for all distinct ;.

4: Finally, consider the pairs (u,v), where u € {uj,u2,...,u,} and v €
{v1,v2,...,v,}. We have c(u) € {3,4,8,12,...,4(n — 1)}. If d(u,v) = 1, then
by the way ¢ was defined, |c(u) — c¢(v)| > 2n —3 > 7 for n > 5. If d(u,v) = 2,
then |c(u) — c¢(v)| > 2n —7 > 3 for n > 5. When d(u,v) = 3, |c(u) — c(v)| > 2.
It follows that the radio condition is satisfied for these pairs.

These four cases establish the claim that ¢ is a radio labeling of Mt,.

Thus rn(Mt,) < span(c) < 4n+2. O

THEOREM 2.4. The radio number of Mongolian tent Mt, is 4n + 2 when
n > 5.

Proof. Theorem 2.2 shows rn(Mt,) > 4n+2 for n > 5, and Theorem 2.3
shows rn(Mt,) < 4n + 2 for n > 5. Therefore rn(Mt,) =4n+2. O

3. RADIO NUMBER FOR DIAMOND GRAPH

THEOREM 3.1. For diamond graphs the following relations hold:
a) rn(dy) = 10

b) rn(ds) = 12
c) rn(dy) = 14
d) rn(ds) = 15.

Proof. In Fig. 3 are shown radio labelings having spans equal to the
values stated in the Theorem, hence these values are upper bounds for the
radio numbers of considered graphs.
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5 1 1

1 8 4 7 10 4 7 10 13
10 3 9 275 TNE 5 8
6 2 2
(a) d2 (b) d; (c)ds
1 1
4 11 6 15 8 6 12 8 14 4 10
7 14 9 12 5 9 5 11 13
2 2
(d) ds (e) ds

Fig. 3 — Radio labelings for diamond graphs.

In order to prove that they are also lower bounds, we will use the same
arguments as in Theorem 2.1, based on Remark 1.1.

Consider ¢ an optimal radio labeling and denote by ai,as,...,a, the
vertices of the graph in increasing order of their labels.

a) We have m = |V (dz2)| = 6 and diam(dz) = 3. There is only one pair
of vertices at distance 3 in dy (that is (z, z1)), hence we have

ra(dy) >14+1-14(m—1-1)-2=1+1+8=10.

b) We have m = |V (d3)| = 8 and diam(d3) = 3. There are three pairs of
vertices at distance 3 in ds: (2, 21), (v1,u3) and (v3,uq1), hence we have

rn(dg) >143-1+(m—-1-3)-2=1+3+8=12.

c¢) dg has m = 10 vertices and diam(ds) = 3. Consider the distance-3
graph associated to dy4, shown in Fig. 4 (a). As in proof of Theorem 2.1, we
observe that there is no path of length 2 in the distance-3 graph associated to
d4 whose extremities are at distance at least 2 in dy4, hence there are no triplets
(ai,ai+1,ai+2) having consecutive labels.
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z

Vi V3 V4 Z
B u3 U 7y
Vs
(a) (b)

Fig. 4 — Distance-3 graph for d4 and ds.

It follows that we can have at most m/2 = 5 pairs of vertices (a;,a;+1)
with consecutive labels, hence

rn(dg) >145-1+(m—-1-5)-2=1+5+8=14.

d) We have |V (ds)| = 12 and diam(ds) = 3. We consider again paths of
length 2 in the distance-3 graph associated to ds, shown in Fig. 4 (b). There
are 3 paths of length 2 in the distance 3 graph associated to d4 joining vertices
at distance at least 2 in dy: [us,v1,us], [u1,vs,us], [us,vs,u1]. These paths
contain 6 of the vertices of the graph, so there are no triplets of vertices with
consecutive labels containing some of the other 6 vertices. It follows that there
are at most (6 — 1) + 6/2 = 8 pairs of vertices with consecutive labels, hence

rn(ds) >1+8-14+(m—1-8)-2=14+8+6=15 [

THEOREM 3.2. For n > 6, the radio number of diamond graph d, is
2n + 3.

Proof. Recall the vertex set and edge set of diamond graph as follows:
V(dn) = {vi,ui : 1 <i <n}pU{z 21}

E(dy) = {uwjuir1,vivipr : 1 <i <n— 1} U{w;, 20, 210 : 1 <@ < n}.
For n > 6, diam(d,) = 3. The diamond graph contains 2n + 2 vertices and
5n — 2 edges.

First we will prove that rn(d,) > 2n+3. For that, let ¢ be a radio labeling
for d,,. We will prove that ¢ has at least one forbidden value, associated to one
of the vertices z and z;. By symmetry we can assume c¢(z) < ¢(z1). Denote
a=c(z).

As 21 is the only vertex at distance 3 of z, a — 1 and a4+ 1 can be used as
label only for z;.

Assume ¢(z1) = a+1=0b. Asd(z1,r) < 2forallr € {z,z1},if b+1 = a+2
is assigned to any other vertices, then the condition (1) is not satisfied. It
follows that if ¢(z1) = a + 1 then either ¢(z) — 1 is a forbidden value associated
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to z (if ¢(z) > 1), or ¢(z) + 2 (if ¢(2) = 1). If ¢(#1) is not labeled with a + 1
then, since a = ¢(z) < ¢(z1) < span(c), value a + 1 is forbidden.

Therefore rn(d,) must be greater or equal to |V (d,)|+ 1 = 2n + 3. To
prove rn(dy,) < 2n + 3, we define a labeling ¢ : V(d,,) — {1,2,...,2n + 3} as

follows such that radio condition is satisfied.

For n = 6 such a labeling is shown in Fig. 3 (f).
Let n> 7.

Case A - n is even
c(z)=1,¢(z) =2

c(v;) =

c(u;) =

(n+6—1,

4,
2n+5—1
n+9—i,
8 —1,
2n+8—1

Case B - n is odd

We divide this case into two subcases.

if i =0 (mod 2)

ifi=1

if i >3 and i =1 (mod 2)
if i =0 (mod 2)
ifi=1,3

if i >5and i =1 (mod 2)

B.1: n =3 (mod 4). Then we define
c(z)=2n+3,¢(z1) =2n+2

c(u;) =

B.2: n=1 (mod 4).

( Sntitl - if 4 =0 (mod 4)
ol if i =1 (mod 4)
ntLtt - if 4 =2 (mod 4)
ndltiif § =3 (mod 4)

\
nEE - if =0 (mod 4)
ndltl - if 4 =1 (mod 4)
Snditl if i =2 (mod 4)
ol if i =3 (mod 4)

c(z)=2n+2,¢(z1)=2n+3
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n+1+3, ifi=0 (mod 4)
%2”’ if i=1 (mod 4)
o) = on, if ¢ =2
Snticlif § > 2 and i =2 (mod 4)
i+l if i =3 (mod 4)
( %, if i =0 (mod 4)
%, if i=1 (mod 4)
c(vi) = 24 if =2 (mod 4)
%2“ if i =3 (mod 4)

Claim: The labeling c is a valid radio labeling. We must show that the radio
condition

(2) d(u,v) + |e(u) — ¢(v)| > 1+ diam(d,) =4

holds for all pairs of vertices (u,v) (where u # v).

Case A: Assume n is even. We consider all types of pairs of vertices.

1: Consider the pair (z,r) for any vertex r € {z,2z1}. As 1 < d(z,r) <2,
ré{z,z21}, c(z) =1,¢(r) >4, |e(z) — e(r)] > 3, it follows that d(z,r) + |e(z) —
cr)) >1+3=4.

2: For pair (z,21), as d(z,21) = 3 and |c(z) — ¢(z1)| = 1, the radio
condition is satisfied.

3: Consider the pairs (z1,7) for any vertex r & {z,v1}. As 1 < d(z,r) <
2, r & {z,u1}, c(z1) = 2,¢(r) > 5, |e(z1) — ¢(r)] > 3 and d(z1,v1) = 2
le(z1) — c(v1)| = 2, the radio condition (2) is satisfied.

4: Consider the pairs (v;,v;) (with ¢ # j.) If d(v;,v;) = 1 we hav
d(vi,vj) + |c(vi) — e(vj)] > 14+ |n — 2] > 6, otherwise |c(v;) — ¢(vj)] > 2
Therefore the radio condition is satisfied for such pairs.

5: Consider the pairs (u;, u;) (with ¢ # j.) Similar as Case 3.

6: Consider the pairs (u;,vj). We examine the label difference for each
pair, when distance between vertices is one, two, three. As 1 < d(u;,v;) < 3,
SO
- if d(uj,vj) = 1 then i = j and |c(u;) — c(v;)| > 3
- if d(us,v;) =2 then i = j £ 1 and |c(u;) — c(vj)| > |n =5 > 2 forn > 7
- if d(ui, vj) = 3 then |c(u;) — c(v;)| > 1.

Hence the radio condition (2) is satisfied.

Case B: n is odd.

B.1 If n =3 (mod 4) we have the following cases:
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1: Consider the pair (z,r) for any vertex r € {z,2z1}. As 1 < d(z,r) <2,
r&{z, 21}, c(z) =2n+3,¢(r) < 2n, |c¢(z) — c(r)| > 3. Hence d(z,7) + |c(z) —
c(r)| >1+3=4.

2: As d(z,2z1) =3 and |c(z) — ¢(z1)] = 1 the radio condition is satisfied.

3: Consider the pairs (z1,7) for any vertex r & {z,21}. As 1 < d(z1,r) <
2,7 & {z, 21}, when d(z1,7) = 1 we have |¢(z1)—c(r)| > 3 and when d(z1,7) = 2,
then |e(z1) — ¢(r)| > 2. It follows that the radio condition (2) is satisfied.

4: Consider the pairs (v;,v;) (with @ # j). As d(v;,vj) < 2 for i # j,

- if d(v;,v;) = 1 then i = j £ 1 and |c(v;) — c(vj)| > 2L >4 forn > 7
- if d(v;,v;) = 2 then |c(v;) — c(vj)] > 2.

Therefore the radio condition is satisfied for such pairs.

5: Consider the pairs (u;, u;) (with ¢ # j). As d(u;,uj) < 2 for i # j,
- if d(uj,u;) = 1 then i = j £ 1 and |c(w;) — c(uj)| > 2L >4 forn > 7
- if d(ui, uj) = 2 then |c(u;) — c(uj)] >2n > 7.

Hence the radio condition is also satisfied for these pairs.

6: Consider the pairs (u;,v;). We examine the labels difference for each
pair, when distance between vertices is one, two, three. As 1 < d(u;,v;) < 3,50
- if d(ui,vj) = 1 then i = j and |c(u;) — c(v;)| > 3
- if d(u;,v;) =2 then i = j £ 1 and |c(u;) — c(vj)| > |n— 5] > 2
- if d(us, v;) = 3 then |c(u;) — c(vj)] > 1.

Hence the radio condition (2) is satisfied.

The situation when n =1 (mod 4) is similar as n = 3 (mod 4).

For all cases we establish the claim that ¢ is a radio labeling of d,,. Thus
rn(d,) < 2n + 3. Hence rn(d,) =2n+3. O

4. RADIO NUMBER FOR FAN AND DOUBLE FAN GRAPHS

THEOREM 4.1. Forn >4, rn(f,) =n+ 2.

Proof. Note that diam(f,) = 2. This together with the fact that the center
vertex z is adjacent to every other vertex implies we may not use consecutive
integers to label the center and another vertex. Since |V (f,)| = n + 1, we see
rn(fn) > n + 2. Assigning 1 to the center and consecutive integers beginning
with 3 to the other vertices, first to the vertices of even indices, and then to
the vertices with odd indices, produces a radio labeling with span n + 2, so
rm(fn) =n+2. O

THEOREM 4.2. For n >4, rn(df,) =n+3

Proof. Note that diam(df,) = 2. There are two center vertices, these
together with the fact that the center vertices are adjacent to every other
vertex implies we may not use consecutive integers to label the centers and
another vertex. Since |V (df,)| = n + 2, we see rn(df,) > n + 3. Assigning
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labels 1 and 2 to the centers and consecutive integers beginning with 4 to the
other vertices, first to the vertices of even indices, and then to the vertices with
odd indices, produces a radio labeling with span n+ 3, so rn(df,) =n+3. O

(1]
2]
B8l

(4]
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