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A composite positive integer n is Lehmer if φ(n) divides n − 1, where φ(n)
is the Euler’s totient function. No Lehmer number is known, nor has it been
proved that they don’t exist. In 2007, the second author [7] proved that there
is no Lehmer number in the Fibonacci sequence. In this paper, we adapt the
method from [7] to show that there is no Lehmer number in the companion
Lucas sequence of the Fibonacci sequence (Ln)n≥0 given by L0 = 2, L1 = 1 and
Ln+2 = Ln+1 + Ln for all n ≥ 0.
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1. INTRODUCTION

Let φ(n) be the Euler function of a positive integer n. Recall that if n
has the prime factorization

n = pα1
1 pα2

2 · · · p
αk
k ,

then
φ(n) = (p1 − 1)pα1−1

1 (p2 − 1)pα2−1
2 · · · (pk − 1)pαk−1

k .

Lehmer [6] conjectured that if φ(n) | n − 1 then n is a prime. To this day,
the conjecture remains open. Counterexamples to Lehmer’s conjecture have
been dubbed Lehmer numbers. Several people worked on getting larger and
larger lower bounds on a potential Lehmer number. For a positive integer m,
we write ω(m) for the number of distinct prime factors of m. Lehmer himself
proved that if N is Lehmer, then ω(N) ≥ 7. This has been improved by Cohen
and Hagis [3] to ω(N) ≥ 14. The current record ω(N) ≥ 15 is due to Renze [9].
If additionally 3 | N , then ω(N) ≥ 40 · 106 and N > 1036·10

7
.

Not succeeding in proving that there are no Lehmer numbers, some resear-
chers have settled for the more modest goal of proving that there are no Lehmer
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numbers in certain interesting subsequences of positive integers. For example,
in [7], Luca proved that there is no Fibonacci number which is Lehmer. In [5],
it is shown that there is no Lehmer number in the sequence of Cullen numbers
{Cn}n≥1 of general term Cn = n2n + 1, while in [4] the same conclusion is
shown to hold for generalized Cullen numbers. In [2], it is shown that there
is no Lehmer number of the form (gn − 1)/(g − 1) for any n ≥ 1 and integer
g ∈ [2, 1000].

Here, we apply the same argument as in [7], to the Lucas sequence compa-
nion of the Fibonacci sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 +Ln
for all n ≥ 0. Putting (α, β) = ((1 +

√
5)/2, (1 −

√
5)/2) for the two roots of

the characteristic equation x2 − x − 1 = 0 of the Lucas sequence, the Binet
formula

(1) Ln = αn + βn holds for all n ≥ 0.

There are several relations among Fibonacci and Lucas numbers which are well-
known and can be proved using the Binet formula (1) for the Lucas numbers
and its analog

Fn =
αn − βn

α− β
for all n ≥ 0

for the Fibonacci numbers. Some of them which are useful for us are

(2) L2
n − 5F 2

n = 4(−1)n,

(3) Ln = L2
n/2 − 2(−1)n/2 valid for all even n,

whereas for odd n

(4) Ln − 1 =

{
5F(n+1)/2F(n−1)/2 if n ≡ 1 (mod 4);

L(n+1)/2L(n−1)/2 if n ≡ 3 (mod 4).

Our result is the following:

Theorem 1. There is no Lehmer number in the Lucas sequence.

2. PROOF

Assume that Ln is Lehmer for some n. Clearly, Ln is odd and ω(Ln) ≥ 15
by the main result from [9]. The product of the first 15 odd primes exceeds
1.6× 1019, so n ≥ 92. Furthermore,

(5) 215 | 2ω(Ln) | φ(Ln) | Ln − 1.

If n is even, formula (3) shows that Ln − 1 = L2
n/2 + 1 or L2

n/2 − 3 and

numbers of the form m2 + 1 or m2 − 3 for some integer m are never multiples
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of 4, so divisibility (5) is impossible. If n ≡ 3 (mod 8), relations (4) and (5)
show that 215 | L(n+1)/2L(n−1)/2. This is also impossible since no member of
the Lucas sequence is a multiple of 8, fact which can be easily proved by listing
its first 14 members modulo 8:

2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1,

and noting that we have already covered the full period of {Lm}m≥0 modulo 8
(of length 12) without having reached any zero.

So, we are left with the case when n ≡ 1 (mod 4).

Let us write
n = pα1

1 · · · p
αk
k ,

with p1 < · · · < pk odd primes and α1, . . . , αk positive integers. If p1 = 3, then
Ln is even, which is not the case. Thus, p1 ≥ 5.

Here, we use the argument from [7] to bound p1. Since most of the
details are similar, we only sketch the argument. Let p be any prime factor
of Ln. Reducing formula (1) modulo p we get that −5F 2

n ≡ −4 (mod p). In
particular, 5 is a quadratic residue modulo p, so by Quadratic Reciprocity also
p is a quadratic residue modulo 5. Now let d be any divisor of n which is
a multiple of p1. By Carmichael’s Primitive Divisor Theorem for the Lucas
numbers (see [1]), there exists a primitive prime pd | Ld, such that pd - Ld1 for
all positive d1 < d. Since n is odd and d | n, we have Ld | Ln, therefore pd | Ln.
Since pd is primitive for Ld and a quadratic residue modulo 5, we have pd ≡ 1
(mod d) (if p were not a quadratic residue modulo 5, then we would have had
that pd ≡ −1 (mod 5), which is less useful for our problem). In particular,

(6) p1 | d | pd − 1 | φ(Ln).

Collecting the above divisibilities (6) over all divisors d of n which are multiples
of p1 and using (4), we have

(7) p
τ(n/p1)
1 | φ(Ln) | Ln − 1 | 5F(n−1)/2F(n+1)/2.

In the above, τ(m) is the number of divisors of m. If p1 = 5, then 5 | n,
therefore 5 - F(n±1)/2 because a Fibonacci number Fm is a multiple of 5 if and
only if its index m is a multiple of 5. Thus, τ(n/p1) = 1, so n = p1, which is
impossible since n > 92.

Assume now that p1 > 5. Since

gcd(F(n+1)/2, F(n−1)/2) = Fgcd((n+1)/2,(n−1)/2) = F1 = 1,

divisibility relation (7) shows that p
τ(n/p1)
1 divides F(n+ε)/2 for some ε ∈ {±1}.

Let z(p1) be the order of appearance of p1 in the Fibonacci sequence, which is
the minimal positive integer ` such that p1 | F`. Write

(8) Fz(p1) = p
ep1
1 mp1 ,
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where mp1 is coprime to p1. It is known that p1 | Fk if and only if z(p1) | k.

Furthermore, if pt1 | Fk for some t > ep1 , then necessarily p1 | k. Since for us

(n + ε)/2 is not a multiple of p1 (because n is a multiple of p1), we get that

τ(n/p1) ≤ ep1 . In particular, if p1 = 7, then ep1 = 1, so n = p1, which is false

since n > 92. So, p1 ≥ 11. We now follow along the argument from [7] to get

that

(9) τ(n) ≤ 2τ(n/p1) ≤
(p1 + 1) logα

log p1
.

Further, since (Ln − 1)/φ(Ln) is an integer larger than 1, we have

(10) 2 <
Ln

φ(Ln)
≤
∏
p|Ln

(
1 +

1

p− 1

)
< exp

∑
p|Ln

1

p− 1

 ,

or

(11) log 2 ≤
∑
p|Ln

1

p− 1
.

Letting for a divisor d of n the notation Pd stand for the set of primitive prime

factors of Ld, the argument from [7] gives

(12)
∑
p∈Pd

1

p− 1
≤ 0.9

d
+

2.2 log log d

d
.

Since the function x 7→ (log log x)/x is decreasing for x > 10 and all divisors

d > 1 of n satisfy d > 10, we have, using (9), that∑
p|Ln

1

p− 1
=

∑
d|n

∑
p∈Pd

1

p− 1
≤
∑
d|n
d>1

(
0.9

d
+

2.2 log log d

d

)
(13)

≤
(

0.9

p1
+

2.2 log log p1
p1

)
τ(n)

≤ (logα)
(p1 + 1)

log p1
·
(

0.9

p1
+

2.2 log log p1
p1

)
,

which together with inequality (11) leads to

(14) log p1 ≤
(logα)

log 2

(
p1 + 1

p1

)
(0.9 + 2.2 log log p1).

The above inequality (14) implies p1 < 1800. Since p1 < 1014, a calculation of

McIntosh and Roettger [8] shows that ep1 = 1. Thus, τ(n/p1) = 1, therefore

n = p1. Since n ≥ 92, we have p1 ≥ 97. Going back to the inequalities (11)
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and (12), we get

log 2 <
0.9

p1
+

2.2 log log p1
p1

,

which is false for p1 ≥ 97. The theorem is proved.
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