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Continuous Galerkin Petrov time discretization scheme is tested on some Ha-
miltonian systems including simple harmonic oscillator, Kepler’s problem with
different eccentricities and molecular dynamics problem. In particular, we im-
plement the fourth order Continuous Galerkin Petrov time discretization scheme
and analyze numerically, the efficiency and conservation of Hamiltonian. A
numerical comparison with some symplectic methods including Gauss impli-
cit Runge-Kutta method and general linear method of same order is given for
these systems. It is shown that the above mentioned scheme, not only preserves
Hamiltonian but also uses the least CPU time compared with up to-date and
optimized methods.
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1. INTRODUCTION

Non-dissipative phenomena arising in the fields of classical mechanics,
molecular dynamics, accelerator physics, chemistry and other sciences are mo-
deled by Hamiltonian systems. Hamiltonian systems define equations of motion
based on generalised co-ordinates q = (q1, q2, · · · , qn) and generalised momenta
p = (p1, p2, · · · , pn) and are given as,

(1)
dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H

∂pi
, i = 1, · · · , n,

having n degrees of freedom. H : Rn × Rn → R is the total energy of the
Hamiltonian system. A separable Hamiltonian has the structure

H(p, q) = T (p) + V (q)

in mechanics, T = 1
2p
TM−1p represents the kinetic energy and V being the

potential energy. The Hamiltonian system in partitioned form takes the form
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dpi
dt

= −OqV,
dqi
dt

= OpT = M−1p.

The first observation is that, for autonomous Hamiltonian systems, H is
an invariant, thus by differentiating H(p, q) with respect to time we have,

dH

dt
=

n∑
i=1

(∂H
∂pi

dpi
dt

+
∂H

∂qi

dqi
dt

)
= 0.

We can write y = (p, q), then (1) can be written as,

y′ = J−1∇H,

where ′ represents the derivative with respect to time, ∇ is a gradient operator
and J is a skew symmetric matrix consisting of zero matrix 0 and n×n identity
matrix I,

J =

[
0 I
−I 0

]
.

Another property of Hamiltonian systems is that its flow is symplectic, i.e. for
a linear transformation Ψ : R2n 7→ R2n, the jacobian matrix Ψ′(y) satisfies

Ψ′T (y)JΨ′(y) = J.

Conservation laws for Hamiltonian systems are generally lost while in-
tegrating these systems. It is generally desirable to preserve the underlying
qualitative property of solutions of Hamiltonian systems. This is achieved by
using symplectic integrators from the class of one step, multistep and gene-
ral linear methods. A lot of attention has been paid on the construction and
implementation of such integrators, for details see [6–8] and [11].

The continuous Galerkin Petrov time discretization scheme (cGP) was
investigated in [12] for the system of ordinary differential equations (ODEs).
In [9], this scheme was studied for the heat equation. In particular, the cGP(2)
scheme has found to be 4th order accurate in the discrete time point and is
A-stable method.

The objective of this paper is to provide analysis of cGP(2) scheme
[1, 9, 12, 13] on some Hamiltonian systems and comparing it with other sym-
plectic methods of order four including Gauss implicit Runge-Kutta method
represented as irk4 [2] and a g-symplectic general linear method represented by
glm4 of same order developed in [3] and [10]. In Section 2, a brief introduction
about the methods is given. The tested problems of Hamiltonian systems al-
ong with numerical experiments of these methods on Hamiltonian systems are
described in the third section. Conclusion based on numerical comparison of
third section is given in the fourth section.
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2. THE METHODS

2.1. CONTINUOUS GALERKIN-PETROV METHOD (CGP)

To describe the time discretization of problem (1) let us introduce the
following notation. Let W be a Hilbert space with the norm ‖ · ‖W , W ′ its
dual space and 〈·, ·〉 := 〈·, ·〉W ′,W the duality pairing. We assume that there
is another Hilbert space H such that W ⊂ H is a continuous embedding and
W is dense in H. Instead of identifying H with H ′ we consider the linear
continuous and invertible Riesz operator M : H → H ′ defined by

〈Mu, v〉H′,H := (u, v)H ∀ u, v ∈ H,

i.e., for a given f ∈ H ′, there is a unique element M−1f ∈ H such that

(2)
(
M−1f, v

)
H

= 〈f, v〉H′,H ∀ v ∈ H.

Now, we are ready to formulate our continuous evolution equation in W ′. For
a given sufficiently smooth function F : I ×W →W ′ and a given initial value
u0 ∈W , we consider the following problem: Find u : I →W such that

(3)
dtu(t) = F (t, u(t)) for t ∈ I,
u(0) = u0.

The weak formulation of problem (3) reads: Find u ∈ X such that u(0) =
u0 and

(4)

∫ Tm

0
〈dtu(t), v(t)〉 dt =

∫ Tm

0
〈F (t, u(t)), v(t)〉dt ∀ v ∈ Y,

where X denotes the solution space and Y the test space. We denote by
I = [0, Tm] the time interval with some positive final time Tm. We start by
decomposing the time interval I into N subintervals In := (tn−1, tn), where
n ∈ {1, . . . , N} and

0 = t0 < t1 < · · · < tN−1 < tN = Tm.

In our time discretization, we approximate the continuous solution u(t) of
problem (3) on each time interval In by a polynomial function:

(5) u(t) ≈ uh(t) :=

k∑
j=0

U jnφn,j(t) ∀ t ∈ In,

where the “coefficients” U jn are elements of the Hilbert space W and the basis
functions φn,j ∈ Pk(In) are linearly independent elements of the standard space
of polynomials on the interval In with a degree not larger than a given order k.
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For a given time interval J ⊂ R and a Banach space B, we introduce the
linear space of B-valued time polynomials with degree of at most k as

Pk(J,B) :=

u : J → B : u(t) =

k∑
j=0

U jtj , ∀ t ∈ J, U j ∈ B, ∀ j

 .

Now, the discrete solution space for the global approximation uh : I → W is
the space Xk

h ⊂ X defined as

Xk
h := {u ∈ C(I,W ) : u

∣∣
Īn
∈ Pk(Īn,W ) ∀ n = 1, . . . , N}

and the discrete test space is the space Y k
h ⊂ Y given by

Y k
h := {u ∈ L2(I,W ) : u

∣∣
In
∈ Pk−1(In,W ) ∀ n = 1, . . . , N}.

The symbol h denotes the discretization parameter which acts in the error
estimates as the maximum time step size h := max1≤n≤N hn, where hn :=
tn − tn−1 is the length of the n-th time interval In.

Let us denote by Xk
h,0 := Xk

h ∩ X0 the subspace of Xk
h with zero initial

condition. Then, it is easy to see that the dimensions of the spaces Xk
h,0 and

Y k
h coincide such that it makes sense to consider the following discontinuous

Galerkin-Petrov discretization of order k for the weak problem (4): Find uh ∈
u0 +Xk

h,0 such that

(6)

∫ Tm

0
〈dtuh(t), vh(t)〉 dt =

∫ Tm

0
〈F (t, uh(t)), vh(t)〉 dt ∀ vh ∈ Y k

h .

We will denote this discretization as the “exact cGP(k)-method”. Since the
discrete test space Y k

h is discontinuous, problem (6) can be solved in a time
marching process. Therefore, we choose test functions vh(t) = vψn,i(t) with an
arbitrary v ∈W and a scalar function ψn,i : I → R which is zero on I \ Īn and
a polynomial ψn,i ∈ Pk−1(Īn) on the time interval Īn = [tn−1, tn]. Then, we
obtain for each i = 0, . . . , k − 1

(7)

∫
In

〈dtuh(t), v〉ψn,i(t)dt =

∫
In

〈F (t, uh(t)), v〉ψn,i(t)dt ∀ v ∈W.

By the definition of the weak time derivative we get for uh represented by (5)
the equation∫

In

〈dtuh(t), v〉ψn,i(t)dt =

∫
In

k∑
j=0

(
U jn, v

)
H
φ′n,j(t)ψn,i(t) dt ∀ v ∈W.

We define the basis functions φn,j ∈ Pk(Īn) of (5) via the reference transfor-
mation ωn : Î → Īn where Î := [−1, 1] and

t = ωn(t̂) :=
tn−1 + tn

2
+
hn
2
t̂ ∈ Īn ∀ t̂ ∈ Î , n = 1, . . . , N.
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Let φ̂j∈Pk(Î), j=0, . . . , k, be suitable basis functions satisfying the conditions

(8) φ̂j(−1) = δ0,j , φ̂j(1) = δk,j ,

where δk,j denotes the usual Kronecker symbol. Then, we define the basis
functions on the original time interval Īn by

φn,j(t) := φ̂j(t̂) with t̂ := ω−1
n (t) =

2

hn

(
t− tn − tn−1

2

)
∈ Î .

Similarly, we define the test basis functions ψn,i by suitable reference basis

functions ψ̂i ∈ Pk−1(Î), i.e.,

ψn,i(t) := ψ̂i(ω
−1
n (t)) ∀ t ∈ Īn, i = 0, . . . , k − 1.

By the property (8), the initial condition and the continuity (with respect to
time) of the discrete solution uh : I →W is equivalent to the conditions:

U0
1 = u0 and U0

n = Ukn−1 ∀ n > 2.

We transform the integrals in (7) to the reference interval Î and obtain the
following system of equations for the “coefficients” U jn ∈ W , j = 1, . . . , k, in
the ansatz (5) :
(9)
k∑
j=0

αi,j
(
U jn, v

)
H

=
hn
2

∫
Î

〈
F

ωn(t̂),
k∑
j=0

U jnφ̂j(t̂)

 , v

〉
ψ̂i(t̂) dt̂ ∀ v ∈W

where i = 0, . . . , k − 1,

αi,j :=

∫
Î
dt̂φ̂j(t̂)ψ̂i(t̂) dt̂,

and the “coefficient” U0
n ∈ W is known. We approximate the integral on the

right hand side of (9) by the (k + 1)-point Gauß-Lobatto quadrature formula:∫
Î

〈
F

ωn(t̂),

k∑
j=0

U jnφ̂j(t̂)

 , v

〉
ψ̂i(t̂) dt̂

≈
k∑

µ=0

ŵµ

〈
F

ωn(t̂µ),

k∑
j=0

U jnφ̂j(t̂µ)

 , v

〉
ψ̂i(t̂µ),

where ŵµ are the weights and t̂µ ∈ [−1, 1] are the integration points with
t̂0 = −1 and t̂k = 1. Let us define the mapped Gauß-Lobatto points tn,µ ∈ Īn
and the coefficients βi,µ, γj,µ by

tn,µ := ωn(t̂µ), βi,µ := ŵµψ̂i(t̂µ), γj,µ := φ̂j(t̂µ).
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Then, the system (9) is equivalent to the following system of equations for the
k unknown “coefficients” U jn ∈W , j = 1, . . . , k,

(10)

k∑
j=0

αi,j
(
U jn, v

)
H

=
hn
2

k∑
µ=0

βi,µ

〈
F

tn,µ, k∑
j=0

γj,µU
j
n

 , v

〉
∀ v ∈W.

with the k “equations” i = 0, . . . , k − 1 where U0
n = Ukn−1 for n > 1 and

U0
1 = u0.

Once we have solved this system we enter the next time interval and
set the initial value of the new time interval In+1 to U0

n+1 := Ukn . If the
Gauß-Lobatto formula would be exact for the right hand side of (9) this time
marching process would solve the global time discretization (6) exactly. Since,
in general there is an integration error, we call the time marching process
corresponding to (10) simply the “cGP(k)-method ”.

In principle, we have to solve a coupled system for the U jn ∈ W which
could be very expensive. However, by a clever choice of the functions φ̂j and

ψ̂i it is possible to uncouple the system to a large extend. In the following,
we will discuss this issue for the special methods cGP(1), cGP(2) and for the
general method cGP(k), k ≥ 3. In all cases, we choose the basis functions
φ̂j ∈ Pk(Î) as the Lagrange basis functions with respect to the Gauß-Lobatto
points t̂µ, i.e.,

φ̂j(t̂µ) = δj,µ ∀ j, µ ∈ {0, . . . , k}.
Then, the method (10) reduces to

k∑
j=0

αi,j
(
U jn, v

)
H

=
hn
2

k∑
j=0

βi,j
〈
F
(
tn,j , U

j
n

)
, v
〉

∀ v ∈W, i = 0, . . . , k − 1,

and by the choice of the test basis functions ψ̂i ∈ Pk−1(Î) we try to get suitable
values for the coefficients αi,j and βi,j . In the following, we will use the following
abbreviation and assumption:

(11) F jn(U jn) := F (tn,j , U
j
n) ∈ H ′ ∀ j = 0, . . . , k, n = 1, . . . , N.

For our numerical experiments, we have W = H = Rd equipped with the
Euclidean norm ||.|| and H ′ = W ′ = Rd be identified with H = W .

2.1.1. The cGP(1) method

We use the 2-point Gauß-Lobatto formula (trapezoidal rule) with ŵ0 =
ŵ1 = 1 and t̂0 = −1, t̂1 = 1. The only test function ψ̂0 is chosen as ψ̂0(t̂) = 1.
Then, we obtain

α0,0 = −1, α0,1 = 1, β0,0 = β0,1 = 1.
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Using the notation Un−1 := uh(tn−1) = U0
n and Un := uh(tn) = U1

n, we obtain
the following equation for the “unknown” Un ∈W :

(Un, v)H −
(
Un−1, v

)
H

=
hn
2

{〈
F (tn−1, U

n−1) + F (tn, U
n), v

〉}
for all v ∈ W which is the well-known Crank-Nicolson method. In operator
notation it can be written in the equivalent form:

Un = Un−1 +
hn
2
M−1

{
F (tn−1, U

n−1) + F (tn, U
n)
}
.

2.1.2. The cGP(2) method

We use the 3-point Gauß-Lobatto formula (Simpson rule) with ŵ0 = ŵ2 =
1/3, ŵ1 = 4/3 and t̂0 = −1, t̂1 = 0, t̂2 = 1. For the test functions ψ̂i ∈ P1(Î),
we choose

ψ̂0(t̂) = −3

4
t̂, ψ̂1(t̂) = 1.

Then, we get

(αi,j) =

(
−1/2 1 −1/2
−1 0 1

)
, (βi,j) =

(
1/4 0 −1/4
1/3 4/3 1/3

)
and the assumption (11), the system to compute the “unknowns” U1

n, U
2
n ∈W

from the known U0
n = U2

n−1 reads:

U1
n =

1

2
U0
n +

1

2
U2
n +

hn
8
M−1

{
F 0
n(U0

n)− F 2
n(U2

n)
}

(12)

U2
n = U0

n +
hn
6
M−1

{
F 0
n(U0

n) + 4F 1
n(U1

n) + F 2
n(U2

n)
}
.(13)

Let us denote the value for U1
n computed from (12) and depending on U2

n by
U1
n = G1

n(U2
n) where G1

n : W → W in general is a nonlinear operator. We
substitute this in the equation (13) and get, for the unknown U2

n ∈ W , the
following fixed point equation :

U2
n = G2

n(U2
n) := U0

n +
hn
6
M−1

{
F 0
n(U0

n) + 4F 1
n(G1

n(U2
n)) + F 2

n(U2
n)
}
.

The mappingG2
n : W →W is a contraction if the time step size τn is sufficiently

small.

2.2. GAUSS IMPLICIT RUNGE-KUTTA METHODS

For the general autonomous first order differential equations

(14) y′(t) = f(y(t)),
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where for system (1), we choose y =

(
p
q

)
and f(y) =

(
−OqV (q)
−OpT (q)

)
. Runge-

Kutta methods are defined as

yn+1 = yn + h
s∑
i=1

bif(Yi)

and

Yi = yn + h
s∑
i=1

aijf(Yj)

where the coefficients aij , bi and stage s determine the method. The Gauss
methods have the highest possible order r = 2s and are symplectic and symme-
tric. We exclusively consider s = 2, fourth order method for a fair comparison.

2.3. GENERAL LINEAR METHODS

General linear methods provide numerical solutions of initial value pro-
blems of the form (14). A general linear method is of the form,

Y = h(A⊗ I)f(Y ) + (U ⊗ I)y[n−1],

y[n] = h(B ⊗ I)f(Y ) + (V ⊗ I)y[n−1].

where A⊗ I is the Kronecker product of the matrix A and the identity matrix
I and h represents the step size. The s−component vector Y are the stages
and f(Y ) are the stage derivatives. The vector y[n−1] with r−components is
an input at the beginning of a step and results in output approximation y[n].
With a slight abuse of notation, we can write,

Y = hAf(Y ) + Uy[n−1],

y[n] = hBf(Y ) + V y[n−1].

The matrices A, U , V and B represent a particular general linear method and
are generally displayed as, [

A U

B V

]
.

A fourth order symmetric G-symplectic general linear method is con-
structed with four stages (s = 4) and three input values (r = 3). The coeffi-
ceints of the method are given in [3].

3. NUMERICAL EXPERIMENTS

We performed numerical comparisons of the continuous Galerkin Petrov
time discretization scheme, general linear method and implicit Gauss R-K met-
hod all having the same order four, for some Hamiltonian systems including
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simple harmonic oscillator, Kepler’s problem with different eccentricities and
molecular dynamical problems. Throughout the comparison, continuous Galer-
kin Petrov scheme is denoted by acronym cGP(2), while general linear method
and implicit Gauss R-K method are represented by the acronym glm4 and irk4,
respectively. The emphasis in our comparison is on the accuracy of solution, in-
cluding the phase information, energy conservation and CPU time using above
discussed methods. For each method and problem, we used different stepsizes
and several intervals of integration. Stepsizes were chosen as a compromise
between having small truncation error and performing efficient integration on
each step. The accuracy of the solution was measured by the L2 norm of the
absolute global error in the position and velocity coordinates and is denoted
by Eg(t). The relative error in Hamiltonian is defined as

Ee(t) =
E(t)− E(0)

E(0)
.

Growth of global error is measured for first two problems as their exact solution
exists, while relative error in Hamiltonian Ee(t) is calculated for all problems.
We also measured computational effort using the CPU time. All the compari-
sons are done on the same machine and are optimized using MATLAB.

3.1. SIMPLE HARMONIC OSCILLATOR

As an example of simple harmonic oscillator a mass spring system having
kinetic energy p2/(2m), where p = mv is the momentum of the system and
potential energy 1

2kq
2. Where q is distance from the equilibrium, m is the mass

of the body which is attached to spring and k is constant of proportionality
often called as spring constant. Here the Hamiltonian is the total energy of
the system and has one degree of freedom

H(q, p) =
1

2
kq2 +

p2

2m
.

The equations of motion from the Hamiltonian are

q′ =
∂H(q, p)

∂p
= p, p′ = −∂H(q, p)

∂q
= −q.

We compared the problem using different stepsizes of h = 0.005, 0.01, 0.025,
and 0.05. Fig. 1 gives the log-log graph for time versus global error Eg(t) and
relative error in Hamiltonian Ee(t) using stepsize h = 0.005 for the time inter-
val [0, 1000]. We found almost the same behavior of error growth for position
and Hamiltonian using the rest of stepsizes. In Fig. 2, the top plot gives
the growth of global error and is approximately same for all tested methods,
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TABLE 1

Maximum of global error, Hamiltonian error and CPU time for simple harmonic oscillator

Method stepsize (h) Max. of Global Max. of Hamiltonian CPU Time (sec.)
Error Error

cGP(2) 0.05 8.67 × 10−6 4.08 × 10−14 2.8
cGP(2) 0.025 5.42 × 10−7 1.07 × 10−13 5.3
cGP(2) 0.01 1.38 × 10−8 1.12 × 10−13 12.1
cGP(2) 0.005 8.68 × 10−10 1.31 × 10−13 23.9

glm4 0.05 2.51 × 10−5 4.67 × 10−11 3.2
glm4 0.025 1.57 × 10−6 7.57 × 10−13 11.6
glm4 0.01 4.09 × 10−8 3.1 × 10−15 78.6
glm4 0.005 3.34 × 10−9 1.14 × 10−15 395.3

irk4 0.05 8.67 × 10−6 6.43 × 10−15 5.7
irk4 0.025 5.41 × 10−7 2.51 × 10−14 11.5
irk4 0.01 1.31 × 10−8 1.97 × 10−14 45.0
irk4 0.005 6.98 × 10−11 3.68 × 10−14 191.8
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Fig. 1 – The growth of global error and relative error in Hamiltonian for Kepler’s problem

with e = 0 using stepsize 2π/6400 for 103 periods.

irk4 and cGP(2) having the least error while glm4 with slightly bigger error. In
bottom plot of Fig. 3, the error in Hamiltonian is conserved by the methods. We
also calculated the error growth according to Brouwer’s law [4], our calculation
shows that the exponent of time is 1 and 0.6 for Eg(t) and Ee(t) respectively,
closed to its expected value. Table 1 gives the cost of integration for simple
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harmonic oscillator using all stepsizes. The table lists the stepsizes, maximum
of global error, maximum of Hamiltonian error and CPU time. We observe from
the Table 1 that cGP(2) used the least CPU time and also having the least
value for maximum of global error except for h = 0.005, where irk4 having the
least end point global error, may be because of entering in a dip also depicted
in Fig. 4. The methods irk4 and glm4 are using eight and sixteen times more
CPU time than cGP(2) giving similar accuracy for h = 0.005.

3.2. KEPLER’S PROBLEM

Kepler’s problem is two body orbital problem in which the bodies are mo-
ving under their mutual gravitational forces. We can assume that one body is
fixed at the origin and the second body is located in the plane with coordinates
(q1, q2). The solution of this problem is used in many important applications
which includes the determination of orbits for new asteroids and the measure-
ment of orbits for the two primary bodies in a restricted three body problem.
The Hamiltonian of the system can be written in separable form as [7]

H(q, p) =
1

2
(p2

1 + p2
2)− 1√

q2
1 + q2

2

This can be written asH = T+V , where T = (p2
1+p2

2)/2 and V = −1/
√
q2

1 + q2
2

are kinetic and potential energy of the system respectively. As like the previous
problem, this system is also autonomous so the Hamiltonian H is a conserved
quantity.

The equations of motion are

q′1 = p1, q′2 = p2

(15) p′1 = q′′1 = − q1

(q2
1 + q2

2)
3
2

p′2 = q′′2 = − q2

(q2
1 + q2

2)
3
2

with the initial conditions

q1(0) = 1− e, q2(0) = 0, q′1(0) = 0, q2(0) =

√
1 + e

1− e
where e is eccentricity 0 ≤ e < 1. The exact solution of the above equations
(15) is

y1 = cos(E)− e, y2 =
√

1− e2 sin(E),
and

y′1 = − sin(E)(1− e cos(E))−1, y′2 =
√

(1− e2) cos(E)(1− e cos(E))−1,
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where the eccentric anomaly E satisfies Kepler’s equation t = E − e sin(E).
Since Kepler’s equation is implicit in E, the equation is usually solved using
a non-linear equation solver, although useful analytical approximations can be
found for smaller eccentricity.

The integrations are performed for Kepler’s problem with different eccen-
tricities e = 0, 0.5 and 0.9. The integration is done for 1000 periods for e = 0
and 100 periods for e = 0.5 and 0.9. For each method, we measured Eg(t) and
Ee(t) throughout the interval of integration. A variety of different stepsizes are
used to analyze the behaviour of error growth. We used the stepsizes of h = 2π

400 ,
h = 2π

800 h = 2π
1600 , h = 2π

3200 and h = 2π
6400 for eccentricities e = 0, 0.5 and 0.9. A

log-log plot of time against error is given for Kepler’s problem in Figs. 2 and 3
using eccentricities 0 and 0.9 respectively. Growth of errors in both quanti-
ties behave in the same manner as for e=0.5. It is seen that the global error
growth is approximately linear for cGP(2), irk4 and glm4, i.e., growing as t0.9

(see Figs. 2 and 3). The error in Hamiltonian remains conserved for cGP(2),
irk4 and glm4 for the intervals of integration. Our calculation shows that for
Ee(t) grows as t0.6, showing a good agreement to its expected value. The
cGP(2) exhibits a smaller error, even the problem becomes more eccentricitic
(see Figs. 2 and 3).

TABLE 2

Maximum of global error, Hamiltonian error and CPU time for Kepler’s Problem with e = 0

for 103 periods

Method stepsize (h) Max. of Global Max. of Hamiltonian CPU Time (sec.)
Error Error

cGP(2) 2π/400 4.88 × 10−6 4.07 × 10−13 93.4
cGP(2) 2π/800 2.54 × 10−7 7.54 × 10−12 192.7
cGP(2) 2π/1600 6.56 × 10−8 1.28 × 10−11 378
cGP(2) 2π/3200 1.38 × 10−8 2.28 × 10−12 760.5
cGP(2) 2π/6400 4.54 × 10−9 1.49 × 10−12 1487

glm4 2π/400 2.36 × 10−5 2.35 × 10−14 3464
glm4 2π/800 1.56 × 10−6 3.06 × 10−14 12172
glm4 2π/1600 1.66 × 10−7 9.39 × 10−14 47724
glm4 2π/3200 8.59 × 10−8 5.32 × 10−13 180716
glm4 2π/6400 1.05 × 10−8 9.98 × 10−12 752864

irk4 2π/400 1.04 × 10−5 4.72 × 10−14 1598
irk4 2π/800 5.68 × 10−7 2.79 × 10−14 6348
irk4 2π/1600 2.98 × 10−7 3.28 × 10−14 23609
irk4 2π/3200 6.58 × 10−8 5.17 × 10−13 93215
irk4 2π/6400 1.27 × 10−8 7.18 × 10−12 39460
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TABLE 3

Maximum of global error, Hamiltonian error and CPU time for Kepler’s Problem

with e = 0.5 for 102 periods

Method stepsize (h) Max. of Global Max. of Hamiltonian CPU Time (sec.)
Error Error

cGP(2) 2π/400 1.06 × 10−4 2.83 × 10−8 10.2
cGP(2) 2π/800 6.63 × 10−6 1.77 × 10−9 19.9
cGP(2) 2π/1600 4.15 × 10−7 1.11 × 10−10 39.8
cGP(2) 2π/3200 2.54 × 10−8 7.01 × 10−12 79.2
cGP(2) 2π/6400 2.9 × 10−9 1.02 × 10−12 157.5

glm4 2π/400 2.1 × 10−4 5.97 × 10−8 43.8
glm4 2π/800 1.31 × 10−5 3.74 × 10−9 182.3
glm4 2π/1600 8.2 × 10−7 2.34 × 10−10 688.2
glm4 2π/3200 3.31 × 10−8 1.46 × 10−11 2366
glm4 2π/6400 2.16 × 10−8 1.38 × 10−12 8789

irk4 2π/400 8.84 × 10−5 1.89 × 10−8 22.1
irk4 2π/800 5.53 × 10−6 1.18 × 10−9 68.5
irk4 2π/1600 3.43 × 10−7 4.71 × 10−11 244
irk4 2π/3200 1.04 × 10−8 4.66 × 10−12 955
irk4 2π/6400 2.51 × 10−8 3.13 × 10−13 3830

TABLE 4

Maximum of global error, Hamiltonian error and CPU time for Kepler’s Problem with

e = 0.9 for 102 periods

Method stepsize (h) Max. of Global Max. of Hamiltonian CPU Time (sec.)
Error Error

cGP(2) 2π/400 4.87 5.23 × 10−3 10.4
cGP(2) 2π/800 1.68 2.43 × 10−4 20.2
cGP(2) 2π/1600 1.92 × 10−1 1.42 × 10−5 41.1
cGP(2) 2π/3200 1.3 × 10−2 8.74 × 10−7 80.6
cGP(2) 2π/6400 8.41 × 10−6 5.43 × 10−8 162.1

glm4 2π/400 111.8 6.5 × 10−4 44.1
glm4 2π/800 4.54 2.23 × 10−4 172
glm4 2π/1600 1.46 1.62 × 10−5 676
glm4 2π/3200 9.77 × 10−2 1.04 × 10−6 2482
glm4 2π/6400 6.14 × 10−3 6.53 × 10−8 8402

irk4 2π/400 4.54 1.73 × 10−5 22.4
irk4 2π/800 1.27 1.36 × 10−5 67.8
irk4 2π/1600 1.32 × 10−1 1.38 × 10−6 257.5
irk4 2π/3200 9.01 × 10−3 9.45 × 10−8 1086
irk4 2π/6400 5.73 × 10−4 6.03 × 10−9 3786
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Fig. 2 – The growth of global error and relative error in Hamiltonian for Kepler’s problem

with e = 0 using stepsize 2π/6400 for 103 periods.
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Fig. 3 – The growth of global error and relative error in Hamiltonian for Kepler’s problem

with e = 0.9 using stepsize 2π/1600 for 102 periods.

We also measured the cost of integration for Kepler’s problem using
all stepsizes for all three eccentricities. Tables 2, 3 and 4 list the stepsizes,
maximum of global error, maximum of Hamiltonian error and CPU time for
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e = 0, e = 0.5 and 0.9 respectively. We observe from the information depicted
in tables, that cGP(2) used the least CPU time and also having the least value
for maximum of global error for all the stepsizes. For e=0, using the least
stepsize i.e. h = 2π

6400 , irk4 and glm4 used 506 and 26 times more CPU time
than cGP(2). While for e=0.5 and 0.9, irk4 and glm4 used nearly 55 and 24
times more CPU time than cGP(2).

3.3. MOLECULAR DYNAMICAL PROBLEM

We consider the interaction of seven Argon atoms in two dimension, where
one of the atom is centered by six atoms which are symmetrically arranged [5].
The Hamiltonian for the molecular dynamics is written as [7]

H(q, p) =
1

2

7∑
i=1

1

mi
pTi pi +

7∑
i=2

i−1∑
j=1

Vij‖qi − qj‖

where Vij(r) are potential functions. Here qi and pi are positions and gene-
relized momenta for the atoms. And mi denotes the atomic mass of the ith
atom.

Vij(r) = 4εij

((σij
r

)12
−
(σij
r

)6
)
.

The equations of motion for the frozen Argon crystals are given as

q′′i (t) =
24εσ6

mi

7∑
j=1,j 6=i

[
(qj − qi)
‖qj − qi‖82

− 2σ6 (qj − qi)
‖qj − qi‖14

2

]
, i = 1, ..., 7,

where r = σij
6
√

2, mi = 66.34 × 10−27[kg], σij = σ = 0.341[nm] and ε =
1.654028284×10−21[J]. Initial positions and initial velocities are taken in [nm]
and [nm/sec] respectively [7].

In molecular dynamics much interest is emphasized on macroscopic quan-
tities like Hamiltonian. So we also discussed only the energy conservation of
atoms over an interval of length 2 × 105 [fsec] (1fsec = 10−6). The experi-
ments are done using the stepsizes of 0.5 fsec, 1 fsec, 2 fsec and 4 fsec. The
graphical results are only shown for h = 0.5× 10−6[fsec] as the error growth
using other stepsizes was approximately same. Fig. 4 shows that the tested
methods conserve the value of Hamiltonian H even though the conservation is
of highly oscillatory, while the error in Hamiltonian for cGP(2) grows as t0.7.
On the other hand, for irk4 and glm4 the exponent of time is 0.59 and 0.61
respectively. Table 5 gives the cost of integration for molecular dynamical pro-
blem using all stepsizes. The table lists the stepsizes, maximum of Hamiltonian
error and CPU time. It is observed from the Table 5 that cGP(2) used the
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least CPU time for all the stepsizes used but exhibiting slightly big maximum
of Hamiltonian error. The methods irk4 and glm4 having almost the same
error growth for the integrated interval.

TABLE 5

Maximum of Hamiltonian error and CPU time for molecular dynamical problem

for 2 × 105 [fsec]

Method stepsize (h) Max. of Global CPU Time (sec.)
Error

cGP(2) 4 1.24 × 10−9 658
cGP(2) 2 6.15 × 10−11 1323
cGP(2) 1 7.05 × 10−12 2680
cGP(2) 0.5 3.73 × 10−13 5821

glm4 4 9.24 × 10−11 1772
glm4 2 5.58 × 10−12 4300
glm4 1 3.53 × 10−13 11367
glm4 0.5 9.41 × 10−14 34591

irk4 4 3.72 × 10−11 2060
irk4 2 2.32 × 10−12 4272
irk4 1 1.59 × 10−13 10020
irk4 0.5 2.34 × 10−14 23596
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Fig. 4. – The growth of relative error in Hamiltonian using h = 0.5 × 10−6[fsec]

for molecular dynamical problem over an interval of 2 × 105 [fsec].

4. SUMMARY

We implemented and analyzed the cGP(2) for Hamiltonian systems such
as harmonic oscillator, Kepler’s problem and molecular dynamical problem.
The obtained results are also compared with symplectic methods irk4 and
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glm4. It is shown that the cGP(2) method conserves the hamiltonian as other
tested symplectic methods do. Moreover, giving the efficiency approximately
same as other methods yield, cGP(2) uses marginally less CPU time than
compared methods.
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