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Let f be a non-constant meromorphic function, n, k be two positive integers and
a(z)(# 0,00) be a meromorphic small function of f. Suppose that f” — a and
(f™)®) — g share the value 0 CM. If either (1) n > k+1 and N(r, o0; f) = S(r, f),
or (2) n > k+1and N(r,00; f) = X T(r, f)(\ € [0,1)), then f™ = (f")* and
f assume the form f(z) = ce%z, where ¢ is a nonzero constant and A\ = 1.
This result shows that Briick conjecture is true for meromorphic function when
F = f* with N(r,00; f) = S(r, f) and n > 2.
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1. INTRODUCTION, DEFINITIONS AND RESULTS

In this paper, by a meromorphic function we will always mean meromor-
phic function in the complex plane C. We adopt the standard notations of
the Nevanlinna theory of meromorphic functions as explained in [5]. It will
be convenient to let £ denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence. For any non-constant
meromorphic function f, we denote by S(r, f) any quantity satisfying

S f)
% T, f)

Also for any non-constant meromorphic function f, we define the order of
growth of f by

=0, r¢FE.

logT
o(f) = lim sup 08 L)
r—00 log r

A meromorphic function a is said to be a small function of f provided that
T(r,a) =S(r, f), i.e, T'(r,a) =o(T(r, f)) asr —> 0o, r € E.

Let k be a positive integer and a € CU{oo}. We use Ny(r,a; f) to denote
the counting function of a-points of f with multiplicity < &k, Ny1(r, a; f) to
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8 Sujoy Majumder 2

denote the counting function of a-points of f with multiplicity > k. Similarly
Nyy(rya; f) and N (41(r, a; f) are their reduced functions respectively.

For a € CU {oo} and a positive integer p we denote by N,(r,a; f) the
sum

Na(ra; f)+ Na(ra f) + ...+ Ny(r,a; f).

Let f and g be two non-constant meromorphic functions and let a be a complex
number. We say that f and g share a CM, provided that f —a and g — a have
the same zeros with the same multiplicities.

Rubel-Yang [9] proposed to investigate the uniqueness of an entire function
f under the assumption that f and its derivative f’ share two complex va-
lues. Subsequently, related to one or two value sharing similar considerati-
ons have been made with respect to higher derivatives and more general (li-
near) differential expressions by Briick [1], Gundersen [3], Mues-Steinmetz [8],
Yang [11] et al.

In this direction, an interesting problem still open is the following con-
jecture proposed by Briick [1]

CONJECTURE 1.1 ([1]). Let F' be a non-constant entire function. Suppose
p1(F) := limsup loglog T'(r, F')
r—00 logr
is not a positive integer or infinite. If F' and F' share one finite value a CM,
then
F'—a
F—a

=C

for some non-zero constant c.

The case that a = 0 and that N(r,0; f') = S(r, f) had been proved by
Briick [1] while the case that f is of finite order had been proved by Gundersen-
Yang [4]. However, the corresponding conjecture for meromorphic functions
fails in general (see [4]).

To the knowledge of the author, perhaps Yang-Zhang [13] (see also [14])
were the first to consider the uniqueness of a power of a meromorphic(entire)
function F = f™ and its derivative I’ when they share certain value as this
type of considerations gives the most specific form of the function.

As a result during the last decade, growing interest has been devoted
to this setting of meromorphic functions. Improving all the results obtained
in [13], Zhang [14] proved the following theorem.

THEOREM A ([14]). Let f be a non-constant meromorphic function, n,
k be positive integers and a(z)(Z 0,00) be a meromorphic small function of f.
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Suppose f* —a and (f*)*) — a share the value 0 CM and
(n—k—1)(n—k—4) >3k +6,
then f* = (f™)®), and f assumes the form
f(z) = cen?,
where c is a nonzero constant and \* = 1.
In 2009, Zhang and Yang [15] further improved the above result in the

following manner.

THEOREM B ([15]). Let f be a non-constant meromorphic function, n,

k be positive integers and a(z)(# 0,00) be a meromorphic small function of f.
Suppose f* —a and (f*)*) — a share the value 0 CM and

n>k+1+vk+1

Then the conclusion of Theorem A holds.

THEOREM C ([15]). Let f be a mon-constant entire function, n, k

be positive integers and a(z)(# 0,00) be a meromorphic small function of f.
Suppose f* —a and (f*)*) — a share the value 0 CM and

n>k+1.
Then the conclusion of Theorem A holds.

COROLLARY A (Corollary 1.3, [15]).  Let f be a non-constant entire
function and n > 3 be an integer. Denote ' = f". If F and F’' share 1 CM,
then F = F' and f assumes the form

f(z) = cen?,
where ¢ is a nonzero constant.
At the end of the paper, the following open problem was posed by the
authors in [15].
Open problem. Can n in Corollary 1.3 [15] be reduced?

One of our objectives in writing this paper is to solve this open problem.
Recently, Sheng and Zongsheng [10] proved the following result.

TueoreM D ([10]). Let f be a non-constant meromorphic function such
that N(r,o00; f) = S(r, f). Denote F = f". Suppose that F and F' share 1
CM. If (1) n >3, or (2) n =2 and N(r,0; f) = O(N(r,0; f)), then F' = F’,

and f assumes the form
1

f(z) = cer”,

where ¢ 1s a nonzero constant.



10 Sujoy Majumder 4

In 2014, Li [7] obtained the following result.

THEOREM E ([7]). Let f be a non-constant meromorphic functions, n, k
be two positive integers. Suppose that f* and (f™)*) share the value a(# 0, 00)
CM. If either (1) n>k+2, or (2)n>k+1 and N(r,00; f) = AT (r, f)(\ €
[0,4)), then conclusion of Theorem A holds.

Now observing the above results the following questions are inevitable.

Question 1: Can one remove the condition “N(r, 0; f) = O(N3(r,0; f))”
in Theorem D?

Question 2: Can one replace the condition “ N(r,00; f) = X T(r, f)(\ €
[0,4))” in Theorem E by a weaker one?

In this paper, taking the possible answer of the above questions into
background we obtain the following results.

THEOREM 1.1. Let f be a non-constant meromorphic function such that
N(r,o0; f) = S(r,f), n, k be two positive integers and a(z)(£ 0,00) be a
meromorphic small function of f. Suppose f* —a and (f”)(k) — a share the
value 0 CM and n > k + 1. Then the conclusion of Theorem A holds.

Remark 1.1. Clearly Theorem 1.1 improves Theorem C.

Remark 1.2. Theorem 1.1 shows that Briick conjecture is true for mero-
morphic function when F' = f" with N(r,o00; f) = S(r, f) and n > 2.

COROLLARY 1.1. Let f be a non-constant meromorphic function such that
N(r,o00; f) = S(r, f), n be a positive integer such that n > 2 and a(z)( 0, c0)
be a meromorphic small function of f. Suppose f™ —a and (f™) — a share the
value O CM. Then the conclusion of Theorem A holds.

Remark 1.3. Clearly Corollary 1.1 improves Theorem D as well as Corol-
lary A.

THEOREM 1.2. Let f be a non-constant meromorphic functions, n, k be
two positive integers and a(z)(# 0,00) be a meromorphic small function of f.
Suppose that f* — a and (f*)*) — a share the value 0 CM. If n > k+ 1 and
N(r,o0; f) = XN T(r, f), where X € [0,1). Then the conclusion of Theorem A
holds.

Remark 1.4. It is easy to see that the condition n > k+1 in Theorem 1.1
is sharp by the following examples.

Ezample 1.1. Let
fz) =€ +1,

where a(z) = ﬁ Then f and f’ share the value a CM, but f # f’.
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Ezample 1.2. Let
f(Z) =" + C2,
where c1,co € C\ {0} such that ¢; # 1. Then f and f’ share the value ¢3 CM,
where cjco = c3(cqp — 1), but f # f'.

Example 1.3. Let
2z 2
_ 3z “
f(z)=e oty

Note that f' — 2z =3(f — z). Then f — z and f’ — 2 share 0 CM, but f # f’.

2. LEMMAS

In this section, we present the lemmas which will be needed in the sequel.
The following Hadamard’s theorem for entire function of infinite order is
well known.

LEMMA 2.1 ([6]). Let f be a transcendental entire function of infinite
order, then f can be represented by

f(z) = U(2)e",
U and V' are entire functions with

Af) =MU) =pU), M(f) = (U) = pu(U),

Pl(f) - max{pl(U), P1 (ev)}v
where A\1(f) is given by
A1(f) := limsup loglog N (r, 0; f)

r—00 log r

LEMMA 2.2 ([2]). Suppose that f is a transcendental meromorphic function
and that

f"P(f) = Q(f),

where P(f) and Q(f) are differential polynomials in f with functions of small
prozimity related to f as the coefficients and the degree of Q(f) is at most n.
Then

m(r, P(f)) = 5(r, f)-

LEMMA 2.3 ([12]). Let f be a non-constant meromorphic function and let
an(2)(#£0), ap—1(2), ... , ag(z) be meromorphic functions such that T'(r,a;(z)) =
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S(r, f) fori=0,1,2,....n. Then
T(T, anfn + anflfn_l + ...+ alf + aO) = nT(Tv f) + S(Tv f)

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. Let Fy = % and G = @ Clearly F7 and G;
share 1 CM except for the zeros and poles of a(z) and so

N(r,1; Fy) = N(r,1;Gy) + S(r, f).

Let
F{(Fy — Gy)
3.1 =1
(31 Fi(Fy—1)
We now consider following two cases.
Case 1. Let n > k + 1.

First we suppose ® #Z 0.
From (3.1) it is clear that T'(r, ®) = S(r, f). Also from (3.1) we get

LI N BV )
L @ R(F—1) fn
and so
1
m(r, E) = S(r, f)
Hence
(3.2) m(r, }) — 5(r, f)

Let zp be a zero of f of multiplicity p such that a(zg) # 0,00. Then zy will be
a zero of F and Gy of multiplicities np and np — k respectively and so from
(3.1) we get

(3.3) N(r,0; f) = S(r, f).

Now from (3.2) and (3.3) we get T'(r, f) = S(r, f), which contradicts the fact
that f is non-constant function.
Hence ® = 0. From (3.1) we get F| = Gy, ie., (f)® = " and so the
conclusion of the Theorem holds.

Case 2. Let n=Fk + 1.
First we suppose that ¢ # 0.
Let

(3.4) F=fm
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Since F — a and F®) — g share 0 CM, we see that
F—a
Fk) —q
has no poles and ¥(z) = 0 if and only if f(z) = co. Note that if z, is a pole of
f of multiplicity p,, then z, will be a zero of ¥ of multiplicity k.

\I/:

Thus by Lemma 2.1 and the standard Hadamard’s theorem for entire
function, we can write

F—a
Fk) —q

where g1, g2 are entire functions such that

N(r,0;91) = k N(r,00; f) = S(r, f).

(3.5) =V = g1e%?,

Now from (3.5) we have
(3.6) F®) — g = He®(F — a),
where H = g—ll, a = —go. Also

(3.7) N(r,0;H) =0 and N(r,o0; H) = S(r, f).

First we suppose that He® is a non-constant meromorphic function.
By differentiation from (3.6) we get

(3.8) FHD _ o) — (H' + Ho/)e*(F — a) + He*(F' — d').
Now combining (3.6) and (3.8) we get

H/
(3.9) Fr+Dp (7 + o\ F®) p — pk) !

H/ H/
a1 {(ﬁ +aVa+d}F® 4 {a — (ﬁ +a +1)a}F
!/
+(ﬁ + o )a?.
Note that from (3.6) we get

T(r,He") < (k+2)T(r, f")+ S(r, f) =n(k +2)T(r, f) + S(r, f).

Consequently T'(r, He®) = O(T(r, f)) and so S(r, He®) can be replaced by

S(r, f).
Let

From (3.7) we have
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Note that

m(r,&) = m(r, % +a) = m(r,

Consequently T'(r,&) = S(r, f).
Now from (3.9) we get

(3.10) FEOE _ecp®p — pk) pr
aF*) —(ca+a)F®) + {a' — (£ +1)a}F + a®.
By induction, we deduce from (3.4) that
F = nfn—lf/
F// — n(n . 1)fn72(f/)2 + nfnflf//

" = n(n . 1)(n _ 2)fn—3(f/)3 + 3n(n _ 1)fn—2f/f// + nfn—lf///

and so on.
Thus in general we have
(3.11) Zcufl (N,
k
where l())‘, l{‘, ey l,i‘ are non-negative integers satisfying »_ l;-‘ =n,n—k< lé\ <

7=0
n — 1 and a) are constants. Clearly

F® = (k+ DI ()" + "”(k;% U O L K R A A
Therefore

! k(k—1
Er®— s oot B e e £
Also we set
(3.12) Fk+1) Z b)\fpo (S k+1))pk+1

k+1

where pé,p{‘, .. 7pk+1 are non-negative integers satisfying Z pj =n,n—k—

=0
1< pé <n-1ie,0< po <n —1 and by are constants. Clearly

(k:+1) (k‘—i—l) (fl)k+1_|_ kf(l@;— 1) (k+1)‘f(f/)k—1fl/++(k+1)fkf(k+1)

Substituting (3.4), (3.11) and (3.12) into (3.10), we have
(3.13) f"P(f) = Q(f),
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where Q(f) is a differential polynomial in f of degree n and

A

(3.14) P(f) = ZbAfpé(f/)m.__(f(k:))péﬂ_gza”cla(f/)@__'(f(k))zk
A A

A
lk

—nf" > an O (F®)
A
= k(E+ DI (B DS
LR+ 13 - Rk D gyt pr
—l—(k: + 1)fkf(k+1)_(k + 1)£fkf(k)_(k?+1)2fk_1f/f(k)
= A"+ Ru(f),

is a differential polynomial in f of the degree k+ 1, where A = —k(k+ 1)! and
Ri(f) is a differential polynomial in f. In particular, every monomial of R;

has the form

R(E) O (f1)% ... (fEFD) o,

k+1

where qé, e 7q/,)g‘ 1 are non-negative integers satisfying > q;-‘ =nand1 < qS‘ <
7=0

n—1, R(€) is a polynomial in £ with constant coefficients.

First we suppose P # 0. We assert that f is a transcendental mero-
morphic function. If not, then f must be a polynomial with a as a nonzero
constant. But this is impossible since in that case F'—a and G — a cannot have
the same zeros with the same multiplicities.

Then by Lemma 2.2 we get m(r, P) = S(r, f) and so

(3.15) T(r,P)=S(r,f), T(r,P')=S5(rf).

Let z1 be a zero of f of multiplicity p(> 2) such that a(zp) # 0, 00. Then from
(3.1) we get No(r,0; f) = S(r, f). Now from (3.2) we have

(3.16) T(r, f) = Niy(r, 05 f) + S(r, f).
Note that from (3.14) we get
(3.17) Pro= A"+ BiE(f) !+ S1(),

is a differential polynomial in f, where Ay = —1k(k+1)*(k+1)!, By = —(k+1)!
and S1(f) is a differential polynomial in f. In particular, every monomial of
S1 has the form

SEFO ()T L. (fEFDY R,
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k+1
where T‘S‘, ces ,r,’C\H are non-negative integers satisfying » rj\ =nand1 < 1"6\ <
j=0
n —1, S(€) is a polynomial in £ with constant coefficients.
Let z2 be a simple zero of f. Then from (3.14) and (3.17) we have

P(z) = A{f'(z)}" !

and

P'(z9) = A(k + D{f"(22)}* f" (22) + BE(z2){ f'(22)}* .
This shows that 25 is a zero of Pf"” — [K1 P' — Ko£P]f’, where K; and Ko are
suitably constants. Let
Pf" = [Ki P — K¢ Plf’

(3.18) D) = :

Clearly
T(T7 (I)l) = S(Tv f)
From (3.18) we obtain

(3.19) ff=af+pBf,
where
%1 P
(3.20) o=, bi=K5H-Kg

From (3.19) we have
(3.21) D =i f +Biaf,
where 7 > 2 and
T(r000) = 8 0), Tl Bin) = 50.1).
Now from (3.14), (3.17) and (3.21) we have
k+1

(3.22) P=A(f k+1+2t P

k1
P = (A1 + Bi&)(f k+1+25 P,

where T'(r,t;) = S(r, f) and T'(r, s;) = S(r, f) Also (3.20) yields

B,

(3.23) P = (2 +

5)
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By (3.22) and (3.23) we get

(3.24) h(f)* +haf(fY 4. 4 i fF =0,

where h; = s; — (B1 + K2§)t and T'(r,h;) = S(r,f). Also not all h;’ s
are identically zero. Note that fU)(z) # 0 for j = 0,1, where we define
fO(z) = f(2). Hence from (3.24) we get

Therefore we arrive at a contradiction from (3.16) and (3.25).
Hence P(f) =0 and so we obtain

FEOp _cp®p _ pR =,

i.€.,
!
Fl+D p (% +0/>F( Fp— FR R =,
1.€.,
F(k+1) H' )i
(3.26) R VIR it

By integration we have F(*) = dHFe®, where d is a non-zero constant. Sub-

stituting this and (3.4) into (3.6) we have
1—He~

3.27 d—1)f"=a———.

(3.27) (-1 =at 1

First we suppose d = 1. Then He“ = 1, which is a contradiction, since
we suppose first that He® is a non-constant meromorphic function.

Next we suppose d # 1. From (3.27) see that all zeros of 1 — He® have
the multiplicities at least n. Now using (3.27) and Lemma 2.3 we get

nT(r, ) = T(r, (d = 1)) +0(1) = T(r,at 2%) + 0(1)

<T(r,a)+T(r,1—He*)+T(r,He") + S(r, f)
<2T(r,He*)+ S(r, f).
This shows that T'(r, f) = O(T(r,He*)). Also we have T'(r,He%) =
O(T(r, f)). Consequently S(r, f) = S(r, He®).
Noting that n = k + 1 > 2, and using (3.7), we get from the second
fundamental theorem that
T(r,He*) < N(r,0;He") + N(r,o0; He®) + N(r,1; He®) + S(r, He®)
< N(r,0;H)+ N(r,o0; H) + N(r,1; He®) + S(r, He®)
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< N(r,1;He*)+ S(r, f) + S(r, He®)
< l]\7(7“,1;.FL9‘")—I—S(r7 He®)

n
< lT(r7 He*)+ S(r,He®),

n

which is a contradiction since we suppose first that He® is a non-constant
meromorphic function.

Next we suppose that He® is a non-zero constant, say D. Then from
(3.6) we have

(3.28) F®) _ DF =a(1- D).

Since n = k + 1, it follows from (3.28) that N(r,0; f) = S(r, f). Now by (3.2)
we get T'(r, f) = S(r, f), which contradicts the fact that f is non-constant
function.

Hence ® = 0 and so from (3.1) we get Fy = Gy, i.e., (f*)¥) = f* and so
conclusion of Theorem holds.

This completes the proof. [l
Proof of Theorem 1.2. Let F = % and G = @ Clearly F and G

share 1 CM except for the zeros and poles of a(z). Let
1 G F'
o, = —[—— -
2 F (G —1 F- 1>
G( G G F’ F’

2 = = |l=—-=)-l=—-=1.
(228 Fles6)- (7 F)
We now consider the following two cases.

Case 1: Let &3 = 0. On integration we get
(3.30) F—-1=¢G-1),

where ¢ is a nonzero constant.
This implies that N(r,o00; f) = S(r, f). Let ¢ # 1. Then from (3.30) we

get
(3.31) %zcil <c?—1>.
Now using (3.31) and Lemma 2.3 we get
RT( ) =T 1) + O T, D) + 80 ) = Niroos TO) 450
< Nyl 0: ) + KN (7,00 f) + 8(r, £) < KN (0 1) + S(0, )

which is impossible since n > k + 1.
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Hence ¢ = 1. From (3.30) we get F = G, i.e., f* = (f*)* and so the
conclusion of the Theorem holds.

Case 2: Let @3 # 0. Clearly F' # G. From (3.29) we get m(r, ®2) =
S(r, f) and

(3.32) m(r, F) < m(r, (52) + S(r, f).

Then from (3.29) we get

(3.33) N(r,00; F) = N(r,00; F)) < N(r,0; ®2) + S(r, f)
< T(r,®2) — m(r, ) + S0, )

= N(r,00;®2) + m(r, &) — m(r, 52) +5(r, f)

< Newa (1,0 F) = m(r, ) + S0 1)

< (k4 1) N(r,0; f) — m(r, ;2) +S(r, f)

Now using (3.32), (3.33) and Lemma 2.3 we get
(3.34) nT(r,f) =T(r,F)+ O(1) < (k+ 1)N(r,0; f) + N(r, 00; f) + S(r, f).

Let

F G’
. By = — .
(3.35) 3TF-1 G-1

Clearly ®3 £ 0. Since n > k + 1, from (3.35) we get

(3.36) (n—k—1) N(r,0; f) < N(r,0;®3) + S(r, f)
< T(r,®3) + S(r, f)
< N(r,00; ®3) +m(r,®3) + S(r, f) < N(r,00; f) + S(r, f).

Then using (3.34), (3.36) we get
T f) < ——7
which is a contradiction.

N(r,00: 1) + S(r, f) < 2 T(r, f) + 5(r, ),

k—1
This completes the proof. [
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