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Let f be a non-constant meromorphic function, n, k be two positive integers and
a(z)( 6≡ 0,∞) be a meromorphic small function of f . Suppose that fn − a and
(fn)(k)−a share the value 0 CM. If either (1) n ≥ k+1 and N(r,∞; f) = S(r, f),
or (2) n > k + 1 and N(r,∞; f) = λ T (r, f)(λ ∈ [0, 1)), then fn ≡ (fn)(k) and

f assume the form f(z) = ce
λ
n
z, where c is a nonzero constant and λk = 1.

This result shows that Brück conjecture is true for meromorphic function when
F = fn with N(r,∞; f) = S(r, f) and n ≥ 2.
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1. INTRODUCTION, DEFINITIONS AND RESULTS

In this paper, by a meromorphic function we will always mean meromor-
phic function in the complex plane C. We adopt the standard notations of
the Nevanlinna theory of meromorphic functions as explained in [5]. It will
be convenient to let E denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence. For any non-constant
meromorphic function f , we denote by S(r, f) any quantity satisfying

lim
r→∞

S(r, f)

T (r, f)
= 0, r 6∈ E.

Also for any non-constant meromorphic function f , we define the order of
growth of f by

ρ(f) := lim sup
r→∞

log T (r, f)

log r
.

A meromorphic function a is said to be a small function of f provided that
T (r, a) = S(r, f), i.e., T (r, a) = o(T (r, f)) as r −→∞, r 6∈ E.

Let k be a positive integer and a ∈ C∪{∞}. We use Nk)(r, a; f) to denote
the counting function of a-points of f with multiplicity ≤ k, N(k+1(r, a; f) to
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denote the counting function of a-points of f with multiplicity > k. Similarly
Nk)(r, a; f) and N (k+1(r, a; f) are their reduced functions respectively.

For a ∈ C ∪ {∞} and a positive integer p we denote by Np(r, a; f) the
sum

N (1(r, a; f) +N (2(r, a; f) + . . .+N (p(r, a; f).

Let f and g be two non-constant meromorphic functions and let a be a complex
number. We say that f and g share a CM, provided that f − a and g− a have
the same zeros with the same multiplicities.

Rubel-Yang [9] proposed to investigate the uniqueness of an entire function
f under the assumption that f and its derivative f ′ share two complex va-
lues. Subsequently, related to one or two value sharing similar considerati-
ons have been made with respect to higher derivatives and more general (li-
near) differential expressions by Brück [1], Gundersen [3], Mues-Steinmetz [8],
Yang [11] et al.

In this direction, an interesting problem still open is the following con-
jecture proposed by Brück [1]

Conjecture 1.1 ([1]). Let F be a non-constant entire function. Suppose

ρ1(F ) := lim sup
r→∞

log log T (r, F )

log r

is not a positive integer or infinite. If F and F ′ share one finite value a CM,
then

F ′ − a
F − a

= c

for some non-zero constant c.

The case that a = 0 and that N(r, 0; f ′) = S(r, f) had been proved by
Brück [1] while the case that f is of finite order had been proved by Gundersen-
Yang [4]. However, the corresponding conjecture for meromorphic functions
fails in general (see [4]).

To the knowledge of the author, perhaps Yang-Zhang [13] (see also [14])
were the first to consider the uniqueness of a power of a meromorphic(entire)
function F = fn and its derivative F ′ when they share certain value as this
type of considerations gives the most specific form of the function.

As a result during the last decade, growing interest has been devoted
to this setting of meromorphic functions. Improving all the results obtained
in [13], Zhang [14] proved the following theorem.

Theorem A ([14]). Let f be a non-constant meromorphic function, n,
k be positive integers and a(z)(6≡ 0,∞) be a meromorphic small function of f .
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Suppose fn − a and (fn)(k) − a share the value 0 CM and

(n− k − 1)(n− k − 4) > 3k + 6,

then fn ≡ (fn)(k), and f assumes the form

f(z) = ce
λ
n
z,

where c is a nonzero constant and λk = 1.

In 2009, Zhang and Yang [15] further improved the above result in the
following manner.

Theorem B ([15]). Let f be a non-constant meromorphic function, n,
k be positive integers and a(z)(6≡ 0,∞) be a meromorphic small function of f .
Suppose fn − a and (fn)(k) − a share the value 0 CM and

n > k + 1 +
√
k + 1.

Then the conclusion of Theorem A holds.

Theorem C ([15]). Let f be a non-constant entire function, n, k
be positive integers and a(z)(6≡ 0,∞) be a meromorphic small function of f .
Suppose fn − a and (fn)(k) − a share the value 0 CM and

n > k + 1.

Then the conclusion of Theorem A holds.

Corollary A (Corollary 1.3, [15]). Let f be a non-constant entire
function and n ≥ 3 be an integer. Denote F = fn. If F and F ′ share 1 CM,
then F ≡ F ′ and f assumes the form

f(z) = ce
1
n
z,

where c is a nonzero constant.

At the end of the paper, the following open problem was posed by the
authors in [15].

Open problem. Can n in Corollary 1.3 [15] be reduced?

One of our objectives in writing this paper is to solve this open problem.
Recently, Sheng and Zongsheng [10] proved the following result.

Theorem D ([10]). Let f be a non-constant meromorphic function such
that N(r,∞; f) = S(r, f). Denote F = fn. Suppose that F and F ′ share 1
CM. If (1) n ≥ 3, or (2) n = 2 and N(r, 0; f) = O(N(3(r, 0; f)), then F ≡ F ′,
and f assumes the form

f(z) = ce
1
n
z,

where c is a nonzero constant.
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In 2014, Li [7] obtained the following result.

Theorem E ([7]). Let f be a non-constant meromorphic functions, n, k
be two positive integers. Suppose that fn and (fn)(k) share the value a(6= 0,∞)
CM. If either (1) n > k + 2, or (2) n > k + 1 and N(r,∞; f) = λ T (r, f)(λ ∈
[0, 12)), then conclusion of Theorem A holds.

Now observing the above results the following questions are inevitable.

Question 1: Can one remove the condition “N(r, 0; f) = O(N(3(r, 0; f))”
in Theorem D?

Question 2: Can one replace the condition “ N(r,∞; f) = λ T (r, f)(λ ∈
[0, 12))” in Theorem E by a weaker one?

In this paper, taking the possible answer of the above questions into
background we obtain the following results.

Theorem 1.1. Let f be a non-constant meromorphic function such that
N(r,∞; f) = S(r, f), n, k be two positive integers and a(z)(6≡ 0,∞) be a
meromorphic small function of f . Suppose fn − a and (fn)(k) − a share the
value 0 CM and n ≥ k + 1. Then the conclusion of Theorem A holds.

Remark 1.1. Clearly Theorem 1.1 improves Theorem C.

Remark 1.2. Theorem 1.1 shows that Brück conjecture is true for mero-
morphic function when F = fn with N(r,∞; f) = S(r, f) and n ≥ 2.

Corollary 1.1. Let f be a non-constant meromorphic function such that
N(r,∞; f) = S(r, f), n be a positive integer such that n ≥ 2 and a(z)(6≡ 0,∞)
be a meromorphic small function of f . Suppose fn− a and (fn)′− a share the
value 0 CM. Then the conclusion of Theorem A holds.

Remark 1.3. Clearly Corollary 1.1 improves Theorem D as well as Corol-
lary A.

Theorem 1.2. Let f be a non-constant meromorphic functions, n, k be
two positive integers and a(z)(6≡ 0,∞) be a meromorphic small function of f .
Suppose that fn − a and (fn)(k) − a share the value 0 CM. If n > k + 1 and
N(r,∞; f) = λ T (r, f), where λ ∈ [0, 1). Then the conclusion of Theorem A
holds.

Remark 1.4. It is easy to see that the condition n ≥ k+ 1 in Theorem 1.1
is sharp by the following examples.

Example 1.1. Let

f(z) = ee
z

+ 1,

where a(z) = 1
1−e−z . Then f and f ′ share the value a CM, but f 6≡ f ′.
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Example 1.2. Let

f(z) = ec1z + c2,

where c1, c2 ∈ C \ {0} such that c1 6= 1. Then f and f ′ share the value c3 CM,
where c1c2 = c3(c1 − 1), but f 6≡ f ′.

Example 1.3. Let

f(z) = e3z +
2z

3
+

2

9
.

Note that f ′ − z = 3(f − z). Then f − z and f ′ − z share 0 CM, but f 6≡ f ′.

2. LEMMAS

In this section, we present the lemmas which will be needed in the sequel.

The following Hadamard’s theorem for entire function of infinite order is
well known.

Lemma 2.1 ([6]). Let f be a transcendental entire function of infinite
order, then f can be represented by

f(z) = U(z)eV (z),

U and V are entire functions with

λ(f) = λ(U) = ρ(U), λ1(f) = λ1(U) = ρ1(U),

ρ1(f) = max{ρ1(U), ρ1(e
V )},

where λ1(f) is given by

λ1(f) := lim sup
r→∞

log logN(r, 0; f)

log r
.

Lemma 2.2 ([2]). Suppose that f is a transcendental meromorphic function
and that

fnP (f) = Q(f),

where P (f) and Q(f) are differential polynomials in f with functions of small
proximity related to f as the coefficients and the degree of Q(f) is at most n.
Then

m(r, P (f)) = S(r, f).

Lemma 2.3 ([12]). Let f be a non-constant meromorphic function and let
an(z)(6≡ 0), an−1(z), ... , a0(z) be meromorphic functions such that T (r, ai(z)) =
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S(r, f) for i = 0, 1, 2, ..., n. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. Let F1 = fn

a and G1 = (fn)(k)

a . Clearly F1 and G1

share 1 CM except for the zeros and poles of a(z) and so

N(r, 1;F1) = N(r, 1;G1) + S(r, f).

Let

Φ =
F ′1(F1 −G1)

F1(F1 − 1)
.(3.1)

We now consider following two cases.

Case 1. Let n > k + 1.
First we suppose Φ 6≡ 0.
From (3.1) it is clear that T (r,Φ) = S(r, f). Also from (3.1) we get

1

F1
=

1

Φ

F ′1
F1(F1 − 1)

[1− (fn)(k)

fn
]

and so

m(r,
1

F1
) = S(r, f).

Hence

m(r,
1

f
) = S(r, f).(3.2)

Let z0 be a zero of f of multiplicity p such that a(z0) 6= 0,∞. Then z0 will be
a zero of F1 and G1 of multiplicities np and np − k respectively and so from
(3.1) we get

N(r, 0; f) = S(r, f).(3.3)

Now from (3.2) and (3.3) we get T (r, f) = S(r, f), which contradicts the fact
that f is non-constant function.
Hence Φ ≡ 0. From (3.1) we get F1 ≡ G1, i.e., (fn)(k) ≡ fn and so the
conclusion of the Theorem holds.

Case 2. Let n = k + 1.
First we suppose that Φ 6≡ 0.
Let

F = fn.(3.4)



7 A power of a meromorphic function sharing... 13

Since F − a and F (k) − a share 0 CM, we see that

Ψ =
F − a
F (k) − a

has no poles and Ψ(z) = 0 if and only if f(z) =∞. Note that if z∗ is a pole of
f of multiplicity p∗, then z∗ will be a zero of Ψ of multiplicity k.

Thus by Lemma 2.1 and the standard Hadamard’s theorem for entire
function, we can write

F − a
F (k) − a

= Ψ = g1e
g2 ,(3.5)

where g1, g2 are entire functions such that

N(r, 0; g1) = k N(r,∞; f) = S(r, f).

Now from (3.5) we have

F (k) − a = Heα(F − a),(3.6)

where H = 1
g1

, α = −g2. Also

N(r, 0;H) = 0 and N(r,∞;H) = S(r, f).(3.7)

First we suppose that Heα is a non-constant meromorphic function.
By differentiation from (3.6) we get

F (k+1) − a′ = (H ′ +Hα′)eα(F − a) +Heα(F ′ − a′).(3.8)

Now combining (3.6) and (3.8) we get

F (k+1)F − (
H ′

H
+ α′)F (k)F − F (k)F ′(3.9)

= aF (k+1) − {(H
′

H
+ α′)a+ a′}F (k) + {a′ − (

H ′

H
+ α′ + 1)a}F

+(
H ′

H
+ α′)a2.

Note that from (3.6) we get

T (r,Heα) ≤ (k + 2)T (r, fn) + S(r, f) = n(k + 2)T (r, f) + S(r, f).

Consequently T (r,Heα) = O(T (r, f)) and so S(r,Heα) can be replaced by
S(r, f).
Let

ξ =
H ′

H
+ α′.

From (3.7) we have

N(r,∞; ξ) = S(r, f).
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Note that

m(r, ξ) = m(r,
H ′

H
+ α′) = m(r,

(Heα)′

Heα
) = S(r,Heα).

Consequently T (r, ξ) = S(r, f).
Now from (3.9) we get

F (k+1)F − ξF (k)F − F (k)F ′(3.10)

= aF (k+1) − (ξa+ a′)F (k) + {a′ − (ξ + 1)a}F + ξa2.

By induction, we deduce from (3.4) that

F ′ = nfn−1f ′

F ′′ = n(n− 1)fn−2(f ′)2 + nfn−1f ′′

F ′′′ = n(n− 1)(n− 2)fn−3(f ′)3 + 3n(n− 1)fn−2f ′f ′′ + nfn−1f ′′′

and so on.
Thus in general we have

F (k) =
∑
λ

aλf
lλ0 (f ′)l

λ
1 . . . (f (k))l

λ
k ,(3.11)

where lλ0 , l
λ
1 , . . . , l

λ
k are non-negative integers satisfying

k∑
j=0

lλj = n, n−k ≤ lλ0 ≤

n− 1 and aλ are constants. Clearly

F (k) = (k + 1)!f(f ′)k +
k(k − 1)

4
(k + 1)!f2(f ′)k−2f ′′ + . . .+ (k + 1)fkf (k).

Therefore

f ′

f
F (k)=(k + 1)!(f ′)k+1+

k(k − 1)

4
(k+1)!f(f ′)k−1f ′′ + . . .+ (k+1)fk−1f ′f (k).

Also we set

(3.12) F (k+1) =
∑
λ

bλf
pλ0 (f ′)p

λ
1 . . . (f (k+1))p

λ
k+1 ,

where pλ0 , p
λ
1 , . . . , p

λ
k+1 are non-negative integers satisfying

k+1∑
j=0

pλj = n, n− k −

1 ≤ pλ0 ≤ n− 1, i.e., 0 ≤ pλ0 ≤ n− 1 and bλ are constants. Clearly

F (k+1)=(k + 1)!(f ′)k+1 +
k(k + 1)

2
(k + 1)!f(f ′)k−1f ′′ + . . .+ (k + 1)fkf (k+1).

Substituting (3.4), (3.11) and (3.12) into (3.10), we have

fnP (f) = Q(f),(3.13)
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where Q(f) is a differential polynomial in f of degree n and

P (f) =
∑
λ

bλf
pλ0 (f ′)p

λ
1 . . .(f (k))p

λ
k+1−ξ

∑
λ

aλf
lλ0 (f ′)l

λ
1 . . .(f (k))l

λ
k(3.14)

−nf ′
∑
λ

aλf
lλ0−1(f ′)l

λ
1 . . . (f (k))l

λ
k

= −k(k + 1)!(f ′)k+1 − (k + 1)!ξf(f ′)k

+
k(k + 1)(3− k)(k + 1)!

4
f(f ′)k−1f ′′ + . . .

+(k + 1)fkf (k+1)−(k + 1)ξfkf (k)−(k+1)2fk−1f ′f (k)

= A(f ′)k+1 +R1(f),

is a differential polynomial in f of the degree k+ 1, where A = −k(k+ 1)! and

R1(f) is a differential polynomial in f . In particular, every monomial of R1

has the form

R(ξ)f q
λ
0 (f ′)q

λ
1 . . . (f (k+1))q

λ
k+1 ,

where qλ0 , . . . , q
λ
k+1 are non-negative integers satisfying

k+1∑
j=0

qλj = n and 1 ≤ qλ0 ≤

n− 1, R(ξ) is a polynomial in ξ with constant coefficients.

First we suppose P 6≡ 0. We assert that f is a transcendental mero-

morphic function. If not, then f must be a polynomial with a as a nonzero

constant. But this is impossible since in that case F −a and G−a cannot have

the same zeros with the same multiplicities.

Then by Lemma 2.2 we get m(r, P ) = S(r, f) and so

T (r, P ) = S(r, f), T (r, P ′) = S(r, f).(3.15)

Let z1 be a zero of f of multiplicity p(≥ 2) such that a(z0) 6= 0,∞. Then from

(3.1) we get N(2(r, 0; f) = S(r, f). Now from (3.2) we have

T (r, f) = N1)(r, 0; f) + S(r, f).(3.16)

Note that from (3.14) we get

P ′ = A1(f
′)kf ′′ +B1ξ(f

′)k+1 + S1(f),(3.17)

is a differential polynomial in f , where A1 = −1
4k(k+1)2(k+1)!, B1 = −(k+1)!

and S1(f) is a differential polynomial in f . In particular, every monomial of

S1 has the form

S(ξ)f r
λ
0 (f ′)r

λ
1 . . . (f (k+1))r

λ
k+1 ,
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where rλ0 , . . . , r
λ
k+1 are non-negative integers satisfying

k+1∑
j=0

rλj = n and 1 ≤ rλ0 ≤

n− 1, S(ξ) is a polynomial in ξ with constant coefficients.
Let z2 be a simple zero of f . Then from (3.14) and (3.17) we have

P (z2) = A{f ′(z2)}k+1

and

P ′(z2) = A(k + 1){f ′(z2)}kf ′′(z2) +Bξ(z2){f ′(z2)}k+1.

This shows that z2 is a zero of Pf ′′ − [K1P
′ −K2ξP ]f ′, where K1 and K2 are

suitably constants. Let

Φ1 =
Pf ′′ − [K1P

′ −K2ξP ]f ′

f
.(3.18)

Clearly

T (r,Φ1) = S(r, f).

From (3.18) we obtain

f ′′ = α1f + β1f
′,(3.19)

where

α1 =
Φ1

P
, β1 = K1

P ′

P
−K2ξ.(3.20)

From (3.19) we have

f (i) = αi−1f + βi−1f
′,(3.21)

where i ≥ 2 and

T (r, αi−1) = S(r, f), T (r, βi−1) = S(r, f).

Now from (3.14), (3.17) and (3.21) we have

(3.22) P = A(f ′)k+1 +

k+1∑
j=1

tjf
j(f ′)k+1−j ,

P ′ = (A1β1 +B1ξ)(f
′)k+1 +

k+1∑
j=1

sjf
j(f ′)k+1−j ,

where T (r, tj) = S(r, f) and T (r, sj) = S(r, f). Also (3.20) yields

P ′ = (
β1
K1

+
K2

K1
ξ)P.(3.23)
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By (3.22) and (3.23) we get

h1(f
′)k + h2f(f ′)k−1 + . . .+ hk+1f

k ≡ 0,(3.24)

where hj = sj − ( β1K1
+ K2

K1
ξ)tj and T (r, hj) = S(r, f). Also not all hj ’ s

are identically zero. Note that f (j)(z) 6≡ 0 for j = 0, 1, where we define
f (0)(z) = f(z). Hence from (3.24) we get

N1)(r, 0; f) = S(r, f).(3.25)

Therefore we arrive at a contradiction from (3.16) and (3.25).
Hence P (f) ≡ 0 and so we obtain

F (k+1)F − ξF (k)F − F (k)F ′ ≡ 0,

i.e.,

F (k+1)F −
(H ′
H

+ α′
)
F (k)F − F (k)F ′ ≡ 0,

i.e.,

F (k+1)

F (k)
≡ H ′

H
+ α′ +

F ′

F
.(3.26)

By integration we have F (k) = dHFeα, where d is a non-zero constant. Sub-
stituting this and (3.4) into (3.6) we have

(d− 1)fn ≡ a1−Heα

Heα
.(3.27)

First we suppose d = 1. Then Heα ≡ 1, which is a contradiction, since
we suppose first that Heα is a non-constant meromorphic function.

Next we suppose d 6= 1. From (3.27) see that all zeros of 1 −Heα have
the multiplicities at least n. Now using (3.27) and Lemma 2.3 we get

n T (r, f) = T (r, (d− 1)fn) +O(1) = T (r, a
1−Heα

Heα
) +O(1)

≤ T (r, a) + T (r, 1−Heα) + T (r,Heα) + S(r, f)

≤ 2 T (r,Heα) + S(r, f).

This shows that T (r, f) = O(T (r,Heα)). Also we have T (r,Heα) =
O(T (r, f)). Consequently S(r, f) = S(r,Heα).

Noting that n = k + 1 ≥ 2, and using (3.7), we get from the second
fundamental theorem that

T (r,Heα) ≤ N(r, 0;Heα) +N(r,∞;Heα) +N(r, 1;Heα) + S(r,Heα)

≤ N(r, 0;H) +N(r,∞;H) +N(r, 1;Heα) + S(r,Heα)
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≤ N(r, 1;Heα) + S(r, f) + S(r,Heα)

≤ 1

n
N(r, 1;Heα) + S(r,Heα)

≤ 1

n
T (r,Heα) + S(r,Heα),

which is a contradiction since we suppose first that Heα is a non-constant
meromorphic function.

Next we suppose that Heα is a non-zero constant, say D. Then from
(3.6) we have

F (k) −DF ≡ a(1−D).(3.28)

Since n = k + 1, it follows from (3.28) that N(r, 0; f) = S(r, f). Now by (3.2)
we get T (r, f) = S(r, f), which contradicts the fact that f is non-constant
function.

Hence Φ ≡ 0 and so from (3.1) we get F1 ≡ G1, i.e., (fn)(k) ≡ fn and so
conclusion of Theorem holds.

This completes the proof. �

Proof of Theorem 1.2. Let F = fn

a and G = (fn)(k)

a . Clearly F and G
share 1 CM except for the zeros and poles of a(z). Let

Φ2 =
1

F

(
G′

G− 1
− F ′

F − 1

)
=

G

F

(
G′

G− 1
− G′

G

)
−
(

F ′

F − 1
− F ′

F

)
.(3.29)

We now consider the following two cases.

Case 1: Let Φ2 ≡ 0. On integration we get

(3.30) F − 1 ≡ c(G− 1),

where c is a nonzero constant.

This implies that N(r,∞; f) = S(r, f). Let c 6= 1. Then from (3.30) we
get

(3.31)
1

F
≡ 1

c− 1

(
c
G

F
− 1

)
.

Now using (3.31) and Lemma 2.3 we get

n T (r, f) = T (r, F ) +O(1) ≤ T (r,
G

F
) + S(r, f) = N(r,∞;

(fn)(k)

fn
) + S(r, f)

≤ Nk(r, 0; fn) + kN(r,∞; f) + S(r, f) ≤ kN(r, 0; f) + S(r, f),

which is impossible since n > k + 1.
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Hence c = 1. From (3.30) we get F ≡ G, i.e., fn ≡ (fn)(k) and so the
conclusion of the Theorem holds.

Case 2: Let Φ2 6≡ 0. Clearly F 6≡ G. From (3.29) we get m(r,Φ2) =
S(r, f) and

m(r, F ) ≤ m(r,
1

Φ2
) + S(r, f).(3.32)

Then from (3.29) we get

N(r,∞;F )−N(r,∞;F ) ≤ N(r, 0; Φ2) + S(r, f)(3.33)

≤ T (r,Φ2)−m(r,
1

Φ2
) + S(r, f)

= N(r,∞; Φ2) +m(r,Φ2)−m(r,
1

Φ2
) + S(r, f)

≤ Nk+1(r, 0;F )−m(r,
1

Φ2
) + S(r, f)

≤ (k + 1) N(r, 0; f)−m(r,
1

Φ2
) + S(r, f).

Now using (3.32), (3.33) and Lemma 2.3 we get

(3.34) n T (r, f) = T (r, F ) +O(1) ≤ (k + 1)N(r, 0; f) +N(r,∞; f) + S(r, f).

Let

Φ3 =
F ′

F − 1
− G′

G− 1
.(3.35)

Clearly Φ3 6≡ 0. Since n > k + 1, from (3.35) we get

(n− k − 1) N(r, 0; f) ≤ N(r, 0; Φ3) + S(r, f)(3.36)

≤ T (r,Φ3) + S(r, f)

≤ N(r,∞; Φ3) +m(r,Φ3) + S(r, f) ≤ N(r,∞; f) + S(r, f).

Then using (3.34), (3.36) we get

T (r, f) ≤ 1

n− k − 1
N(r,∞; f) + S(r, f) ≤ λ

n− k − 1
T (r, f) + S(r, f),

which is a contradiction.

This completes the proof. �
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