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We extend the study of the iterated elimination of strictly dominated strategies
(IESDS) from Nash strategic games to a class of qualitative games. In this case,
the IESDS process also leads us to a kind of “rationalizable” result. We define
a dominance relation and a game reduction and we establish conditions under
which a unique and non-empty maximal reduction exists.
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1. INTRODUCTION

Bernheim [4] and Pearce [18] studied the rationalizable strategic behavior
in the framework of non-cooperative strategic games introduced by Nash [16].
The rational behavior of the players is a fundamental assumption in game
theory. It implies that each strategic game can be characterized by a process
of iterated elimination of strictly dominated strategies (IESDS). The result of
this process is known as the maximal reduction of the game.

The iterated elimination of strictly dominated strategies has several dif-
ferent definitions. We must refer to the approaches of Gilboa, Kalai and Ze-
mel [11,12], Milgrom and Roberts [15], Marx and Swinkels [14], Ritzberger [19],
Dufwenberg and Stegeman [10], Chen, Long and Luo [6], or Apt [1-3] as some
important ones in literature. Osborne and Rubinstein [17] and Rubinstein [20]
also developed some topics concerning rationality.

The main problems concerning the IESDS procedure are related to the
non-emptiness and to the uniqueness of the limit game. In the case of infinite
games, the order of reductions is important, and the maximal reduction may
not be unique if different paths are considered. Dufwenberg and Stegeman [10]
proved the uniqueness and the non-emptiness of the maximal reduction for
a strategic game with compact strategy sets and continuous payoff functions.
Apt [2] treated the various definitions of IESDS in a unitary way, specifying
the games where the definitions coincide. His approach is based on complete
lattice and the study of operators.
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In order to develop the ideas concerning the rationality, we consider a
model which generalizes the strategic game. We consider the qualitative games
which have a strategy set and a preference correspondence constructed by
using the utility functions, for every player. Nash’s equilibrium point is seen
in this framework as a maximal element. We also consider different types
of majorized correspondences which generalize the well-known semicontinuous
ones. Subsequently, we work with U-majorized correspondences defined by
Yuan and Tarafdar [23], Qg—majorized correspondences introduced by Liu
and Cai [13] and Lg-majorized correspondences due to G.X. Yuan [22]. We
use theorems which prove the existence of maximal elements for qualitative
games which have these types of considered correspondences. These results
are due to Ding [9], Liu and Cai [13], and Chang [5].

Our new approach wants to emphasize that the IESDS process leads to
a kind of rationalizable result in the extended games. In the new context, the
idea of rationality, obtained in an iterated process of elimination the unfitted
strategies, is underlined. We want to highlight the concept, rather than the
context where it was initially defined. We introduce a dominance relation and
a game reduction and we establish conditions under which a unique and non-
empty maximal reduction exists. An open problem is to rigorously formalize
concepts concerning rationality in different classes of games, and to rediscuss
the problems in a unified framework which implies economic settings.

The paper is organized in the following way: Section 2 presents preli-
minaries concerning qualitative games. Section 3 contains the introduction of
definitions and the problem of game reduction and order independence. The
main results which concern the existence and the uniqueness of maximal re-
ductions are settled in Section 4. In Section 5 other conditions for uniqueness
of the maximal reduction are provided. The last section is dedicated to proving
that the set of maximal elements is preserved in any game by the process of
iterated elimination of strictly dominated strategies. Concluding remarks are
stated at the end. A list with the main notations used in the paper is added
in Appendix.

2. QUALITATIVE GAMES

Let I be a non-empty and countable set (the set of agents). For each
1 € I, let G; be a non-empty topological vector space representing the set of
actions G = [I;c; Gi, and P; : G — 2% be the preference correspondence.

The family G = (Gy, P;);er is said to be a qualitative game. A mazimal
element for G is defined as a point s* € G such that for each i € I, P;(s*) = ().
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Remark 1. A list with the main notations used in the paper is added in
Appendix, in order to make the reading easier.

Ezample 1. Let I = {1,2}, G1 = G = [0, 1], and the symmetric functions
u; : [0,1] x [0,1] = R, ¢ € I, be defined by ui(x,y) = = and us(x,y) = y for
each (z,y) € [0,1] x [0, 1].

The qualitative game corresponding to I' = (G, u;)ier is G = (Gy, By)ier,
where

Pi(z,y) ={z€[0,1] : ui(z,y) > ui(z,y)} = (z,1] if (x,y) € [0,1) x [0, 1]
and

f(z,y) € {1} x[0,1];

(x,y) =01
z,y) ={z €[0,1] : ua(x, 2) > ua(x,y)} = (y,1] if (z,y) € [0,1] x [0,1)

Py
Py(z,y)
Py(w,y) =0 if (,y) € [0,1] x {1};

(1,1) is a maximal element: P;(1,1) = Py(1,1) = 0.

and

Now, we define a transitivity type of correspondences.

Definition 1. Let I be a non-empty and countable set, let G = [L;c; Gi be
a product space and, for some i € I, let P : G — 2% be a correspondence. We
say that P has the property T if z € P(s) and s € G imply clP(z,s_;) C P(s).

Example 2. P, and P, from Example 1 have the property T :
if z € Pi(z,y) and (z,y) € [0,1] x [0,1], then z € (z,1] and clPi(z,y) =
[2,1] C (2, 1]

Definition 2. Let I be a non-empty and countable set, let G = [Lic; G
be a product space and, for some i € I, let P,Q : G — 2% be correspondences.
We say that the pair (P, Q) has the property T if for each s € G, P(s) C Q(s)
and z € P(s) imply Q(z,s_;) C P(s).

Ezample 3. If for each ¢ € {1,2}, we take Q; =clP; in Example 1, we
obtain that the pair (P;, @;) has the property T.

Ezample 4. Let P,Q : [0,2] x [0,2] — 2[%2 be defined by
1,y], if z €[0,1] x (1,2];
Pla,y) :{ (Z(), ogherwise[ e and
[z,y], f0<x <y <2
Qz,y) =4 ly,a], f0<y <z <
{z}, if 0<zxz=y<2
We have that P(x,y) C Q(x,y) for each (z,y) € [0,2] x [0,2], and if
z € P(z,y), it follows that z € [0,1], y € (1,2] and z € (1,y], which imply

Qz,y) = [z,y] C (Ly] = P(z,y).
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We note that z € Q(x,y) for each z € [0,2] x [0,2] and @ has convex
closed values, so that @ verifies the assumptions stated in the hypothesis of
the theorems from Section 4.

3. GAME REDUCTION

Firstly, this section gives preliminary definitions on restrictions, strict
dominance and game reduction for qualitative games, which generalize the ones
that exist in the literature and which are due to Dufwenberg and Stegeman [10].
The main theorems of the paper will be stated in Section 4, where we will
consider mainly the game reduction defined in Section 3. The new classes
of games will be introduced in the following sections with the main tools we
will use in the proofs, that is, the maximal elements theorems. Several simple
examples will illustrate our assertions and will underline the importance of the
extension proposed to the reader.

We focus on the concepts of rationalizability and iterated elimination of
strictly dominated strategies (IESDS). Both terms refer to the reasoning used
by rational players. In the definition of the first concept, the deletion of a
strategy depends on the type of strict dominance considered by the players.

Firstly, we introduce a relation of strict dominance for the qualitative
games, with respect to a restriction.

Definition 3. A restriction of G = (G, P;)ier is H = (Hi’IDi\erz H, i€l
where H; C G; for each i € I.

We note that a restriction of a qualitative game is not a qualitative game,
since for each ¢ € I, the images of B [Ty, Hy, are not contained in H;. We use
the term “restriction” as in [2], rather than “paring” as in [10].

In game theory, the players are supposed to be rational, that is, none of
them could possibly use any strictly dominated strategy. In this paper, we will
consider the following notion of strict dominance.

Definition 4. Given a restriction H of G and ¢ € I, the strict dominance
H
relation =; on G, is defined as follows:
H
forx,ye G,y =i xit H; #0 and y € Ns_,en_, Pi(x,s_;).

We will remove from G all the strategies that are strictly dominated with
respect to H by some strategy in G.

If H = G, we obtain the following definition, which will be used in order
to give Definition 5

G
for z,y € Gy, y =ix it G_; #Dand y € Ns_,eq_, Pi(x, s—;).
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Let us consider the restrictions K and H of G with the property that
H; C K; for each i € I. We generalize the types of game reduction used by
Dufwenberg and Stegeman [10] in the following way.

Definition 5. 1) We define the reduction K — H if, for each ¢ € I and

r € K;\H;, there exists y € K; such that y >I-(Z x, that is, K_; # ( and
ms_ieK_iPi(xy S_Z') NK; # 0.

ii) The reduction K — H is called fast if for each i € I, K_; # () and
Ns_,ex_, Pi(x,s—;) N K; # 0 for some x € K; implies z ¢ H;.

We note that the notion of reduction captures the idea of removing the
dominated strategies.

The definition we present below takes care of the possibility that the
elimination process has a finite or countable infinite number of iteration steps.

Definition 6. The reduction K —* H is defined by the existence of a
(finite or countable infinite) sequence of restrictions R! of H, t = 0,1, 2..., such
that R = K, R' — R'*! fast for each t > 0 and H; = ﬂtR§ for each 7 € I.

We note that at each step t > 0, in the reduction R — Rl for each
t € I, the images of the preference correspondences P7;| [Tpc, RIHH aT€ intersected

with (Rt)z

The outcome of the elimination process is provided by the 'maximal re-
duction’.

Definition 7. H is said to be a maximal (—*)-reduction of K if K —* H
and H — H' only for H = H'.

We are interested in finding conditions which can ensure the existence of
a non-empty and unique maximal reduction of a game.

4. THE EXISTENCE AND UNIQUENESS OF MAXIMAL REDUCTIONS

In this section, we state the results concerning the iterated elimination
of strictly dominated strategies for several classes of qualitative games. The
existence and the uniqueness of maximal reductions are proven.

Theorem 2 gives conditions for the existence of a non-dominated element
with respect to a dominance relation generated by a restriction. It considers
qualitative games with Lg—majorized correspondences. A proof of the unique-
ness of the maximal reduction of G is given in this case. This theorem will be
used in order to obtain the main result of this paper, that is, Theorem 3.
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4.1. Lg s-MAJORIZED CORRESPONDENCES

Firstly, we recall the notion of Lg g-majorized correspondence, which ge-
neralizes the classical correspondences with open lower sections. It was used
by Chang in [5] in order to provide new results on maximal elements and equi-
librium. Since the key of the proof of our main theorems is the application
of a corollary of Chang’s Theorem, which concerns the existence of maximal
elements for the Ly g-majorized correspondences, we begin our research by in-
troducing these necessary preliminaries, before stating our results on maximal
reductions of qualitative games.

A non-empty subset D of a topological space X is said to be compactly
open (Ding [8]), if for every non-empty and compact subset C' of X, DN C' is
open in C.

Let T : X — 2Y be a correspondence. The lower sections of T are defined
by T-Yy):={z € X :y€T(z)}, foreach y € Y.

Let X be a topological space, Y be a non-empty subset of a vector space
E,#: X — E be a function and let P : X — 2¥ be a correspondence.

Definition 8 (Yuan, [5]). 1) P is said to have compactly open lower secti-
ons in X if for each y € Y, the set P~!(y) = {x € X : y € P(x)} is compactly
open in X.

2) P is said to be of class Lg g, if (x) ¢coP(x) for each z € X, and P
has compactly open lower sections in X.

3) P is said to be Ly g-majorized, if for each x € X, there exists an open
neighborhood N(z) of z in X and a correspondence P, : X — 2¥ such that:

i) for each z € N(x), P(z) C Py(2);
ii) for each z € N(z), 6(z) ¢coP,(z) and
iii) for each y € Y, P, !(y) is compactly open in X.

In this paper, we deal mainly with the case X =Y, which is a non-empty
and convex subset of a topological vector space E and 6 = Ix, the identity
map on X. In this case, we write Lg in place of Lg g.

We also have the following theorem due to Chang [5] on non-compact
spaces.

THEOREM 1 (Chang, [5]). Let X be a convex subset of a Hausdorff topo-
logical vector space E and let P : X — 2% be a Lg—majorized correspondence.
Suppose that there exists a compact set D in X such that, for each finite subset
S of X, there exists a convex and compact set K, which contains S and which
satisfies K\ Ugex P~1(x) C D. Then, there exists x* € D such that P(z*) = (.

Further, we will use the following corollary of Chang’s Theorem, where
X is compact.
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COROLLARY 1. Let X be a compact and convexr subset of a Hausdorff
topological vector space E and let P : X — 2% be a Lg—majorized correspon-
dence. Then, there exists v* € X such that P(z*) = (.

4.2. THE MAIN RESULTS

We are now stating the following key result, which will be used to prove
Theorem 3. The demonstration of Theorem 2 is based on Corollary 1.

THEOREM 2. Let I be a non-empty and countable set of players. Let
G = (Gj, P))ics be a qualitative game, G = [Lic; Gi, where for each i € I, G;
s a non-empty, compact subset of a Hausdorff topological vector space, and let
us suppose that there exists Q; : G — 2%+ such that the pair (P;, Q) satisfies
the property T and the following assumptions are fulfilled:

i) si € Qi(s) for each s € G;

ii) Q; has convex and closed values;

iii) Pi(.,s—;) is Ls—majorized on G; for each s_; € G_;.
Then,

H
a) If G —* H is a game reduction and if there exists y »=; x, for some

z,y € G; and 1 € I, there exists x* € H; such that z ;, r* ﬁz x for each
z € Gy

b) a non-empty maximal —*reduction of G is the unique mazimal re-
duction of G.

Proof. a) Let R! be the sequence of restrictions of G, t = 0,1,2..., such
that RO = G, Rt — R'*! for each t > 0 and H; = ﬁtR§ for each 7 € I.
Let ¢ € I be arbitrarily fixed. Assume that there exists x,y € G; such

H
that y =; z. Let Z; = Ns_,em_,Qi(y, s—;). According to i), we have that Z; # (.
The set Z; is convex. It is also closed and included in G;, which is compact,

so Z; is compact. Since y EZ x, we have that H_; # (). Let s*, € H_; be fixed
and F; : Z; — 2%, F; = (Pi 0 Zi)|z,x{s=.}- We note that, since Pi(-,s*;) is
Ls-majorized on G; and Z; is a compact set, then, F; is Ls-majorized on Z;. In
addition, we have already mentioned that Z; is convex and compact. Hence,
all conditions of Corollary 1 are fulfilled. According to this corollary, there
exists 2* € Z; such that Fj(z*) = 0 and thus, P;(z*,s*,) N Z; = 0.

H
We have that 2* € Q;(y,s—;) for each s_; € H_;. The relation y >=; z
implies that y € P;(z,s_;) for each s_; € H_; and since the pair (P;, Q;) has
the property 7" on [[;.; H;, it follows that o € P;(x,s_;) for each s_; € H_;.
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H
If there exists z € G; such that z >=; x*, that is, z € Pi(z*,s_;) C
Qi(z*,s—;) for each s_; € H_;, then z € Z; and z € Pi(z*,s*;), which is a

contradiction. It remains that z ;z ¥ i[z x for each z € Gj.

Now, we claim that z € H;. Indeed, since for each t € T, H_; C Rt_i and
Ns_,en_, P(z*,s_;) = 0, then, ﬂs_ieRt_iP(IE*, s_i) N R! = (. We conclude that
z* € R for each t > 0 and this implies z* € H;. The claim is shown.

b) Let M and M’ be maximal (—*)— reductions of G, M being non-
empty. Let us consider G —* M’ and R, t = 0,1,2..., be the implied finite
or infinite sequence of restrictions. If M; ¢ M/ for some 4, it follows that
M; ¢ R, for each t > T and for the largest T such that R§T+1 is well-
defined and M; C R;T for each 7 € I. Let us take z € Mi\R;TJrl for a fixed
i. We have that + € RI'\R™!, so that there exists y € R/ such that
Yy € mS,iGR’TiRJ(‘T’S*i)‘ Since, in addition, § # M; C R for each i € I, it
follows that y € Ns_,enr_, Pi(z, s—;). According to a) there exists z* € M; such
that z* € Ns_,enm_, Pi(x,s—;), which contradicts the fact that M is a maximal
(—*)—reduction. It remains that M; C M/ for each i € I and therefore M’
is non-empty. We also can prove that M/ C M; for each i € I, implying that
M=M. O

Remark 2. We mention that the relevance of Theorem 2 comes from the
fact that it is an extension of known results concerning maximal reduction of
strategic games to qualitative games. This extension considers correspondences
with weak continuities. A further research can be extended to other models of
games, for instance, to abstract economy. This model is also a generalization
of the exchange economy, introduced by Debreu [7]. So, the possible economic
applications of our results refer to the situations which can be seen as strategic
games, and also to the market scenarios which can be interpreted as exchange
economies (this case can be analysed in the future). We recall that strategic
games can be used to model the Cournot oligopoly, Bertrand competition, pro-
duction with discontinuities, coordination situations, managerial applications,
business and so on.

We establish the following corollary.

COROLLARY 2. Let I be a non-empty, countable set of players. Let G =
(Gi, P))icr be a qualitative game, G = [Lic; Gi, where for each i € I, G; is a
non-empty compact subset of a Hausdorff topological vector space, u; : G — R
and the preference correspondence P; : G — 2C is defined by Py(s) = {x € G; :
ui(z,8_;) > u;i(s)} for each s € G. Suppose that the following assumptions are
Sulfilled:

i) P; has conver values;
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it) Pi(.,s—;) is Ls—majorized on G; for each s_; € G_;.
Then,

H
a) If G —* H is a game reduction and if there exists y »; x, for some

x,y € G; and 1 € I, there exists x* € H; such that z ;é{l r* fz x for each
z € Gy;

b) a non-empty maximal —*reduction of G is the unique mazimal re-
duction of G.

Proof. We note that if, for each ¢ € I, we define the correspondence
Qi : G — 2% by Qi(s) = {r € G : ui(zx,s_;) > u;(s)} for each s € G, then,
the pair (P;, Q);) satisfies the property T' and = € Q;(x,s_;) for each z € G;
and s_; € G_;. Then, we are under the hypotheses of Theorem 2. [J

Since a correspondence of class Lg is Lg-majorized, we obtain Corollary 3.

Notation. We will use the following notation, for each ¢ € I and s_; €
Gfit

P~ : G; — 2% is the correspondences defined by P;~'(z) = P;(,5_;)
for each z € G; and its lower sections are defined by (P, ")"!(y) = {z € G, :
y € Pi(x,s_;)} for each y € G;.

COROLLARY 3. Let I be a non-empty, countable set of players. Let G =
(Gi, Py)icr be a qualitative game, G = [],c; Gi, where for each i € I, G; is a
non-empty compact subset of a Hausdorff topological vector space, and let us
suppose that there exists Q; : G — 25 such that the pair (P;,Q;) satisfies the
property T and the following assumptions are fulfilled:

i) si € Qi(s) and s; ¢ P;(s) for each s € G;

ii) Q; has convex closed values and P; has conver values;

i) (P.~*)"1(y) is compactly open in G; for each y € G; and s_; € G,
where (P~")(z) = Pi(x,s_;) for each x € G;.

2

Then,

H
a) If G —* H is a a game reduction and if there exists y »; x, for some

x,y € G; and i € 1, there exists x* € H; such that z ;Z r* ;{Z x for each
z € Gy

b) a non-empty mazximal —*reduction of G is the unique mazimal re-
duction of G.

Remark 3. We make here a short discussion concerning the conditions of
Theorem 2. If, for each i € I, u; : G — R and P;,Q; : G — 2% are defined
by Pi(s) = {z € G; : ui(z,s—i) > u;(s)}, respectively, Qi(s) = {z € G; :
ui(w,5_;) > u;(s)} for each s € G, the condition i) is a very natural one. We
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note that x ¢ P;(x,s_;) for each x € G; and s_; € G_;. This last relation
is known as “irreflexivity of the preferences”. Also in this simple case, the
convexity of the images of correspondences P; and @Q; (i € I) reflects the quasi-
concavity of the functions wu;, which comes naturally from the convexity of the
agents’ preferences in their economic behavior. The closedness of the images
of correspondences @Q; (i € I) is asked from mathematical reasons.

Corollary 2 expresses the particular case presented above. The condition
iii) of Theorem 2 refers to a property of preference correspondences, which are
supposed to be Lg—majorized in the ¢th argument. This property generalizes
the notion of correspondences with open lower sections, which is very common
in game theory. A reference paper on this topic is the one written by Yannelis
and Prabhakar [21], where the authors studied the existence of equilibrium
points for the model of abstract economy with correspondences having open
lower sections. This last model extends the qualitative game, since it has not
only preference correspondences, but also constraint ones (the meaning is that
the players can make their choices only from certain sets). Corollary 3 illustra-
tes the important case of the qualitative games with preference correspondences
having compactly open lower sections.

We recall that a function f: X — RU{—o00, 00} is upper semicontinuous
if and only if {z € X : f(z) < a} is an open set for every a € R. The game
' = (Gi, u;)ier is called own-upper semicontinuous [10], if u;(-, s—;) is upper
semicontinuous for each ¢ € I and for each s_; € G_;.

Remark 4. Theorem 2 and its corollary subsume Dufwenberg and Stage-
man’s result concerning the order independence. We will show that the qua-
litative games with the hypotheses we assumed in the above theorem include
the own-upper semicontinuous strategic games.

Let us suppose that the preference correspondences are defined by using
the functions u; : G — R, i € I. Then, Pi(s) = {z € G; : ui(z,5-;) > u;i(s)}
for each i. If for each s_; € G_;, u;(+,s—;) is upper semicontinuous, then, for
each fixed y € G;, (P;™")7!(y) is an open set. Consequently, Corollary 3 can
be applied.

Remark 5. As Dufwenberg and Stageman [10] proved, the existence of
the undominated strategies does not ensure the non-emptiness of the maximal
reductions or the order independence of the IESDS procedure. In order to see
this, the reader is referred to Examples 1 and 2 in [10]. Example 5 (Example 1
in [10] revisited) shows that the above observation maintains for our model of
game.

The following example shows that our results handle games that violate
own-upper semicontinuity.
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Ezample 5. Let I = {1,2}, G1 = G2 = [0,2]. For each ¢ € {1,2}, let the
symmetric functions u; : [0,2] X [0,2] — R, ¢ € I, be defined in the following
way:

20+ 1, if = €[0,3),y€10,2];
ui(z,y) = 2, if T € [%,1}, y €10,2]; and
—x+2, ifxe(1,2],y €0,2]
2y+1,ifa:€[02]andy€[ 3)i
ug(x,y) = 2, if 2€0,2]andy € [3, ],
—y+2, ifx€]0,2] andye( ,2].

We note that uq(x,-) and us(-,y) are not upper semicontinuous for each
€ [0,2] and respectively for each y € [0, 2].
The correspondences P; : [0,2] x [0,2] — 2092 i € I, are defined by:

(x,1], if (z,y) € [0,3) x [0,2];
Pl(x7y):{z € [O’ 2] :ul(z7y)>u1(xay)}: (Z)v if (xay) € [%71] X [0’2]?
[0,2), if (z,y) € (1,2] x [0, 2]

Yy
Py(z,y)={z € [0,2] : ua(z, 2) > ua(z,y)}=¢ 0, ig (z,y) €[0,2] x [%,1];

Note that P; and P» have convex values; x ¢ Pj(x,y) and y ¢ Pa(z,y)
for each =,y € [0, 2].

For each y € [0,2], PV : [0,2] — 20 is defined by
(‘T? 1]5 if x € [07 §)a
Pl(z)=1¢ 0,if =z€ [%,1];
[0,2), if x € (1,2].
For each z € [0,2], P} : [0,2] — 292 is defined by
(y,1),if y € [0, §);
Piy)=4 0,if yel51];
[0,9), ify € (1,2].
P} has open lower sections in the topology of [0, 2], for each y € [0, 2].
Indeed, (P{)~1(0) = (1, 2].
If z € (0,1], (PY)~'(2) ={z €[0,2] : 2 € P/(2)} = [0,2) U (1,2].
HZE(L@JP@ Yz) ={z €[0,2]: 2 € P{(z) = [0,2)} = (1,2].

Similarly, we can prove that P3 has open lower sections in the topology
of [0,2], for each z € [0, 1].



42 Monica Patriche 12

We set the correspondences Q; : [0,2] x [0,2] — 2192 i € I, as follows:
[z, 1], if (2,y) € [0, 5) x [0,2];

Ql(%l/) = {z € [072] :ul(zvy) > ul(%?/)} = [%71]7 if (xay) € [%71] X [0’2];
0,3:], if (z,y) € (1,2] X [0, 2];

[y, 1], if (x,y) €[0,2] x [0, 3);
Q2(z,y) = {2 €1[0,2] : ug(z,2) > ua(x,y)} = [%, 1], if (z,y) € [0,2] x %, 1];
0.4, i (2 5) € 0.2] x (1.2].

Note that @; and @2 have convex and closed values; x € Q1(z,y) and
y € Qa(x,y) for each z,y € [0,2].

Now, we prove that, for each i € {1,2}, the pair (P;,Q;) has the pro-
perty 1.

Let i =1 and (z,y) € [0,2] x [0, 2].

If z € [0,2), Pi(z,y) C Qi(z,y) and if z € Pi(z,y) = (z,1], then,
Qi(z,y) = [2,1] C (z,1]

If z € (1,2], Pi(z,y) C
Q1(z,y) = [O,Z] - [O>$) = Py(x,

Therefore, for each (z,y [0,2] x [0,2], Pi(z,y) C Qi(z,y) and z €
Py(z,y) imply Qi(z,y) C Pi(x,y), and then, the pair (P1,Q1) has the pro-
perty 7.

We can show, similarly, that the pair (P, Q)2) has the property T.

All the assumptions of Corollary 3 are satisfied. There exists H, the
unique non-empty maximal —*reduction of G, where H; = Hy = [%, 1].

Qi(x,y) and if z € Pi(z,y) = [0,z), then,
).
S
Y

Note that there exists z,y € G;, ¢ = 1,2 such that y fz x. There also
exists * = 2 € Hy N Hy such that z ;IZZ x* fz x for each z € G; and i € {1,2}.

Remark 6. For H = G, we obtain that under the conditions of Corollary
3, we have the following:

If there exists y fl x, for some z,y € G; and © € I, there exists z* € G;
such that 2 ;CZZ x* SZ z for each 2z € G;.

The next theorem is the main result of our paper and it concerns the class
of the qualitative games.

THEOREM 3. Let I be a non-empty, countable set of players. Let G =
(Gi, P)ier be a qualitative game, G = [Lic; Gi, where for each i € I, G; is a
non-empty and compact subset of a Hausdorff topological vector space, and let
us suppose that there exists Q; : G — 2% such that the pair (P;, Q;) satisfies
the property T and the following assumptions are fulfilled:
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i) s; ¢ Pi(s) and s; € Qi(s) for each s € G;

it) Q; and P; have convex and closed values;

iii) Pf‘i has compactly open lower sections in G; for each s_; € G_;.

Then, G has a unique mazximal —*reduction M. Further, for each i € I,
M; is non-empty, compact and Py has compactly open lower sections.

Proof. Further, we will prove that G has a non-empty maximal reduction.
The proof of its uniqueness is a consequence of Corollary 3.

1) We first establish that if G — H is fast and G; is compact for each
1 € I, then, H; is compact and non-empty for each ¢ € I. For this purpose,

let us choose ¢ € I such that H; # G;. Then, y SZ x for some x,y € G; and
consequently, the set H; is non-empty.

Furthermore, we will prove that H; is compact. Let y € H; and let us
define Z(y) = C5P; *(y). According to the assumption i), Z(y) # 0. According
to iii), Pis’i has compactly open lower sections in G; for each s_;, € G_;,
then, P; has compactly open lower sections in G. Hence, Z(y) is closed in the
compact set G, and therefore, it is compact.

Let us define Z;(y) :=pr;Z(y). We have that Z;(y) is a non-empty and
closed set in G;, with y € Z;(y).

Now, we prove that H; = Nyecp,Zi(y). In order to show that H; C
Nyen, Zi(y), we consider z € G;. If for every y € H;, z ¢ Zi(y), it fol-
lows that y € Pi(z,s—;) for each s_; € G_;, then z ¢ H,; and therefore,
Ca,(Nyen; Zi(y)) C Cg,H;, which implies H; € Nyep, Zi(y). Now, we want
to show that Nyep, Z;i(y) C H;, that is Cq, H; C Cq,(Nyen, Zi(y)).

If z ¢ H;, then there exists © € G; such that = € P;(z,s_;) for each
s_; € G_;.

According to Remark 7, there exists z* € G; such that z* € Pi(z,s_)
for each s_; € G_;. It follows that z ¢ Z;(x*), therefore, z ¢ Nyeq, Zi(y), and,
hence, Cq,H; C Cg,(Nyen, Zi(y)). Since H; = Nyen, Zi(y), H; is closed in G;
and therefore, it is compact.

2) Let R', t = 0,1, ... denote the unique sequence of games of G such that
RY = G and R' — R'*! is fast for each t. Result 1) implies that R’ is compact
and non-empty for each ¢, so that, for each i € I, M; = N;R! is compact and
non-empty. According to iii), it follows that P;l(y) is open in M;. We still
have to show that M is a maximal —*reduction of G.

Let’s consider ¢ € I and x € M;. We will prove that z is not dominated
by any y € M;. Let y € M; and let A = Cq_,B, where B={s_, €e G_; :y €
Pi(x,5-4)}. Then A= Cq_{s_; € G_;: (z,5_;) € P '(y)}.

If ANRY, = { for every ¢t such that R' # M, then y € P;(x,s_;) for

Rt
each s_; € R ;, that is y =; x , which contradicts z € M;. Therefore, AN R"
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is non-empty and compact for every ¢, such that R' # M. This fact implies
AN M_; is non-empty and then, y ¢ P;(x,s_;) for each s_; € M_;, that is

M
y#iw. O

Remark 7. As we have seen in Remark 5, Theorem 3 subsumes the com-
pact continuous payoff games and, therefore, it is indeed an extension of The-
orem 1 due to Dufwenberg and Stegeman [10].

Remark 8. Theorem 3 handles discontinuous payoff games as it can be
seen in Example 6.

5. OTHER CONDITIONS WHICH IMPLY THE UNIQUENESS
OF MAXIMAL REDUCTIONS

In this section, we will establish other versions of Theorem 2. Theorem 5
and Theorem 7 prove the uniqueness of the maximal (—*) reduction of a game
G (if it exists) in the case the preference correspondences are Up—majorized
or Qg-majorized, that is, if they have topological properties which generalize
upper semicontinuity or lower semicontinuity. The main tools for the proofs
are the maximal element theorem for qualitative games. The hypotheses of
these results are different from those of the ones presented above, so that the
new variants deserve to be stated.

5.1. U-MAJORIZED CORRESPONDENCES

We will begin by presenting the notions of generalized topological pro-
perties of the correspondences and the maximal element theorem which will be
used in the proof of the theorem established in the next subsection.

Let X, Y be topological spaces and let T : X — 2¥ be a correspondence.
T is said to be upper semicontinuous if, for each x € X and each open set V'
in Y with T'(z) C V, there exists an open neighborhood U of x in X such that
T(y) C V for each y € U.

The notion of U-majorized correspondence is given below. It generalizes
the classical upper semicontinuous correspondences.

Definition 9 (Yuan and Tarafdar, [23]). Let X be a topological space
and Y be a non-empty subset of a topological vector space E, 0 : X — E a
function and P : X — 2¥ a correspondence.
1) P is of class Uy (or U) if:
i) for each x € X, 0(z) ¢ P(x) and
ii) P is upper semicontinuous with closed convex values in Y;
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2) A correspondence P, : X — 2Y is a Ug-magjorant of P at x if there
exists an open neighborhood N (z) of = such that
i) for each z € N(x), P(z) C Py(z) and 0(z) ¢ Py(z);
ii) P, is upper semicontinuous with closed convex values;
3) P is Up—majorized if for each z € X with P(x) # (), there exists a
Up-majorant P, of P at x.

When we deal with the case X = Y, which is a non-empty and convex
subset of a topological vector space E and 6 = Ix, the identity map on X, we
write U in place of Up.

The following theorem is Ding’s result on the existence of maximal ele-
ments for U —majorized correspondences. It will be used in the next subsection
to prove Theorem 5, which states the uniqueness of maximal reductions for
qualitative games with U—majorized correspondences.

THEOREM 4 (Ding, [9]). Let X be a non-empty subset of a Hausdorff
locally convex topological vector space and D a non-empty and compact subset

of X. Let P : X — 2P be a U—majorized correspondence. Then, there ezists
x* €coD such that P(z*) = .

5.2. THE UNIQUENESS OF MAXIMAL REDUCTIONS
FOR GAMES WITH U-MAJORIZED CORRESPONDENCES

The main result of this subsection is Theorem 5. Its proof is based on
Ding’s Theorem, which gives conditions for the existence of the maximal ele-
ments for U—majorized correspondences. We notice that the upper semicon-
tinuity of the correspondences is widely used in many economic applications
which are modelled as games.

THEOREM 5. Let I be a non-empty, countable set of players. Let G =
(Gi, P)icr be a qualitative game, G = [Lic; Gi, where for each i € I, G; is a
non-empty compact subset of a Hausdorff topological vector space and let us
suppose that there exists Q; : G — 2%+ such that the pair (P;, Qi) satisfies the
property T and the following assumptions are fulfilled:

i) si € Qi(s) for each s € G;

i1) Q; has convex and closed values;

1) Py(.,s—;) is U—majorized on G; for each s_; € G_;.

Then,

H
a) If G —* H is a game reduction and if there exists y =; x, for some

H H
x,y € G; and i € I, there exists x* € H; such that z #; z* »=; x for each
z € Gy
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b) a non-empty mazimal (—*) reduction of G is the unique mazimal
(—=*) reduction of G.

Proof. a) Let R! be the sequence of restrictions of G, t = 0,1, 2..., such
that R® = G, Rt — R'! for each t > 0 and H; = N;R! for each i € I.
Let ¢ € I be arbitrarily fixed. Assume that there exists x,y € G; such that

H
y ~; x. Let us define Z; = Ns_,en_,Q(y, s—i). According to i), we have that

Z; # (). The set Z; is convex and closed, so it is compact. Since y f, x, we have
that H_; # 0. Let s*, € H_; be fixed and F; : Z; — 2%i F; = (PimZi)|Zi><{s*_i}-
According to Ding’s Theorem, which is applied for X = D = G; and P = Fj,
there exists z* € Z; such that F;(z*) = (), and consequently, P;(z*, s* ,)NZ; = 0.

H
We have that z* € Q;(y,s—;) for each s_; € H_;. The relation y >=; =
implies that y € P;(x,s_;) for each s_; € H_; and since the pair (P;, Q;) has
the property T on [],.; Hy, it follows that * € P;(x,s_;) for each s_; € H_;.

H
If there exists z € G; such that z >; z*, that is, z € Pi(z*,s_;) C
Qi(z*,s—;) for each s_; € H_;, then z € Z; and z € Pj(z*,s*;), which is a
H H
contradiction. It remains that z #; x* »=; = for each z € G;.

Now, we claim that z € H;. Indeed, since for each t € T, H_; C R' ; and
Ns_,er_; P(x*,5_;) =0, then, N,_ g Pa*,s)n Rl = (. We conclude that
z* € R! for each ¢t > 0 and this implies 2* € H;. The claim is shown.

b) The proof is similar to the proof of Theorem 2, b). [

We obtain the following corollary for qualitative games having upper se-
micontinuous correspondences P;, ¢ € 1.

COROLLARY 4. Let I be a non-empty, countable set of players. Let G =
(Gi, P)icr be a qualitative game, G = [Lic; Gi, where for each i € I, G; is a
non-empty and compact subset of a Hausdorff topological vector space and let
us suppose that there exists Q; : G — 2%+ such that the pair (P;, Q;) satisfies
the property T and the following assumptions are fulfilled:

i) si € Qi(s) and s; ¢ P;(s) for each s € G;

ii) Q; has convex and closed values;

ii1) P; is upper semicontinuous, with closed and convez values in Gj.
Then,

H
a) If G —* H is a game reduction and if there exists y »; x, for some

x,y € G; and 1 € I, there exists x* € H; such that z ;é{l r* fz x for each
z € Gy

b) a non-empty mazimal (—*) reduction of G is the unique mazximal
(—=*) reduction of G.
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The following example shows that, under the hypotheses of the above
corollary, the game G has a non-empty unique maximal (—*) reduction.

Ezample 6. Let I = {1,2}, G; = G2 = [0,2], and let the symmetric
functions u; : [0,2] x [0,2] = R, i € I, be defined in the following way:
1 -
_ [ zifze[0,1] and y € [0,2];
w (@, y) xzifx € (1,2 and y € [0, 2] and
1 .
_ [ sifze[0,2] and y € [0,1];
uz(@,y) { yif z €[0,2] and y € (1, 2].
We note that ui(x,-) and ua(-,y) are not upper semicontinuous for each
x € [0, 2], respectively for each y € [0, 2].
Then,

Pi(z,y) ={2€[0,2] : ui(2z,9) > ui(z,y)} = { (z,2], if (;E’y)ee (1,2] x [0,2]-
and
Py(z,y) ={2 €[0,2] : ua(x, 2) > ua(z,y)} = { ((;:;]]: E éi:ly/)) g [[877;]] : E(i’,;]]’

Pi(-,y) and Py(z,-) are upper semicontinuous for each y € [0, 2], respecti-
vely for each z € [0, 2].
Let us set the correspondences Q1, Qs : [0,2] x [0,2] — 2[%2) defined by

Qo) = (€ 0.2 G 2wl = { (5 R0V ERD XS

and
@2z, y) ={z €[0,2] s ua(x,) = ua(z,y)} = { [[3 g]] :f gz)) g [[8: g]] i E(l)g]

Note that @1 and Q2 have convex and closed values; € Q1(x,y) and
y € Q2(x,y) for each z,y € [0,2].

Now, we prove that, for each i € {1,2}, the pair (P;,Q;) has the pro-
perty T.

Let i =1 and (x,y) € [0,2] x [0,2].

If z € [0,1), Pi(z,y) C Qi(z,y) and if z € Pi(z,y) = (1,2], then,
Q1(z,y) = [,2] € (1,2] = Pi(z,y).

If z € (1,2], Pi(z,y) C Qi(z,y) and if z € Pi(z,y) = (z,2], then,
Q1(z,y) = [2,2] C (z,2] = Pi(x,y).

Therefore, for each (z,y) € [0,2] x [0,2], Pi(z,y) C Qi(x,y) and z €
Py(x,y) imply Q1(z,y) C Pi(x,y), and then, the pair (P, Q1) has the pro-
perty 1.
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We can show, similarly, that the pair (P, Q2) has the property 7.

All the assumptions of Corollary 4 are satisfied. By applying this result,
we can assert that there exists a unique non-empty maximal —*reduction of G.

By eliminating [0, 1] for i € {1, 2}, we obtain R} = R} = (1,2].

Pi(z,y) = (z,2] if (z,y) € (1,2] x (1,2] and

Py(z,y) = (z,2] if (z,y) € (1,2] x (1,2].

1
G —* R! is a game reduction and there exists y ﬁi x, for some x,y € G;
1 1

and ¢ = 1,2. There also exists z* = 2 € R} such that z ;i x* »=; x for each
z € Gi.

We eliminate again (1,2) x (1,2), and we obtain R? = R% = {2}.

Pl(w7y) = {2} if ($7y) =(2,2) and

Pyl,y) = {2} if (2.1) = (2,2).

H = R?, the non-empty maximal —*reduction of G, is the unique maxi-
mal reduction of G.

The TESDS procedure is an order independent one.

5.3. Qp-MAJORIZED CORRESPONDENCES

In this subsection, we will deal with the correspondences of class 0y and
the Qp-majorized correspondences, defined by Liu and Cai [13]. These types
of correspondences generalize the lower semicontinuous ones.

Let X, Y be topological spaces and let T : X — 2¥ be a correspondence.
T is said to be lower semicontinuous if, for each x€¢ X and each open set V'
in Y with T'(z) NV # (), there exists an open neighborhood U of z in X such
that T'(y) NV # () for each y € U.

Now, we are presented the correspondences of class (Qyp and the Q-
majorized correspondences.

Definition 10 (Liu and Cai, [13]). Let X be a topological space and let
Y be a non-empty subset of a vector space E, 8 : X — E a function and
P : X — 2Y a correspondence.
1) P is of class Qg (or Q) if:
i) for each x € X, 0(z) ¢clP(z) and
ii) P is lower semicontinuous, with open and convex values in Y;
2) A correspondence P, : X — 2Y is a Qg-majorant of P at x, if there
exists an open neighborhood N (x) of « such that:
i) for each z € N(z), P(z) C Py(z) and 0(z) ¢clPy(z);
ii) P, is lower semicontinuous, with open and convex values;
3) P is Qg-majorized if for each x € X with P(z) # (), there exists a
Qep-majorant P, of P at x.
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The next result is also due to Liu and Cai and states the maximal ele-
ment existence for (Qg—majorized correspondences. It will be used in the next
subsection to prove Theorem 7, which states the uniqueness of the maximal
reductions for qualitative games with QQ9—majorized correspondences.

THEOREM 6 (Liu and Cai, [13]). Let X be a convexr paracompact subset
of a locally convex Hausdorff topological vector space E, let D be a non-empty
and compact metrizable subset of X. Let P : X — 2P be a Qy—majorized
correspondence. Then, there exists ©* € X such that P(z*) = 0.

5.4. THE UNIQUENESS OF MAXIMAL REDUCTIONS
FOR GAMES WITH Qy-MAJORIZED CORRESPONDENCES

Theorem 7 concerns the games with ()y—majorized correspondences.

THEOREM 7. Let I be a non-empty, countable set of players. Let G =
(Gi, Pi)icr be a qualitative game, G = [Lic; Gi, where for each i € I, G; is a
non-empty and compact subset of a Hausdorff topological vector space and let
us suppose that there exists Q; : G — 25+ such that the pair (P;, Q;) satisfies
the property T and the following assumptions are fulfilled:

i) si € Qi(s) for each s € G,

i1) Qi has convex and closed values;

1) Pi(.,s_;) is Qop—majorized on G; for each s_; € G_;.

Then,

H
a) If G —* H is a a game reduction and if there exists y >; x, for some

x,y € G; and 1 € I, there exists x* € H; such that z ;Z, r* fz x for each
z € Gy

b) a non-empty maximal —*reduction of G is the unique maximal re-
duction of G.

Proof. a) Let R' be the sequence of restrictions of G, t = 0,1, 2..., such
that R = G, Rt — R'*! for each t > 0 and H; = ﬂtR§ for each 7 € I.

Let i € I be arbitrarily fixed. Assume that there exists x,y € G; such that

Y fl x. We apply Liu and Cai’s Theorem to the correspondence Fj : Z; — 2%,
F; = (PN Z)\z,x{s* ,}» Where Z; = Ns_,en_,Q(y, $—i) is non-empty, convex
and compact and s*, € H_; is fixed. We obtain that there exists * € Z; such
that Pj(x*,s*,) = 0. For the rest, the proof follows the same line as in the
proof of Theorem 2. [

Since a correspondence of class Qr, is Qr,-majorized (Ix : X — X is
the identity map), we obtain the following corollary.
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COROLLARY 5. Let I be a non-empty, countable set of players. Let G =
(Gi, P)ier be a qualitative game, G = [Lic; Gi, where for each i € I, G; is a
non-empty compact subset of a Hausdorff topological vector space and let us
suppose that there exists Q; : G — 2 such that the pair (P;,Q;) satisfies the
property T and the following assumptions are fulfilled:

i) si € Qi(s) and s; ¢clP;(s) for each s € G,

i1) Qi has convezr and closed values;

i11) P; is lower semicontinuous, with open and conver values in G;.

Then,

H
a) If G —* H is a game reduction and if there exists y »; x, for some

z,y € G; and 1 € I, there exists x* € H; such that z ;Z[l r* >I-{Z x for each
z € Gy

b) a non-empty mazimal —*reduction of G is the unique mazimal re-
duction of G.

6. MAXIMAL ELEMENTS FOR QUALITATIVE GAMES

This subsection is meant to prove that the set of maximal elements is pre-
served in any game by the process of iterated elimination of strictly dominated
strategies.

Notation. Let G = (Gy, P;)ier be a qualitative game and let H be a
restriction of G, H = <Hi7Pi|l_[kez i, )iel, where H; C G; for each i € I. We
will denote H' the qualitative game associated with H, that is H' = (H;, (P; N
Hi) |11, Hy el

THEOREM 8. Let I be a non-empty, countable set of players. Let G =
(Gi, P)icr be a qualitative game and G = [Lic; Gi- For each i € I, let us
suppose that there exists Q; : G — 2% such that the pair (P;,Q;) satisfies the
property T and s; ¢ P;(s) for each s € G. Let us also assume that for each s €
G, there exists z* € G such that z} € Qi(zi,5—;) for all 2 € G and i € I. If H
is a (—*)—reduction of G, then the games G and H' have the same mazimal
elements.

Proof. Let R, t = 0,1, ... denote the unique sequence of games of G such
that R® = G, R* = R'! is fast for each ¢t and H; = ﬁtR;‘f for each i € I. Let
us suppose that s* € G is a maximal element in the game G, that is P;(s*) = ()
for each i € I and then, s} is never eliminated in the sequence R’ for each
i € I. It follows that s* € [];c; H;, so that Py, #,(s*) = 0 and, therefore,
Py, m:(8") N H; = 0 and s is also a maximal element in H’.

Conversely, let s* € [[,c; H; be a maximal element in H’ (that is, P;(s*)N
H; = () for each i € I) and consider z* as in the hypothesis: z* € G such that,



21 Rationality in qualitative games 51

for each i € I, zF € Q;(z, s*;) for all z € G. We will prove that P;(zf,s*;) =0
for each i € I. If, on the contrary, we assume that there exists zo e I and
si, € Pi(zf,5%;,), according to property T, it follows that Qi,(sj,, *_10) C
P, (zzo,s* i) However, zzo € Qi (2107 s*;,) for all z € G, particularly z; €
Qio (8}, 5% ;,) and then, zF € P (2}, *—10)7 which contradicts the hypothe51s
Since P;(zf,s*,) =0, zF 1s never eliminated in the sequence R! for each i € I,

and z* € [],c; Hi. The last assertion implies 2z} € Qi(z;,s*,;)NH; forall z € G
and ¢ € I. We will prove that Pi(s*) = for each i € I. On the contrary,
let us assume that there exists ip € I and s’ € G such that sj, € P;,(s*).
Then, Property T implies Qj, (s;,, 5" ;,) C PZO( *). However, we have that z} €
Qi (8}, 5—io) from the hypothesis, so that z € P;,(s*). In addition, 2z} € H;,
and, then, 27 € P;,(s*) N H;, which contradicts the fact that P, (s*) N Hy, = (.
In conclusion, P;(s*) must be the empty set for each ¢ € I and thus, s* is a
maximal element for the game G. [

Remark 9. Let us suppose that the preference correspondences are defined
by using the functions u; : G — R, i € I. Then, for each i € I, Pi(s) =
{x € R :ui(x,5-;) > ui(s)} and s; ¢ Pi(s) for each s € [[, Gy. If Qi(s) =
{zr € R: ul(:n s_;) > wu;i(s)}, then, the condition that there exists z* € G
such that zf € Q;(z;,s—;) for all z = (2;,5_;) € G and i € [ is equivalent
with the followmg one: there exists z* € G such that u; (2}, s-;) > w;(2i, 5_;)
for all 2 = (2;,5_;) € G and i € I. In this way, we obtain Theorem 2 in
Dufwenberg and Stegeman [10]. Therefore, we established conditions under
which the iterated elimination of the strictly dominated strategies preserves
the set of maximal elements of the qualitative games, which represents the set
of Nash equilibria in a particular case.

7. CONCLUDING REMARKS

We have reconsidered the problem of the existence of non-empty maximal
reductions. Our motivation has been to introduce the concept of rationaliza-
bility to a class of qualitative games that feature discontinuous preferences.
We have defined the key concepts which can lead to a unified framework that
encompasses a variety of models and an open problem is meant to rigorously
formalize the concepts in different classes of games, and to prove the existence
of the “rationalizable” results.

8. APPENDIX

We add a list with the main notations used in this paper, in order to
make the reading easier.
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LIST OF NOTATIONS

Correspondence (set valued map): T : X — 2V
Lower section of T : X —2Y: T (y):={z c X :y € T(x)}, y € Y.
Strategic game: I' = (G, u;)ier, where G := [Lic; Gi and w; : G — R.
Qualitative game: G = (G, P)icr, where P; : G — 24,
Preference correspondence: P; : G — 25+,

Py(s) = {z € G; : ui(z,s—;) > u;(s)} for each s € G.
G-i = Iljengy G-
S_; = (81, vy Si—1,5 Sit1, ) eG_;,ifse G.
Restriction of G : H = (H;, PZ'H_[kez H, )iel, Where H; C Gj.
The game associated to the restriction H : H' = (H;, (Pl-ﬂHi)‘ Mees H, )iel-

H
y=ix: x,y€G, H; #0and y € Ng_,en_, Pi(x, s_;).
K — H: for each ¢ € I and = € K;\H;, there exists y € K; such that

K
y =i x, (equivalently, for each i € I, K_; # () and Ns_,ex_, Pi(z,s_;) N K; # ().

K — H is fast: foreach i € I, K_; # 0 and Ns_,ex_, Pi(z,s-)) N K; # 0
for some = € K; implies = ¢ H;.
K —* H : there exists a sequence of restrictions R! of H, t = 0,1,2...,

such that

RY = K, Rt — R'! fast for each t > 0 and H; = M;R! for

each 7 € I.

K —* H is maximal: K —* H and H — H' only for H = H’'.
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