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We extend the study of the iterated elimination of strictly dominated strategies
(IESDS) from Nash strategic games to a class of qualitative games. In this case,
the IESDS process also leads us to a kind of “rationalizable” result. We define
a dominance relation and a game reduction and we establish conditions under
which a unique and non-empty maximal reduction exists.
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1. INTRODUCTION

Bernheim [4] and Pearce [18] studied the rationalizable strategic behavior
in the framework of non-cooperative strategic games introduced by Nash [16].
The rational behavior of the players is a fundamental assumption in game
theory. It implies that each strategic game can be characterized by a process
of iterated elimination of strictly dominated strategies (IESDS). The result of
this process is known as the maximal reduction of the game.

The iterated elimination of strictly dominated strategies has several dif-
ferent definitions. We must refer to the approaches of Gilboa, Kalai and Ze-
mel [11,12], Milgrom and Roberts [15], Marx and Swinkels [14], Ritzberger [19],
Dufwenberg and Stegeman [10], Chen, Long and Luo [6], or Apt [1–3] as some
important ones in literature. Osborne and Rubinstein [17] and Rubinstein [20]
also developed some topics concerning rationality.

The main problems concerning the IESDS procedure are related to the
non-emptiness and to the uniqueness of the limit game. In the case of infinite
games, the order of reductions is important, and the maximal reduction may
not be unique if different paths are considered. Dufwenberg and Stegeman [10]
proved the uniqueness and the non-emptiness of the maximal reduction for
a strategic game with compact strategy sets and continuous payoff functions.
Apt [2] treated the various definitions of IESDS in a unitary way, specifying
the games where the definitions coincide. His approach is based on complete
lattice and the study of operators.

MATH. REPORTS 19(69), 1 (2017), 31–53



32 Monica Patriche 2

In order to develop the ideas concerning the rationality, we consider a
model which generalizes the strategic game. We consider the qualitative games
which have a strategy set and a preference correspondence constructed by
using the utility functions, for every player. Nash’s equilibrium point is seen
in this framework as a maximal element. We also consider different types
of majorized correspondences which generalize the well-known semicontinuous
ones. Subsequently, we work with U-majorized correspondences defined by
Yuan and Tarafdar [23], Qθ−majorized correspondences introduced by Liu
and Cai [13] and LS-majorized correspondences due to G.X. Yuan [22]. We
use theorems which prove the existence of maximal elements for qualitative
games which have these types of considered correspondences. These results
are due to Ding [9], Liu and Cai [13], and Chang [5].

Our new approach wants to emphasize that the IESDS process leads to
a kind of ŕationalizablé result in the extended games. In the new context, the
idea of rationality, obtained in an iterated process of elimination the unfitted
strategies, is underlined. We want to highlight the concept, rather than the
context where it was initially defined. We introduce a dominance relation and
a game reduction and we establish conditions under which a unique and non-
empty maximal reduction exists. An open problem is to rigorously formalize
concepts concerning rationality in different classes of games, and to rediscuss
the problems in a unified framework which implies economic settings.

The paper is organized in the following way: Section 2 presents preli-
minaries concerning qualitative games. Section 3 contains the introduction of
definitions and the problem of game reduction and order independence. The
main results which concern the existence and the uniqueness of maximal re-
ductions are settled in Section 4. In Section 5 other conditions for uniqueness
of the maximal reduction are provided. The last section is dedicated to proving
that the set of maximal elements is preserved in any game by the process of
iterated elimination of strictly dominated strategies. Concluding remarks are
stated at the end. A list with the main notations used in the paper is added
in Appendix.

2. QUALITATIVE GAMES

Let I be a non-empty and countable set (the set of agents). For each
i ∈ I, let Gi be a non-empty topological vector space representing the set of
actions G =

∏
i∈I Gi, and Pi : G→ 2Gi be the preference correspondence.

The family G = (Gi, Pi)i∈I is said to be a qualitative game. A maximal
element for G is defined as a point s∗ ∈ G such that for each i ∈ I, Pi(s

∗) = ∅.
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Remark 1. A list with the main notations used in the paper is added in
Appendix, in order to make the reading easier.

Example 1. Let I = {1, 2}, G1 = G2 = [0, 1], and the symmetric functions
ui : [0, 1] × [0, 1] → R, i ∈ I, be defined by u1(x, y) = x and u2(x, y) = y for
each (x, y) ∈ [0, 1]× [0, 1].

The qualitative game corresponding to Γ = (Gi, ui)i∈I is G = (Gi, Pi)i∈I ,
where

P1(x, y) = {z ∈ [0, 1] : u1(z, y) > u1(x, y)} = (x, 1] if (x, y) ∈ [0, 1)× [0, 1]
and

P1(x, y) = ∅ if (x, y) ∈ {1} × [0, 1];

P2(x, y) = {z ∈ [0, 1] : u2(x, z) > u2(x, y)} = (y, 1] if (x, y) ∈ [0, 1]× [0, 1)
and

P2(x, y) = ∅ if (x, y) ∈ [0, 1]× {1};
(1, 1) is a maximal element: P1(1, 1) = P2(1, 1) = ∅.

Now, we define a transitivity type of correspondences.

Definition 1. Let I be a non-empty and countable set, let G =
∏
i∈I Gi be

a product space and, for some i ∈ I, let P : G→ 2Gi be a correspondence. We
say that P has the property T if z ∈ P (s) and s ∈ G imply clP (z, s−i) ⊂ P (s).

Example 2. P1 and P2 from Example 1 have the property T :

if z ∈ P1(x, y) and (x, y) ∈ [0, 1] × [0, 1], then z ∈ (x, 1] and clP1(z, y) =
[z, 1] ⊂ (x, 1]

Definition 2. Let I be a non-empty and countable set, let G =
∏
i∈I Gi

be a product space and, for some i ∈ I, let P,Q : G→ 2Gi be correspondences.
We say that the pair (P,Q) has the property T if for each s ∈ G, P (s) ⊂ Q(s)
and z ∈ P (s) imply Q(z, s−i) ⊂ P (s).

Example 3. If for each i ∈ {1, 2}, we take Qi =clPi in Example 1, we
obtain that the pair (Pi, Qi) has the property T.

Example 4. Let P,Q : [0, 2]× [0, 2]→ 2[0,2] be defined by

P (x, y) =

{
(1, y], if x ∈ [0, 1]× (1, 2];
∅, otherwise

and

Q(x, y) =


[x, y], if 0 ≤ x < y ≤ 2;
[y, x], if 0 ≤ y < x ≤ 2;
{x}, if 0 ≤ x = y ≤ 2.

We have that P (x, y) ⊂ Q(x, y) for each (x, y) ∈ [0, 2] × [0, 2], and if
z ∈ P (x, y), it follows that x ∈ [0, 1], y ∈ (1, 2] and z ∈ (1, y], which imply
Q(z, y) = [z, y] ⊂ (1, y] = P (x, y).
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We note that x ∈ Q(x, y) for each x ∈ [0, 2] × [0, 2] and Q has convex
closed values, so that Q verifies the assumptions stated in the hypothesis of
the theorems from Section 4.

3. GAME REDUCTION

Firstly, this section gives preliminary definitions on restrictions, strict
dominance and game reduction for qualitative games, which generalize the ones
that exist in the literature and which are due to Dufwenberg and Stegeman [10].
The main theorems of the paper will be stated in Section 4, where we will
consider mainly the game reduction defined in Section 3. The new classes
of games will be introduced in the following sections with the main tools we
will use in the proofs, that is, the maximal elements theorems. Several simple
examples will illustrate our assertions and will underline the importance of the
extension proposed to the reader.

We focus on the concepts of rationalizability and iterated elimination of
strictly dominated strategies (IESDS). Both terms refer to the reasoning used
by rational players. In the definition of the first concept, the deletion of a
strategy depends on the type of strict dominance considered by the players.

Firstly, we introduce a relation of strict dominance for the qualitative
games, with respect to a restriction.

Definition 3. A restriction of G = (Gi, Pi)i∈I is H = (Hi, Pi|
∏

k∈I Hk
)i∈I ,

where Hi ⊆ Gi for each i ∈ I.

We note that a restriction of a qualitative game is not a qualitative game,
since for each i ∈ I, the images of Pi|

∏
k∈I Hk

are not contained in Hi. We use
the term “restriction” as in [2], rather than “paring” as in [10].

In game theory, the players are supposed to be rational, that is, none of
them could possibly use any strictly dominated strategy. In this paper, we will
consider the following notion of strict dominance.

Definition 4. Given a restriction H of G and i ∈ I, the strict dominance

relation
H
�i on Gi, is defined as follows:

for x, y ∈ Gi, y
H
�i x if H−i 6= ∅ and y ∈ ∩s−i∈H−iPi(x, s−i).

We will remove from G all the strategies that are strictly dominated with
respect to H by some strategy in G.

If H = G, we obtain the following definition, which will be used in order
to give Definition 5

for x, y ∈ Gi, y
G
�i x if G−i 6= ∅ and y ∈ ∩s−i∈G−iPi(x, s−i).
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Let us consider the restrictions K and H of G with the property that
Hi ⊆ Ki for each i ∈ I. We generalize the types of game reduction used by
Dufwenberg and Stegeman [10] in the following way.

Definition 5. i) We define the reduction K → H if, for each i ∈ I and

x ∈ Ki\Hi, there exists y ∈ Ki such that y
K
�i x, that is, K−i 6= ∅ and

∩s−i∈K−iPi(x, s−i) ∩Ki 6= ∅.
ii) The reduction K → H is called fast if for each i ∈ I, K−i 6= ∅ and

∩s−i∈K−iPi(x, s−i) ∩Ki 6= ∅ for some x ∈ Ki implies x /∈ Hi.

We note that the notion of reduction captures the idea of removing the
dominated strategies.

The definition we present below takes care of the possibility that the
elimination process has a finite or countable infinite number of iteration steps.

Definition 6. The reduction K →∗ H is defined by the existence of a
(finite or countable infinite) sequence of restrictions Rt of H, t = 0, 1, 2..., such
that R0 = K, Rt → Rt+1 fast for each t ≥ 0 and Hi = ∩tRti for each i ∈ I.

We note that at each step t ≥ 0, in the reduction Rt → Rt+1, for each
i ∈ I, the images of the preference correspondences Pi|

∏
k∈I R

t+1
k

are intersected

with (Rt)i.

The outcome of the elimination process is provided by the ’maximal re-
duction’.

Definition 7. H is said to be a maximal (→∗)-reduction of K if K →∗ H
and H → H ′ only for H = H ′.

We are interested in finding conditions which can ensure the existence of
a non-empty and unique maximal reduction of a game.

4. THE EXISTENCE AND UNIQUENESS OF MAXIMAL REDUCTIONS

In this section, we state the results concerning the iterated elimination
of strictly dominated strategies for several classes of qualitative games. The
existence and the uniqueness of maximal reductions are proven.

Theorem 2 gives conditions for the existence of a non-dominated element
with respect to a dominance relation generated by a restriction. It considers
qualitative games with LS−majorized correspondences. A proof of the unique-
ness of the maximal reduction of G is given in this case. This theorem will be
used in order to obtain the main result of this paper, that is, Theorem 3.
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4.1. Lθ,S-MAJORIZED CORRESPONDENCES

Firstly, we recall the notion of Lθ,S-majorized correspondence, which ge-
neralizes the classical correspondences with open lower sections. It was used
by Chang in [5] in order to provide new results on maximal elements and equi-
librium. Since the key of the proof of our main theorems is the application
of a corollary of Chang’s Theorem, which concerns the existence of maximal
elements for the Lθ,S-majorized correspondences, we begin our research by in-
troducing these necessary preliminaries, before stating our results on maximal
reductions of qualitative games.

A non-empty subset D of a topological space X is said to be compactly
open (Ding [8]), if for every non-empty and compact subset C of X, D ∩ C is
open in C.

Let T : X → 2Y be a correspondence. The lower sections of T are defined
by T−1(y) := {x ∈ X : y ∈ T (x)}, for each y ∈ Y.

Let X be a topological space, Y be a non-empty subset of a vector space
E, θ : X → E be a function and let P : X → 2Y be a correspondence.

Definition 8 (Yuan, [5]). 1) P is said to have compactly open lower secti-
ons in X if for each y ∈ Y, the set P−1(y) = {x ∈ X : y ∈ P (x)} is compactly
open in X.

2) P is said to be of class Lθ,S , if θ(x) /∈coP (x) for each x ∈ X, and P
has compactly open lower sections in X.

3) P is said to be Lθ,S-majorized, if for each x ∈ X, there exists an open
neighborhood N(x) of x in X and a correspondence Px : X → 2Y such that:

i) for each z ∈ N(x), P (z) ⊂ Px(z);
ii) for each z ∈ N(x), θ(z) /∈coPx(z) and
iii) for each y ∈ Y, P−1x (y) is compactly open in X.

In this paper, we deal mainly with the case X = Y, which is a non-empty
and convex subset of a topological vector space E and θ = IX , the identity
map on X. In this case, we write LS in place of Lθ,S .

We also have the following theorem due to Chang [5] on non-compact
spaces.

Theorem 1 (Chang, [5]). Let X be a convex subset of a Hausdorff topo-
logical vector space E and let P : X → 2X be a LS−majorized correspondence.
Suppose that there exists a compact set D in X such that, for each finite subset
S of X, there exists a convex and compact set K, which contains S and which
satisfies K\∪x∈K P−1(x) ⊂ D. Then, there exists x∗ ∈ D such that P (x∗) = ∅.

Further, we will use the following corollary of Chang’s Theorem, where
X is compact.
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Corollary 1. Let X be a compact and convex subset of a Hausdorff
topological vector space E and let P : X → 2X be a LS−majorized correspon-
dence. Then, there exists x∗ ∈ X such that P (x∗) = ∅.

4.2. THE MAIN RESULTS

We are now stating the following key result, which will be used to prove
Theorem 3. The demonstration of Theorem 2 is based on Corollary 1.

Theorem 2. Let I be a non-empty and countable set of players. Let
G = (Gi, Pi)i∈I be a qualitative game, G =

∏
i∈I Gi, where for each i ∈ I, Gi

is a non-empty, compact subset of a Hausdorff topological vector space, and let
us suppose that there exists Qi : G → 2Gi such that the pair (Pi, Qi) satisfies
the property T and the following assumptions are fulfilled:

i) si ∈ Qi(s) for each s ∈ G;

ii) Qi has convex and closed values;

iii) Pi(., s−i) is LS−majorized on Gi for each s−i ∈ G−i.
Then,

a) If G →∗ H is a game reduction and if there exists y
H
�i x, for some

x, y ∈ Gi and i ∈ I, there exists x∗ ∈ Hi such that z
H
�i x∗

H
�i x for each

z ∈ Gi;
b) a non-empty maximal →∗reduction of G is the unique maximal re-

duction of G.

Proof. a) Let Rt be the sequence of restrictions of G, t = 0, 1, 2..., such
that R0 = G, Rt → Rt+1 for each t ≥ 0 and Hi = ∩tRti for each i ∈ I.

Let i ∈ I be arbitrarily fixed. Assume that there exists x, y ∈ Gi such

that y
H
�i x. Let Zi = ∩s−i∈H−iQi(y, s−i). According to i), we have that Zi 6= ∅.

The set Zi is convex. It is also closed and included in Gi, which is compact,

so Zi is compact. Since y
H
�i x, we have that H−i 6= ∅. Let s∗−i ∈ H−i be fixed

and Fi : Zi → 2Zi , Fi = (Pi ∩ Zi)|Zi×{s∗−i}. We note that, since Pi(·, s∗−i) is
Ls-majorized on Gi and Zi is a compact set, then, Fi is Ls-majorized on Zi. In
addition, we have already mentioned that Zi is convex and compact. Hence,
all conditions of Corollary 1 are fulfilled. According to this corollary, there
exists x∗ ∈ Zi such that Fi(x

∗) = ∅ and thus, Pi(x
∗, s∗−i) ∩ Zi = ∅.

We have that x∗ ∈ Qi(y, s−i) for each s−i ∈ H−i. The relation y
H
�i x

implies that y ∈ Pi(x, s−i) for each s−i ∈ H−i and since the pair (Pi, Qi) has
the property T on

∏
i∈I Hi, it follows that x∗ ∈ Pi(x, s−i) for each s−i ∈ H−i.
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If there exists z ∈ Gi such that z
H
�i x∗, that is, z ∈ Pi(x

∗, s−i) ⊂
Qi(x

∗, s−i) for each s−i ∈ H−i, then z ∈ Zi and z ∈ Pi(x
∗, s∗−i), which is a

contradiction. It remains that z
H
�i x∗

H
�i x for each z ∈ Gi.

Now, we claim that z ∈ Hi. Indeed, since for each t ∈ T, H−i ⊆ Rt−i and
∩s−i∈H−iP (x∗, s−i) = ∅, then, ∩s−i∈Rt

−i
P (x∗, s−i) ∩ Rti = ∅. We conclude that

x∗ ∈ Rti for each t ≥ 0 and this implies x∗ ∈ Hi. The claim is shown.
b) Let M and M ′ be maximal (→∗)− reductions of G, M being non-

empty. Let us consider G →∗ M ′ and R′t, t = 0, 1, 2..., be the implied finite
or infinite sequence of restrictions. If Mi * M ′i for some i, it follows that
Mi * R′ti , for each t > T and for the largest T such that R′T+1

i is well-
defined and Mi ⊆ R′Ti for each i ∈ I. Let us take x ∈ Mi\R′T+1

i for a fixed
i. We have that x ∈ R′Ti \R

′T+1
i , so that there exists y ∈ R′Ti such that

y ∈ ∩s−i∈R′T−i
Pi(x, s−i). Since, in addition, ∅ 6= Mi ⊆ R′Ti for each i ∈ I, it

follows that y ∈ ∩s−i∈M−iPi(x, s−i). According to a) there exists z∗ ∈Mi such
that z∗ ∈ ∩s−i∈M−iPi(x, s−i), which contradicts the fact that M is a maximal
(→∗)−reduction. It remains that Mi ⊆ M ′i for each i ∈ I and therefore M ′

is non-empty. We also can prove that M ′i ⊆ Mi for each i ∈ I, implying that
M = M ′. �

Remark 2. We mention that the relevance of Theorem 2 comes from the
fact that it is an extension of known results concerning maximal reduction of
strategic games to qualitative games. This extension considers correspondences
with weak continuities. A further research can be extended to other models of
games, for instance, to abstract economy. This model is also a generalization
of the exchange economy, introduced by Debreu [7]. So, the possible economic
applications of our results refer to the situations which can be seen as strategic
games, and also to the market scenarios which can be interpreted as exchange
economies (this case can be analysed in the future). We recall that strategic
games can be used to model the Cournot oligopoly, Bertrand competition, pro-
duction with discontinuities, coordination situations, managerial applications,
business and so on.

We establish the following corollary.

Corollary 2. Let I be a non-empty, countable set of players. Let G =
(Gi, Pi)i∈I be a qualitative game, G =

∏
i∈I Gi, where for each i ∈ I, Gi is a

non-empty compact subset of a Hausdorff topological vector space, ui : G→ R
and the preference correspondence Pi : G→ 2Gi is defined by Pi(s) = {x ∈ Gi :
ui(x, s−i) > ui(s)} for each s ∈ G. Suppose that the following assumptions are
fulfilled:

i) Pi has convex values;
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ii) Pi(., s−i) is LS−majorized on Gi for each s−i ∈ G−i.
Then,

a) If G →∗ H is a game reduction and if there exists y
H
�i x, for some

x, y ∈ Gi and i ∈ I, there exists x∗ ∈ Hi such that z
H
�i x∗

H
�i x for each

z ∈ Gi;
b) a non-empty maximal →∗reduction of G is the unique maximal re-

duction of G.

Proof. We note that if, for each i ∈ I, we define the correspondence
Qi : G → 2Gi by Qi(s) = {x ∈ Gi : ui(x, s−i) ≥ ui(s)} for each s ∈ G, then,
the pair (Pi, Qi) satisfies the property T and x ∈ Qi(x, s−i) for each x ∈ Gi
and s−i ∈ G−i. Then, we are under the hypotheses of Theorem 2. �

Since a correspondence of class LS is LS-majorized, we obtain Corollary 3.

Notation. We will use the following notation, for each i ∈ I and s−i ∈
G−i:

P
s−i

i : Gi → 2Gi is the correspondences defined by P
s−i

i (x) = Pi(x, s−i)
for each x ∈ Gi and its lower sections are defined by (P

s−i

i )−1(y) = {x ∈ Gi :
y ∈ Pi(x, s−i)} for each y ∈ Gi.

Corollary 3. Let I be a non-empty, countable set of players. Let G =
(Gi, Pi)i∈I be a qualitative game, G =

∏
i∈I Gi, where for each i ∈ I, Gi is a

non-empty compact subset of a Hausdorff topological vector space, and let us
suppose that there exists Qi : G → 2Gi such that the pair (Pi, Qi) satisfies the
property T and the following assumptions are fulfilled:

i) si ∈ Qi(s) and si /∈ Pi(s) for each s ∈ G;

ii) Qi has convex closed values and Pi has convex values;

iii) (P
s−i

i )−1(y) is compactly open in Gi for each y ∈ Gi and s−i ∈ G−i,
where (P

s−i

i )(x) = Pi(x, s−i) for each x ∈ Gi.
Then,

a) If G→∗ H is a a game reduction and if there exists y
H
�i x, for some

x, y ∈ Gi and i ∈ I, there exists x∗ ∈ Hi such that z
H
�i x∗

H
�i x for each

z ∈ Gi;
b) a non-empty maximal →∗reduction of G is the unique maximal re-

duction of G.

Remark 3. We make here a short discussion concerning the conditions of
Theorem 2. If, for each i ∈ I, ui : G → R and Pi, Qi : G → 2Gi are defined
by Pi(s) = {x ∈ Gi : ui(x, s−i) > ui(s)}, respectively, Qi(s) = {x ∈ Gi :
ui(x, s−i) ≥ ui(s)} for each s ∈ G, the condition i) is a very natural one. We
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note that x /∈ Pi(x, s−i) for each x ∈ Gi and s−i ∈ G−i. This last relation
is known as “irreflexivity of the preferences”. Also in this simple case, the
convexity of the images of correspondences Pi and Qi (i ∈ I) reflects the quasi-
concavity of the functions ui, which comes naturally from the convexity of the
agents’ preferences in their economic behavior. The closedness of the images
of correspondences Qi (i ∈ I) is asked from mathematical reasons.

Corollary 2 expresses the particular case presented above. The condition
iii) of Theorem 2 refers to a property of preference correspondences, which are
supposed to be LS−majorized in the ith argument. This property generalizes
the notion of correspondences with open lower sections, which is very common
in game theory. A reference paper on this topic is the one written by Yannelis
and Prabhakar [21], where the authors studied the existence of equilibrium
points for the model of abstract economy with correspondences having open
lower sections. This last model extends the qualitative game, since it has not
only preference correspondences, but also constraint ones (the meaning is that
the players can make their choices only from certain sets). Corollary 3 illustra-
tes the important case of the qualitative games with preference correspondences
having compactly open lower sections.

We recall that a function f : X → R∪{−∞,∞} is upper semicontinuous
if and only if {x ∈ X : f(x) < α} is an open set for every α ∈ R. The game
Γ = (Gi, ui)i∈I is called own-upper semicontinuous [10], if ui(·, s−i) is upper
semicontinuous for each i ∈ I and for each s−i ∈ G−i.

Remark 4. Theorem 2 and its corollary subsume Dufwenberg and Stage-
man’s result concerning the order independence. We will show that the qua-
litative games with the hypotheses we assumed in the above theorem include
the own-upper semicontinuous strategic games.

Let us suppose that the preference correspondences are defined by using
the functions ui : G → R, i ∈ I. Then, Pi(s) = {x ∈ Gi : ui(x, s−i) > ui(s)}
for each i. If for each s−i ∈ G−i, ui(·, s−i) is upper semicontinuous, then, for
each fixed y ∈ Gi, (P

s−i

i )−1(y) is an open set. Consequently, Corollary 3 can
be applied.

Remark 5. As Dufwenberg and Stageman [10] proved, the existence of
the undominated strategies does not ensure the non-emptiness of the maximal
reductions or the order independence of the IESDS procedure. In order to see
this, the reader is referred to Examples 1 and 2 in [10]. Example 5 (Example 1
in [10] revisited) shows that the above observation maintains for our model of
game.

The following example shows that our results handle games that violate
own-upper semicontinuity.
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Example 5. Let I = {1, 2}, G1 = G2 = [0, 2]. For each i ∈ {1, 2}, let the
symmetric functions ui : [0, 2] × [0, 2] → R, i ∈ I, be defined in the following
way:

u1(x, y) =


2x+ 1, if x ∈ [0, 12), y ∈ [0, 2];
2, if x ∈ [12 , 1], y ∈ [0, 2];
−x+ 2, if x ∈ (1, 2], y ∈ [0, 2]

and

u2(x, y) =


2y + 1, if x ∈ [0, 2] and y ∈ [0, 12);
2, if x ∈ [0, 2] and y ∈ [12 , 1];
−y + 2, if x ∈ [0, 2] and y ∈ (1, 2].

We note that u1(x, ·) and u2(·, y) are not upper semicontinuous for each
x ∈ [0, 2] and respectively for each y ∈ [0, 2].

The correspondences Pi : [0, 2]× [0, 2]→ 2[0,2], i ∈ I, are defined by:

P1(x, y)={z ∈ [0, 2] : u1(z, y)>u1(x, y)}=


(x, 1], if (x, y) ∈ [0, 12)× [0, 2];
∅, if (x, y) ∈ [12 , 1]× [0, 2];
[0, x), if (x, y) ∈ (1, 2]× [0, 2].

P2(x, y)={z ∈ [0, 2] : u2(x, z) > u2(x, y)}=


(y, 1], if (x, y) ∈ [0, 2]× [0, 12);
∅, if (x, y) ∈ [0, 2]× [12 , 1];
[0, y), if (x, y) ∈ [0, 2]× (1, 2].

Note that P1 and P2 have convex values; x /∈ P1(x, y) and y /∈ P2(x, y)
for each x, y ∈ [0, 2].

For each y ∈ [0, 2], P y1 : [0, 2]→ 2[0,2] is defined by

P y1 (x) =


(x, 1], if x ∈ [0, 12);
∅, if x ∈ [12 , 1];
[0, x), if x ∈ (1, 2].

For each x ∈ [0, 2], P x1 : [0, 2]→ 2[0,2] is defined by

P x1 (y) =


(y, 1], if y ∈ [0, 12);
∅, if y ∈ [12 , 1];
[0, y), if y ∈ (1, 2].

P y1 has open lower sections in the topology of [0, 2], for each y ∈ [0, 2].

Indeed, (P y1 )−1(0) = (1, 2].

If z ∈ (0, 1], (P y1 )−1(z) = {x ∈ [0, 2] : z ∈ P y1 (x)} = [0, z) ∪ (1, 2].

If z ∈ (1, 2), (P y1 )−1(z) = {x ∈ [0, 2] : z ∈ P y1 (x) = [0, x)} = (1, 2].

Similarly, we can prove that P x2 has open lower sections in the topology
of [0, 2], for each x ∈ [0, 1].
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We set the correspondences Qi : [0, 2]× [0, 2]→ 2[0,2], i ∈ I, as follows:

Q1(x, y) = {z ∈ [0, 2] : u1(z, y) ≥ u1(x, y)} =


[x, 1], if (x, y) ∈ [0, 12)× [0, 2];
[12 , 1], if (x, y) ∈ [12 , 1]× [0, 2];
[0, x], if (x, y) ∈ (1, 2]× [0, 2];

Q2(x, y) = {z ∈ [0, 2] : u2(x, z) ≥ u2(x, y)} =


[y, 1], if (x, y) ∈ [0, 2]× [0, 12);
[12 , 1], if (x, y) ∈ [0, 2]× [12 , 1];
[0, y], if (x, y) ∈ [0, 2]× (1, 2].

Note that Q1 and Q2 have convex and closed values; x ∈ Q1(x, y) and
y ∈ Q2(x, y) for each x, y ∈ [0, 2].

Now, we prove that, for each i ∈ {1, 2}, the pair (Pi, Qi) has the pro-
perty T.

Let i = 1 and (x, y) ∈ [0, 2]× [0, 2].
If x ∈ [0, 12), P1(x, y) ⊂ Q1(x, y) and if z ∈ P1(x, y) = (x, 1], then,

Q1(z, y) = [z, 1] ⊆ (x, 1] = P1(x, y).
If x ∈ (1, 2], P1(x, y) ⊂ Q1(x, y) and if z ∈ P1(x, y) = [0, x), then,

Q1(z, y) = [0, z] ⊆ [0, x) = P1(x, y).
Therefore, for each (x, y) ∈ [0, 2] × [0, 2], P1(x, y) ⊂ Q1(x, y) and z ∈

P1(x, y) imply Q1(z, y) ⊂ P1(x, y), and then, the pair (P1, Q1) has the pro-
perty T.

We can show, similarly, that the pair (P2, Q2) has the property T.
All the assumptions of Corollary 3 are satisfied. There exists H, the

unique non-empty maximal →∗reduction of G, where H1 = H2 = [12 , 1].

Note that there exists x, y ∈ Gi, i = 1, 2 such that y
H
�i x. There also

exists x∗ = 2 ∈ H1 ∩H2 such that z
H
�i x∗

H
�i x for each z ∈ Gi and i ∈ {1, 2}.

Remark 6. For H = G, we obtain that under the conditions of Corollary
3, we have the following:

If there exists y
G
�i x, for some x, y ∈ Gi and i ∈ I, there exists x∗ ∈ Gi

such that z
G
�i x∗

G
�i x for each z ∈ Gi.

The next theorem is the main result of our paper and it concerns the class
of the qualitative games.

Theorem 3. Let I be a non-empty, countable set of players. Let G =
(Gi, Pi)i∈I be a qualitative game, G =

∏
i∈I Gi, where for each i ∈ I, Gi is a

non-empty and compact subset of a Hausdorff topological vector space, and let
us suppose that there exists Qi : G → 2Gi such that the pair (Pi, Qi) satisfies
the property T and the following assumptions are fulfilled:
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i) si /∈ Pi(s) and si ∈ Qi(s) for each s ∈ G;
ii) Qi and Pi have convex and closed values;
iii) P

s−i

i has compactly open lower sections in Gi for each s−i ∈ G−i.
Then, G has a unique maximal →∗reduction M. Further, for each i ∈ I,

Mi is non-empty, compact and Pi|M has compactly open lower sections.

Proof. Further, we will prove that G has a non-empty maximal reduction.
The proof of its uniqueness is a consequence of Corollary 3.

1) We first establish that if G → H is fast and Gi is compact for each
i ∈ I, then, Hi is compact and non-empty for each i ∈ I. For this purpose,

let us choose i ∈ I such that Hi 6= Gi. Then, y
G
�i x for some x, y ∈ Gi and

consequently, the set Hi is non-empty.
Furthermore, we will prove that Hi is compact. Let y ∈ Hi and let us

define Z(y) = CGP
−1
i (y). According to the assumption i), Z(y) 6= ∅. According

to iii), P
s−i

i has compactly open lower sections in Gi for each s−i ∈ G−i,
then, Pi has compactly open lower sections in G. Hence, Z(y) is closed in the
compact set G, and therefore, it is compact.

Let us define Zi(y) :=priZ(y). We have that Zi(y) is a non-empty and
closed set in Gi, with y ∈ Zi(y).

Now, we prove that Hi = ∩y∈HiZi(y). In order to show that Hi ⊆
∩y∈HiZi(y), we consider z ∈ Gi. If for every y ∈ Hi, z /∈ Zi(y), it fol-
lows that y ∈ Pi(z, s−i) for each s−i ∈ G−i, then z /∈ Hi and therefore,
CGi(∩y∈HiZi(y)) ⊂ CGiHi, which implies Hi ⊆ ∩y∈HiZi(y). Now, we want
to show that ∩y∈HiZi(y) ⊂ Hi, that is CGiHi ⊆ CGi(∩y∈HiZi(y)).

If z /∈ Hi, then there exists x ∈ Gi such that x ∈ Pi(z, s−i) for each
s−i ∈ G−i.

According to Remark 7, there exists x∗ ∈ Gi such that x∗ ∈ Pi(z, s−i)
for each s−i ∈ G−i. It follows that z /∈ Zi(x∗), therefore, z /∈ ∩y∈GiZi(y), and,
hence, CGiHi ⊆ CGi(∩y∈HiZi(y)). Since Hi = ∩y∈HiZi(y), Hi is closed in Gi
and therefore, it is compact.

2) Let Rt, t = 0, 1, ... denote the unique sequence of games of G such that
R0 = G and Rt → Rt+1 is fast for each t. Result 1) implies that Rt is compact
and non-empty for each t, so that, for each i ∈ I, Mi = ∩tRti is compact and
non-empty. According to iii), it follows that P−1i (y) is open in Mi. We still
have to show that M is a maximal →∗reduction of G.

Let’s consider i ∈ I and x ∈ Mi. We will prove that x is not dominated
by any y ∈ Mi. Let y ∈ Mi and let A = CG−iB, where B = {s−i ∈ G−i : y ∈
Pi(x, s−i)}. Then A = CG−i{s−i ∈ G−i : (x, s−i) ∈ P−1i (y)}.

If A ∩ Rt−i = ∅ for every t such that Rt 6= M, then y ∈ Pi(x, s−i) for

each s−i ∈ Rt−i, that is y
Rt

�i x , which contradicts x ∈Mi. Therefore, A ∩Rt−i
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is non-empty and compact for every t, such that Rt 6= M. This fact implies
A ∩M−i is non-empty and then, y /∈ Pi(x, s−i) for each s−i ∈ M−i, that is

y
M
�i x. �

Remark 7. As we have seen in Remark 5, Theorem 3 subsumes the com-
pact continuous payoff games and, therefore, it is indeed an extension of The-
orem 1 due to Dufwenberg and Stegeman [10].

Remark 8. Theorem 3 handles discontinuous payoff games as it can be
seen in Example 6.

5. OTHER CONDITIONS WHICH IMPLY THE UNIQUENESS
OF MAXIMAL REDUCTIONS

In this section, we will establish other versions of Theorem 2. Theorem 5
and Theorem 7 prove the uniqueness of the maximal (→∗) reduction of a game
G (if it exists) in the case the preference correspondences are Uθ−majorized
or Qθ-majorized, that is, if they have topological properties which generalize
upper semicontinuity or lower semicontinuity. The main tools for the proofs
are the maximal element theorem for qualitative games. The hypotheses of
these results are different from those of the ones presented above, so that the
new variants deserve to be stated.

5.1. U -MAJORIZED CORRESPONDENCES

We will begin by presenting the notions of generalized topological pro-
perties of the correspondences and the maximal element theorem which will be
used in the proof of the theorem established in the next subsection.

Let X, Y be topological spaces and let T : X → 2Y be a correspondence.
T is said to be upper semicontinuous if, for each x ∈ X and each open set V
in Y with T (x) ⊂ V , there exists an open neighborhood U of x in X such that
T (y) ⊂ V for each y ∈ U .

The notion of U -majorized correspondence is given below. It generalizes
the classical upper semicontinuous correspondences.

Definition 9 (Yuan and Tarafdar, [23]). Let X be a topological space
and Y be a non-empty subset of a topological vector space E, θ : X → E a
function and P : X → 2Y a correspondence.

1) P is of class Uθ (or U) if:
i) for each x ∈ X, θ(x) /∈ P (x) and
ii) P is upper semicontinuous with closed convex values in Y ;
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2) A correspondence Px : X → 2Y is a Uθ-majorant of P at x if there
exists an open neighborhood N(x) of x such that

i) for each z ∈ N(x), P (z) ⊂ Px(z) and θ(z) /∈ Px(z);
ii) Px is upper semicontinuous with closed convex values;

3) P is Uθ−majorized if for each x ∈ X with P (x) 6= ∅, there exists a
Uθ-majorant Px of P at x.

When we deal with the case X = Y, which is a non-empty and convex
subset of a topological vector space E and θ = IX , the identity map on X, we
write U in place of Uθ.

The following theorem is Ding’s result on the existence of maximal ele-
ments for U−majorized correspondences. It will be used in the next subsection
to prove Theorem 5, which states the uniqueness of maximal reductions for
qualitative games with U−majorized correspondences.

Theorem 4 (Ding, [9]). Let X be a non-empty subset of a Hausdorff
locally convex topological vector space and D a non-empty and compact subset
of X. Let P : X → 2D be a U−majorized correspondence. Then, there exists
x∗ ∈coD such that P (x∗) = ∅.

5.2. THE UNIQUENESS OF MAXIMAL REDUCTIONS
FOR GAMES WITH U -MAJORIZED CORRESPONDENCES

The main result of this subsection is Theorem 5. Its proof is based on
Ding’s Theorem, which gives conditions for the existence of the maximal ele-
ments for U−majorized correspondences. We notice that the upper semicon-
tinuity of the correspondences is widely used in many economic applications
which are modelled as games.

Theorem 5. Let I be a non-empty, countable set of players. Let G =
(Gi, Pi)i∈I be a qualitative game, G =

∏
i∈I Gi, where for each i ∈ I, Gi is a

non-empty compact subset of a Hausdorff topological vector space and let us
suppose that there exists Qi : G → 2Gi such that the pair (Pi, Qi) satisfies the
property T and the following assumptions are fulfilled:

i) si ∈ Qi(s) for each s ∈ G;
ii) Qi has convex and closed values;
iii) Pi(., s−i) is U−majorized on Gi for each s−i ∈ G−i.
Then,

a) If G →∗ H is a game reduction and if there exists y
H
�i x, for some

x, y ∈ Gi and i ∈ I, there exists x∗ ∈ Hi such that z
H
�i x∗

H
�i x for each

z ∈ Gi;
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b) a non-empty maximal (→∗) reduction of G is the unique maximal
(→∗) reduction of G.

Proof. a) Let Rt be the sequence of restrictions of G, t = 0, 1, 2..., such
that R0 = G, Rt → Rt+1 for each t ≥ 0 and Hi = ∩tRti for each i ∈ I.

Let i ∈ I be arbitrarily fixed. Assume that there exists x, y ∈ Gi such that

y
H
�i x. Let us define Zi = ∩s−i∈H−iQ(y, s−i). According to i), we have that

Zi 6= ∅. The set Zi is convex and closed, so it is compact. Since y
H
�i x, we have

that H−i 6= ∅. Let s∗−i ∈ H−i be fixed and Fi : Zi → 2Zi , Fi = (Pi∩Zi)|Zi×{s∗−i}.
According to Ding’s Theorem, which is applied for X = D = Gi and P = Fi,
there exists x∗ ∈ Zi such that Fi(x

∗) = ∅, and consequently, Pi(x
∗, s∗−i)∩Zi = ∅.

We have that x∗ ∈ Qi(y, s−i) for each s−i ∈ H−i. The relation y
H
�i x

implies that y ∈ Pi(x, s−i) for each s−i ∈ H−i and since the pair (Pi, Qi) has
the property T on

∏
k∈I Hk, it follows that x∗ ∈ Pi(x, s−i) for each s−i ∈ H−i.

If there exists z ∈ Gi such that z
H
�i x∗, that is, z ∈ Pi(x

∗, s−i) ⊂
Qi(x

∗, s−i) for each s−i ∈ H−i, then z ∈ Zi and z ∈ Pi(x
∗, s∗−i), which is a

contradiction. It remains that z
H
�i x∗

H
�i x for each z ∈ Gi.

Now, we claim that z ∈ Hi. Indeed, since for each t ∈ T, H−i ⊆ Rt−i and
∩s−i∈H−iP (x∗, s−i) = ∅, then, ∩s−i∈Rt

−i
P (x∗, s−i) ∩ Rti = ∅. We conclude that

x∗ ∈ Rti for each t ≥ 0 and this implies x∗ ∈ Hi. The claim is shown.
b) The proof is similar to the proof of Theorem 2, b). �

We obtain the following corollary for qualitative games having upper se-
micontinuous correspondences Pi, i ∈ I.

Corollary 4. Let I be a non-empty, countable set of players. Let G =
(Gi, Pi)i∈I be a qualitative game, G =

∏
i∈I Gi, where for each i ∈ I, Gi is a

non-empty and compact subset of a Hausdorff topological vector space and let
us suppose that there exists Qi : G → 2Gi such that the pair (Pi, Qi) satisfies
the property T and the following assumptions are fulfilled:

i) si ∈ Qi(s) and si /∈ Pi(s) for each s ∈ G;
ii) Qi has convex and closed values;
iii) Pi is upper semicontinuous, with closed and convex values in Gi.
Then,

a) If G →∗ H is a game reduction and if there exists y
H
�i x, for some

x, y ∈ Gi and i ∈ I, there exists x∗ ∈ Hi such that z
H
�i x∗

H
�i x for each

z ∈ Gi;
b) a non-empty maximal (→∗) reduction of G is the unique maximal

(→∗) reduction of G.
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The following example shows that, under the hypotheses of the above
corollary, the game G has a non-empty unique maximal (→∗) reduction.

Example 6. Let I = {1, 2}, G1 = G2 = [0, 2], and let the symmetric
functions ui : [0, 2]× [0, 2]→ R, i ∈ I, be defined in the following way:

u1(x, y) =

{
1
2 if x ∈ [0, 1] and y ∈ [0, 2];
x if x ∈ (1, 2] and y ∈ [0, 2]

and

u2(x, y) =

{
1
2 if x ∈ [0, 2] and y ∈ [0, 1];
y if x ∈ [0, 2] and y ∈ (1, 2].

We note that u1(x, ·) and u2(·, y) are not upper semicontinuous for each
x ∈ [0, 2], respectively for each y ∈ [0, 2].

Then,

P1(x, y) = {z ∈ [0, 2] : u1(z, y) > u1(x, y)} =

{
(1, 2], if (x, y) ∈ [0, 1]× [0, 2];
(x, 2], if (x, y) ∈ (1, 2]× [0, 2]

and

P2(x, y) = {z ∈ [0, 2] : u2(x, z) > u2(x, y)} =

{
(1, 2], if (x, y) ∈ [0, 2]× [0, 1];
(y, 2], if (x, y) ∈ [0, 2]× (1, 2].

P1(·, y) and P2(x, ·) are upper semicontinuous for each y ∈ [0, 2], respecti-
vely for each x ∈ [0, 2].

Let us set the correspondences Q1, Q2 : [0, 2]× [0, 2]→ 2[0,2] defined by

Q1(x, y) = {z ∈ [0, 2] : u1(z, y) ≥ u1(x, y)} =

{
[0, 2] if (x, y) ∈ [0, 1]× [0, 2];
[x, 2] if (x, y) ∈ (1, 2]× [0, 2]

and

Q2(x, y) = {z ∈ [0, 2] : u2(x, ) ≥ u2(x, y)} =

{
[0, 2] if (x, y) ∈ [0, 2]× [0, 1];
[y, 2] if (x, y) ∈ [0, 2]× (1, 2].

Note that Q1 and Q2 have convex and closed values; x ∈ Q1(x, y) and
y ∈ Q2(x, y) for each x, y ∈ [0, 2].

Now, we prove that, for each i ∈ {1, 2}, the pair (Pi, Qi) has the pro-
perty T.

Let i = 1 and (x, y) ∈ [0, 2]× [0, 2].

If x ∈ [0, 1), P1(x, y) ⊂ Q1(x, y) and if z ∈ P1(x, y) = (1, 2], then,
Q1(z, y) = [z, 2] ⊆ (1, 2] = P1(x, y).

If x ∈ (1, 2], P1(x, y) ⊂ Q1(x, y) and if z ∈ P1(x, y) = (x, 2], then,
Q1(z, y) = [z, 2] ⊆ (x, 2] = P1(x, y).

Therefore, for each (x, y) ∈ [0, 2] × [0, 2], P1(x, y) ⊂ Q1(x, y) and z ∈
P1(x, y) imply Q1(z, y) ⊂ P1(x, y), and then, the pair (P1, Q1) has the pro-
perty T.



48 Monica Patriche 18

We can show, similarly, that the pair (P2, Q2) has the property T.
All the assumptions of Corollary 4 are satisfied. By applying this result,

we can assert that there exists a unique non-empty maximal→∗reduction of G.
By eliminating [0, 1] for i ∈ {1, 2}, we obtain R1

1 = R1
2 = (1, 2].

P1(x, y) = (x, 2] if (x, y) ∈ (1, 2]× (1, 2] and
P2(x, y) = (x, 2] if (x, y) ∈ (1, 2]× (1, 2].

G→∗ R1 is a game reduction and there exists y
R1

�i x, for some x, y ∈ Gi

and i = 1, 2. There also exists x∗ = 2 ∈ R1
i such that z

R1

�i x∗
R1

�i x for each
z ∈ Gi.

We eliminate again (1, 2)× (1, 2), and we obtain R2
1 = R2

2 = {2}.
P1(x, y) = {2} if (x, y) = (2, 2) and
P2(x, y) = {2} if (x, y) = (2, 2).
H = R2, the non-empty maximal →∗reduction of G, is the unique maxi-

mal reduction of G.
The IESDS procedure is an order independent one.

5.3. Qθ-MAJORIZED CORRESPONDENCES

In this subsection, we will deal with the correspondences of class Qθ and
the Qθ-majorized correspondences, defined by Liu and Cai [13]. These types
of correspondences generalize the lower semicontinuous ones.

Let X, Y be topological spaces and let T : X → 2Y be a correspondence.
T is said to be lower semicontinuous if, for each x∈ X and each open set V
in Y with T (x) ∩ V 6= ∅, there exists an open neighborhood U of x in X such
that T (y) ∩ V 6= ∅ for each y ∈ U .

Now, we are presented the correspondences of class Qθ and the Qθ-
majorized correspondences.

Definition 10 (Liu and Cai, [13]). Let X be a topological space and let
Y be a non-empty subset of a vector space E, θ : X → E a function and
P : X → 2Y a correspondence.

1) P is of class Qθ (or Q) if:
i) for each x ∈ X, θ(x) /∈clP (x) and
ii) P is lower semicontinuous, with open and convex values in Y ;

2) A correspondence Px : X → 2Y is a Qθ-majorant of P at x, if there
exists an open neighborhood N(x) of x such that:

i) for each z ∈ N(x), P (z) ⊂ Px(z) and θ(z) /∈clPx(z);
ii) Px is lower semicontinuous, with open and convex values;

3) P is Qθ-majorized if for each x ∈ X with P (x) 6= ∅, there exists a
Qθ-majorant Px of P at x.
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The next result is also due to Liu and Cai and states the maximal ele-
ment existence for Qθ−majorized correspondences. It will be used in the next
subsection to prove Theorem 7, which states the uniqueness of the maximal
reductions for qualitative games with Qθ−majorized correspondences.

Theorem 6 (Liu and Cai, [13]). Let X be a convex paracompact subset
of a locally convex Hausdorff topological vector space E, let D be a non-empty
and compact metrizable subset of X. Let P : X → 2D be a Qθ−majorized
correspondence. Then, there exists x∗ ∈ X such that P (x∗) = ∅.

5.4. THE UNIQUENESS OF MAXIMAL REDUCTIONS
FOR GAMES WITH Qθ-MAJORIZED CORRESPONDENCES

Theorem 7 concerns the games with Qθ−majorized correspondences.

Theorem 7. Let I be a non-empty, countable set of players. Let G =
(Gi, Pi)i∈I be a qualitative game, G =

∏
i∈I Gi, where for each i ∈ I, Gi is a

non-empty and compact subset of a Hausdorff topological vector space and let
us suppose that there exists Qi : G → 2Gi such that the pair (Pi, Qi) satisfies
the property T and the following assumptions are fulfilled:

i) si ∈ Qi(s) for each s ∈ G;

ii) Qi has convex and closed values;

iii) Pi(., s−i) is Qθ−majorized on Gi for each s−i ∈ G−i.
Then,

a) If G→∗ H is a a game reduction and if there exists y
H
�i x, for some

x, y ∈ Gi and i ∈ I, there exists x∗ ∈ Hi such that z
H
�i x∗

H
�i x for each

z ∈ Gi;
b) a non-empty maximal →∗reduction of G is the unique maximal re-

duction of G.

Proof. a) Let Rt be the sequence of restrictions of G, t = 0, 1, 2..., such
that R0 = G, Rt → Rt+1 for each t ≥ 0 and Hi = ∩tRti for each i ∈ I.

Let i ∈ I be arbitrarily fixed. Assume that there exists x, y ∈ Gi such that

y
H
�i x. We apply Liu and Cai’s Theorem to the correspondence Fi : Zi → 2Zi ,

Fi = (Pi ∩ Zi)|Zi×{s∗−i}, where Zi = ∩s−i∈H−iQ(y, s−i) is non-empty, convex
and compact and s∗−i ∈ H−i is fixed. We obtain that there exists x∗ ∈ Zi such
that Pi(x

∗, s∗−i) = ∅. For the rest, the proof follows the same line as in the
proof of Theorem 2. �

Since a correspondence of class QIX is QIX -majorized (IX : X → X is
the identity map), we obtain the following corollary.
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Corollary 5. Let I be a non-empty, countable set of players. Let G =
(Gi, Pi)i∈I be a qualitative game, G =

∏
i∈I Gi, where for each i ∈ I, Gi is a

non-empty compact subset of a Hausdorff topological vector space and let us
suppose that there exists Qi : G → 2Gi such that the pair (Pi, Qi) satisfies the
property T and the following assumptions are fulfilled:

i) si ∈ Qi(s) and si /∈clPi(s) for each s ∈ G;
ii) Qi has convex and closed values;
iii) Pi is lower semicontinuous, with open and convex values in Gi.
Then,

a) If G →∗ H is a game reduction and if there exists y
H
�i x, for some

x, y ∈ Gi and i ∈ I, there exists x∗ ∈ Hi such that z
H
�i x∗

H
�i x for each

z ∈ Gi;
b) a non-empty maximal →∗reduction of G is the unique maximal re-

duction of G.

6. MAXIMAL ELEMENTS FOR QUALITATIVE GAMES

This subsection is meant to prove that the set of maximal elements is pre-
served in any game by the process of iterated elimination of strictly dominated
strategies.

Notation. Let G = (Gi, Pi)i∈I be a qualitative game and let H be a
restriction of G, H = (Hi, Pi|

∏
k∈I Hk

)i∈I , where Hi ⊆ Gi for each i ∈ I. We

will denote H ′ the qualitative game associated with H, that is H ′ = (Hi, (Pi ∩
Hi)|

∏
k∈I Hk

)i∈I .

Theorem 8. Let I be a non-empty, countable set of players. Let G =
(Gi, Pi)i∈I be a qualitative game and G =

∏
i∈I Gi. For each i ∈ I, let us

suppose that there exists Qi : G → 2Gi such that the pair (Pi, Qi) satisfies the
property T and si /∈ Pi(s) for each s ∈ G. Let us also assume that for each s ∈
G, there exists z∗ ∈ G such that z∗i ∈ Qi(zi, s−i) for all z ∈ G and i ∈ I. If H
is a (→∗)−reduction of G, then the games G and H ′ have the same maximal
elements.

Proof. Let Rt, t = 0, 1, ... denote the unique sequence of games of G such
that R0 = G, Rt ⇒ Rt+1 is fast for each t and Hi = ∩tRti for each i ∈ I. Let
us suppose that s∗ ∈ G is a maximal element in the game G, that is Pi(s

∗) = ∅
for each i ∈ I and then, s∗i is never eliminated in the sequence Rt for each
i ∈ I. It follows that s∗ ∈

∏
i∈I Hi, so that Pi|

∏
i∈I Hi

(s∗) = ∅ and, therefore,

Pi|
∏

i∈I Hi
(s∗) ∩Hi = ∅ and s is also a maximal element in H ′.

Conversely, let s∗ ∈
∏
i∈I Hi be a maximal element in H ′ (that is, Pi(s

∗)∩
Hi = ∅ for each i ∈ I) and consider z∗ as in the hypothesis: z∗ ∈ G such that,
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for each i ∈ I, z∗i ∈ Qi(z, s∗−i) for all z ∈ G. We will prove that Pi(z
∗
i , s
∗
−i) = ∅

for each i ∈ I. If, on the contrary, we assume that there exists i0 ∈ I and
s′i0 ∈ Pi0(z∗i0 , s

∗
−i0), according to property T , it follows that Qi0(s′i0 , s

∗
−i0) ⊂

Pi0(z∗i0 , s
∗
−i0). However, z∗i0 ∈ Qi0(zi0 , s

∗
−i0) for all z ∈ G, particularly z∗i0 ∈

Qi0(s′i0 , s
∗
−i0) and then, z∗i0 ∈ Pi0(z∗i0 , s

∗
−i0), which contradicts the hypothesis.

Since Pi(z
∗
i , s
∗
−i) = ∅, z∗i is never eliminated in the sequence Rt for each i ∈ I,

and z∗ ∈
∏
i∈I Hi. The last assertion implies z∗i ∈ Qi(zi, s∗−i)∩Hi for all z ∈ G

and i ∈ I. We will prove that Pi(s
∗) = ∅ for each i ∈ I. On the contrary,

let us assume that there exists i0 ∈ I and s′ ∈ G such that s′i0 ∈ Pi0(s∗).
Then, Property T implies Qi0(s′i0 , s

∗
−i0) ⊂ Pi0(s∗). However, we have that z∗i0 ∈

Qi0(s′i0 , s−i0) from the hypothesis, so that z∗i0 ∈ Pi0(s∗). In addition, z∗i0 ∈ Hi0

and, then, z∗i0 ∈ Pi0(s∗)∩Hi, which contradicts the fact that Pi0(s∗)∩Hi0 = ∅.
In conclusion, Pi(s

∗) must be the empty set for each i ∈ I and thus, s∗ is a
maximal element for the game G. �

Remark 9. Let us suppose that the preference correspondences are defined
by using the functions ui : G → R, i ∈ I. Then, for each i ∈ I, Pi(s) =
{x ∈ R : ui(x, s−i) > ui(s)} and si /∈ Pi(s) for each s ∈

∏
kGk. If Qi(s) =

{x ∈ R : ui(x, s−i) ≥ ui(s)}, then, the condition that there exists z∗ ∈ G
such that z∗i ∈ Qi(zi, s−i) for all z = (zi, s−i) ∈ G and i ∈ I is equivalent
with the following one: there exists z∗ ∈ G such that ui(z

∗
i , s−i) ≥ ui(zi, s−i)

for all z = (zi, s−i) ∈ G and i ∈ I. In this way, we obtain Theorem 2 in
Dufwenberg and Stegeman [10]. Therefore, we established conditions under
which the iterated elimination of the strictly dominated strategies preserves
the set of maximal elements of the qualitative games, which represents the set
of Nash equilibria in a particular case.

7. CONCLUDING REMARKS

We have reconsidered the problem of the existence of non-empty maximal
reductions. Our motivation has been to introduce the concept of rationaliza-
bility to a class of qualitative games that feature discontinuous preferences.
We have defined the key concepts which can lead to a unified framework that
encompasses a variety of models and an open problem is meant to rigorously
formalize the concepts in different classes of games, and to prove the existence
of the “rationalizable” results.

8. APPENDIX

We add a list with the main notations used in this paper, in order to
make the reading easier.
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LIST OF NOTATIONS

Correspondence (set valued map): T : X → 2Y .

Lower section of T : X → 2Y : T−1(y) := {x ∈ X : y ∈ T (x)}, y ∈ Y.
Strategic game: Γ = (Gi, ui)i∈I , where G :=

∏
i∈I Gi and ui : G→ R.

Qualitative game: G = (Gi, Pi)i∈I , where Pi : G→ 2Gi .

Preference correspondence: Pi : G→ 2Gi ,

Pi(s) = {x ∈ Gi : ui(x, s−i) > ui(s)} for each s ∈ G.
G−i :=

∏
j∈I\{i}Gj .

s−i = (s1, ..., si−1, si+1, ...) ∈ G−i, if s ∈ G.
Restriction of G : H = (Hi, Pi|

∏
k∈I Hk

)i∈I , where Hi ⊆ Gi.
The game associated to the restrictionH :H ′ = (Hi, (Pi∩Hi)|

∏
k∈I Hk

)i∈I .

y
H
�i x: x, y ∈ Gi, H−i 6= ∅ and y ∈ ∩s−i∈H−iPi(x, s−i).

K → H: for each i ∈ I and x ∈ Ki\Hi, there exists y ∈ Ki such that

y
K
�i x, (equivalently, for each i ∈ I, K−i 6= ∅ and ∩s−i∈K−iPi(x, s−i)∩Ki 6= ∅).

K → H is fast: for each i ∈ I, K−i 6= ∅ and ∩s−i∈K−iPi(x, s−i) ∩Ki 6= ∅
for some x ∈ Ki implies x /∈ Hi.

K →∗ H : there exists a sequence of restrictions Rt of H, t = 0, 1, 2...,
such that

R0 = K, Rt → Rt+1 fast for each t ≥ 0 and Hi = ∩tRti for
each i ∈ I.

K →∗ H is maximal: K →∗ H and H → H ′ only for H = H ′.
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