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In this paper, we introduce a graph associated to a graded module over a graded
ring and study the relationship between the algebraic properties of these modules
and their associated graphs. In particular, the modules whose associated graph
is complete, complete bipartite or star are studied and several characterizations
are given.
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1. INTRODUCTION

Unless otherwise stated, all rings are assumed to be associative rings and
any ring R has an identity 1 ∈ R. Consider a multiplicatively written group
G with identity element e ∈ G. A ring R is called G-graded, if there is a
family {Rg | g ∈ G} of additive subgroups Rg of R such that R =

⊕
g∈GRg

and RgRh ⊂ Rgh, for every g, h ∈ G. Throughout this paper R is a G-graded
ring for some fixed group G. A (left) G-graded R-module is a left R-module
M such that M =

⊕
g∈GMg where every Mg is an additive subgroup of M ,

and for every g ∈ G and h ∈ G we have RgMh ⊂Mgh. Throughout this paper
M is a G-graded R-module (see [9] for basic definitions).

For the last few decades several mathematicians studied graphs on various
algebraic structures (groups, rings, modules, ...). These interdisciplinary stu-
dies allow us to obtain characterizations and representations of special classes
of algebraic structures in terms of graphs and vice versa. Various constructi-
ons of graphs related to the algebraic structures are found in [1–4, 6, 8, 10].
In the present paper, we introduce a new undirected simple graph (without
loops and multiple edges) associated to a graded R-module M denoted by GM
and investigate the relationship between the algebraic properties of M and the
properties of the associated graph GM .
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Definition 1.1. We define the graph GM as follows: the vertices are non-
zero proper homogeneous submodules of M and two distinct vertices A and B
are adjacent if A+B = M .

In Lemma 2.1 and Theorem 2.2, we introduce graphical characterizations
for some classes of modules. More precisely, M is *sum-irreducible if and
only if the graph GM is empty (see Lemma 2.1), and M is a direct sum of two
homogeneous *simple modules if and only if GM is complete (see Theorem 2.2).

Finding a bound for the cardinal number of generators of a finitely ge-
nerated module is an interesting subject in commutative algebra (for example
see [12]). In Theorem 2.6, among other things, we use the properties of the
graph GM to obtain an upper bound for the number of generators of a given
G-graded finitely generated module M .

In Theorem 2.8, we use the clique number of GM as a criterion to find
the finiteness of M .

Moreover, some upper bounds for the cardinal number of the set of all
attached prime ideals of a *representable module M are introduced in Propo-
sition 2.11 and Corollary 2.13.

In Theorem 2.14, we characterize the G-graded R-modules M whose (ja-
cobson) radical is zero, by means of a property of GM . More precisely, the
radical of M is zero if and only if GM is connected.

In Section 3, we will show that if we ignore the isolated vertices of GM ,
then it always has only one connected component, namely G′M . We show
that some properties of this subgraph have some algebraic consequences. In
Theorem 3.4, we obtain that if M is G-graded finitely generated, then M has
exactly two homogeneous maximal submodules if and only if G′M is a complete
bipartite graph.

Again, we find a criterion for the finiteness of M according to a property
of G′M . Indeed, if G′M is a star graph, then M is generated by two homogenous
elements (Theorem 3.8).

Finally, Section 4 is devoted to some examples.

2. THE ASSOCIATED GRAPH

Recall that a nonzero G-graded module is called *simple if it has no
nonzero proper homogeneous submodule (see [9, p. 46]). If M = 0 or M is
a *simple G-graded R-module, then the set of all vertices of GM is empty.
So in the sequel we suppose, unless stated otherwise, that all R-modules are
nonzero and non-*simple. A homogeneous submodule P of a G-graded R-
module M is said to be a *maximal submodule of M , if M/P is a *simple
module (see [9, p. 46]). We denote the set of all *maximal submodules of M
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by ∗Max(M). We remark that a submodule of a G-graded R-module M may
be a *maximal submodule of M and yet not be a maximal submodule of M .
For example, if R = k[x, x−1] is the graded ring of Laurent polynomials with
standard grading, where k is a field, then the zero submodule of the graded
module RR (as an R-module) is a *maximal submodule of RR and yet zero is
not a maximal submodule of RR.

A homogeneous submodule S of a G-graded R-module M is said to be
*small in M if for every homogeneous submodule L of M , S +L = M implies
that L = M . By the next lemma we can explain *small submodules of a
given module according to its associated graph. Recall that a G-graded R-
module M is said to be *sum-irreducible precisely when it is nonzero and
all proper homogeneous submodules of M are *small in M (see [11]). The
next lemma gives a characterization of *sum-irreducible modules from their
associated graphs. The proof is straightforward and is omitted.

Lemma 2.1.

(1) A nonzero proper homogeneous submodule S of M is *small if and only
if S is an isolated vertex in GM .

(2) M is *sum-irreducible if and only if the graph GM is empty. (A graph G
is said to be empty (or null) if no two vertices of G are adjacent.)

A G-graded module whose lattice of homogeneous submodules is a chain,
certainly is *sum-irreducible. Thus, for each positive integer t, the S :=
k[x1, . . . , xn]-module L = S/(x1, . . . , xn)t is *sum-irreducible, where k is an
algebraically closed field (here, we assume that S is a positively graded ring,
with standard grading).

Lemma 2.1(2) characterized the modules whose associated graph has no
edges. Now, we are going to characterize the modules whose associated graph
has maximum number of edges. If in a graph, every two distinct vertices are
joined by an edge, then the graph is said to be complete. A complete graph
with p vertices is denoted by Kp. If A is a set (resp. a graph), then |A| denotes
the cardinal number (resp. the number of vertices) of A.

Theorem 2.2. Let |GM | ≥ 2. Then the following statements are equiva-
lent:

(1) GM is complete.

(2) There exists a vertex in GM which is adjacent to every other vertex.

(3) M is a direct sum of two homogeneous *simple modules.

Proof. (1)⇒ (2): This is trivial.
(2) ⇒ (3): Let N be a vertex in GM which is adjacent to every other

vertex. Clearly, N is both a maximal and a minimal element in the set of all
nonzero proper homogeneous submodules of M . Let L 6= N be a vertex of GM .
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So N + L = M . If N ∩ L 6= 0, then N ∩ L is a nonzero proper homogeneous
submodule of M . So, N∩L = N by minimality of N . This implies that N ⊆ L,
which is a contradiction with the maximality of N . Therefore, N ∩ L = 0 and
N ⊕ L = M . Since M/N ∼= L, it is clear by the maximality of N that L is
*simple, as desired.

(3) ⇒ (1): Let M = S1 ⊕ S2 where S1 and S2 are *simple submodules
of M . Let N and L be two distinct vertices of GM . Since N � M , either
N ∩ S1 = 0 or N ∩ S2 = 0. Without loss of generality, we may assume that
N ∩S1 = 0. We claim that M = S1⊕N . To do this, it is enough to prove that
S2 ⊆ S1 +N . We have 0 6= N = N ∩ (S1 + S2). Thus, there are homogeneous
elements s1 ∈ S1, s2 ∈ S2 and 0 6= n ∈ N such that s1 +s2 = n ∈ N ∩(S1 +S2).
It is easy to see that s2 6= 0. Hence, s2 = n − s1 ∈ S2 ∩ (S1 + N) and
so S2 ∩ (S1 + N) is a nonzero homogeneous submodule of S2. Therefore,
S2 ∩ (S1 + N) = S2. It follows that S2 ⊆ S1 + N and so M = S1 ⊕ N .
Therefore, M/N ∼= S1. Similarly, if N ∩ S2 = 0, then M = S2 ⊕ N and
M/N ∼= S2. In any case, this yields that N is a *maximal submodule of M .
Similarly, M = S1 ⊕ L or M = S2 ⊕ L, which implies that L is a *maximal
submodule of M . So, N + L = M . This completes the proof. �

Remark 2.3. Consider M = Z4 as a graded Z4-module with trivial gra-
ding. In this case, |GZ4 | = 1 and GZ4 = K1 is a complete graph, while M
cannot be presented as a direct sum of two nonzero *simple Z4-module. This
shows that the condition |GM | ≥ 2 in the Theorem 2.2 is necessary and cannot
be omitted.

An m-partite graph is a graph whose vertex set can be partitioned into m
subsets so that no two vertices in the same subset are adjacent. The subsets
are also called the partite sets of the partition. In an m-partite graph, if each
vertex in a partite set is adjacent to all the vertices in every other partite set,
then the graph is called a complete m-partite graph. A complete bipartite (i.e.,
complete 2-partite) graph with m vertices in one partition and n vertices in
the other is denoted by Km,n. Recall that the graph K1,n is called a star graph
(see [7]).

Corollary 2.4. If |GM | ≥ 3, then GM is not a star graph.

Proof. Use Theorem 2.2. �

Example 2.5. If R = M = Z6 with trivial grading, then GM is a complete
graph by Theorem 2.2, because Z6

∼= Z2 ⊕ Z3 where Z2 and Z3 are ∗simple
modules. Indeed, GM = {2M, 3M} = K2. This shows that |GM | ≥ 3 is a
necessary condition in Corollary 2.4.

A k-coloring of a graph Γ is an assignment of k colors (elements of some
set) to the vertices of Γ in such a way that adjacent vertices have received
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different colors. If Γ has a k-coloring, then Γ is said to be k-colorable. The
chromatic number of Γ, denoted by χ(Γ), is the smallest number k for which
Γ is k-colorable. A clique of a graph Γ is an induced subgraph of Γ, which is
complete. The clique number denoted by ω(Γ) is the number of vertices in the
largest clique in Γ. The girth of a graph Γ denoted by g(Γ) is the length of
the shortest cycle in Γ. A cycle of length 3 is known as a triangle (see [7]).
In the next theorem, we explore these three concepts for the associated graph
of a graded finitely generated module. Finding a bound for the number of
generators of a finitely generated module is an interesting subject in algebra
(for example see [12]). We use the properties of the graph GM to obtain a
bound for the number of generators of a given G-graded finitely generated
module M .

Theorem 2.6. Let M be a G-graded finitely generated R-module. Then
the following holds:

(1) ω(GM ) = χ(GM ) = |∗Max(M)|.
(2) Every minimal generating set of M has at most ω(GM ) elements.

(3) GM has no triangle if and only if M has at most two *maximal submo-
dules.

(4) Always g(GM ) = 3 except when |∗Max(M)| < 3.

Proof. (1) Let S be an arbitrary complete subgraph of GM . For any
vertex N of S choose a *maximal submodule PN of M with N ⊆ PN . For any
distinct vertices N and L of S, since N + L = M , we have PN + PL = M and
so PN 6= PL. Thus, the subgraph of GM induced by {PN |N is a vertex of S}
is a complete graph where its cardinality is exactly the cardinality of S. Since
|S| ≤ |∗Max(M)|, so ω(GM ) ≤ |∗Max(M)|. On the other hand, it is clear that
the subgraph of GM generated by elements of ∗Max(M) is a complete subgraph
of GM . Therefore, ω(GM ) ≥ |∗Max(M)|.

To find the chromatic number of GM , let {Pλ |λ ∈ Λ} be the set of all
*maximal submodules ofM and suppose that≺ is a well ordering on Λ. For any
λ ∈ Λ, let Gλ(M) = {N ⊆ M |N is homogeneous and 0 6= N ⊆ Pλ and N 6∈⋃
λ′≺λGλ′(M)}. Then for each λ ∈ Λ, Pλ ∈ Gλ(M) and so Gλ(M) 6= ∅. Also,
{Gλ(M)|λ ∈ Λ} forms a partition for the set of all vertices of GM . Since
for every λ ∈ Λ, any two vertices in Gλ(M) are not adjacent, all vertices in
Gλ(M) can have the same color. However, the Pλ’s must have different colors.
Therefore, the chromatic number of GM is equal to |Λ|.

(2) Let X = {x1, . . . , xn} be a minimal generating set of M . We may
assume that X consists of homogeneous elements. Then Dj =

∑n
j 6=i=1Rxi is

a vertex of GM and the subgraph induced by {D1, . . . , Dn} is complete. So,
n ≤ ω(GM ).

(3) Suppose that GM has no triangle and Q1, Q2, Q3 are three distinct
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*maximal submodules of M . Then it is easy to see that these are vertices of
a triangle in GM , a contradiction. Conversely, if |∗Max(M)| = 1, then GM
is empty and there is nothing to prove. So, let P1 and P2 be the only two
*maximal submodules of M and let N1, N2 and N3 be three arbitrary vertices
of GM . Since M is a G-graded finitely generated R-module, any homogeneous
proper submodule of M is contained in a *maximal submodule of M by Zorn’s
lemma. Therefore, at least two of these three vertices are contained in one of
P1 or P2, and so they are not adjacent. Therefore, there is no triangle in GM .

(4) If Q1, Q2, Q3 are three distinct *maximal submodules of M , then
these are the vertices of a triangle in GM . So, g(GM ) = 3. Note that when
M has at most two *maximal submodules, GM has no triangle by (2). Hence,
g(GM ) 6= 3. �

Example 2.7.

(1) Consider the graded ring Z and the graded finitely generated Z-module
L = Z

4Z⊕
Z

25Z with trivial grading. This module has exactly two *maximal
submodules and GM has a cycle of length four:

2L 25L

5L 4L

By Theorem 2.6(3), GL has no triangle. Therefore, g(GL) = 4.

(2) We show that the finitely generatedness of the R-module M in Theo-
rem 2.6(3) is not a necessary condition. Consider the graded Z-module
H = Z ⊕ Q with trivial grading. It is easy to see that H is not finitely
generated. But we have the below triangle in GH ;

2Z⊕Q

5Z⊕Q 3Z⊕Q

Therefore, g(GM ) = 3.

Now, we are going to show that if GM is a finite graph, then M is finitely
generated.

Theorem 2.8. If ω(GM ) <∞, then M is finitely generated and ω(GM ) =
|∗Max(M)|.

Proof. Suppose that M is not finitely generated and M =
∑

λ∈ΛRgλ,
where gλ is a homogeneous element of M for each λ ∈ Λ. So, Λ is an infinite
set. We may assume that Λ is minimal in the sense that if Λ′ is a proper subset
of Λ, then M 6=

∑
λ∈Λ′ Rgλ. For each α ∈ Λ, write Nα =

∑
λ∈Λ\{α}Rgλ. Then
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for any two distinct elements α, β ∈ Λ we have Nα + Nβ = M . Therefore,
S = {Nα |α ∈ Λ} is an infinite clique of GM , a contradiction.

The last assertion follows from Theorem 2.6(1). �

Corollary 2.9. As a direct consequence of Theorem 2.8, we infer that
if GM is a finite graph, then M is finitely generated.

We recall that a G-graded R-module M is said to be left Noetherian if
M satisfies the ascending chain condition for graded left R-submodules.

Corollary 2.10. Let R be a commutative G-graded Noetherian ring and
ω(GM ) <∞. Then M is a G-graded Noetherian R-module.

We recall some definitions from [11]. Let R be a commutative G-graded
ring. Then the G-graded R-module M is said to be graded-secondary if M 6= 0
and, for each homogeneous element r of R, the endomorphism of M given by
multiplication by r is either surjective or nilpotent. If M is graded-secondary,
then

√
(0 :R M) is a homogeneous prime ideal of R, p; we say that M is p-

graded-secondary. A G-graded R-module M is said to be *representable if it
has a graded-secondary representation, i.e. M may be expressed as a finite
sum M = S1 + · · · + Sr where each St is a graded-secondary homogeneous
submodule of M . It is, furthermore, said to be a minimal graded-secondary
representation for M if, in addition, the r prime ideals

√
(0 :R Si) (1 ≤ i ≤ r)

are all different and, for each j = 1, ..., r, M 6=
∑r

j 6=i=1 Si. A graded-secondary
representation for M may be modified to a minimal one. The prime ideals√

(0 :R Si) (1 ≤ i ≤ r) in the minimal graded-secondary representation of M
are called attached prime ideals of M . The set of all attached prime ideals
of M is denoted by AttR(M) (for more details see [11]). For the class of
*representable modules we can find a lower bound for the clique number.

Proposition 2.11. Let R be a commutative G-graded ring and let M be
a *representable R-module. Then |AttR(M)| ≤ ω(GM ).

Proof. Suppose M =
∑n

i=1 Si is a minimal graded-secondary representa-
tion of M . If we write Nj =

∑n
j 6=i=1 Si, then it is easy to see that {Nj | 1 ≤

j ≤ n} induces a complete subgraph of GM . This completes the proof. �

Corollary 2.12. Let R be a commutative G-graded ring and let M be
a nonzero R-module such that GM is empty. Then M is *representable if and
only if it is graded-secondary.

Proof. A graded-secondary module is always *representable. So, we as-
sume that M is *representable. Then by assumption and Proposition 2.11,
|AttR(M)| ≤ ω(GM ) = 1. This completes the proof. �
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Corollary 2.13. Let R be a commutative G-graded ring and let M be
nonzero G-graded finitely generated R-module and *representable. Then

|AttR(M)| ≤ |∗Max(M)|.

Proof. Use Proposition 2.11 and Theorem 2.6. �

We define the *radical of M denoted by ∗Rad(M) to be the intersection
of all *maximal submodules of M . If M has no *maximal submodules, we
set ∗Rad(M) = M (see [9, p. 52]). For a G-graded R-module M we have
∗Rad(M) =

∑
N is *small in M N.

Recall that a graph Γ is connected if there is a path between every pair
of distinct vertices and disconnected otherwise. The distance between two
vertices u and v is the length of a shortest path joining them, and is denoted
by d(u, v). If there is no path joining u and v, then we define d(u, v) = ∞.
For a connected graph Γ, we define the diameter of Γ denoted by diam Γ to be
the supremum of the distances between vertices. In the next theorem, again
we find a relationship between the algebraic properties of M and its associated
graph GM .

By Theorem 2.2 and Lemma 2.1, if |GM | ≥ 2 and GM is complete, then M
has no nonzero proper homogeneous *small submodules, whence ∗Rad(M) = 0.
Indeed, this is a special case of the next theorem, because every complete graph
is connected.

Theorem 2.14. Let |GM | ≥ 2. Then the following statements are equi-
valent:

(1) GM is connected.

(2) ∗Rad(M) = 0.

If these conditions are satisfied, then diamGM ≤ 3.

Proof. Suppose that ∗Rad(M) = 0. Then |∗Max(M)| ≥ 2. Let N and L
be two distinct elements of GM . If N and L are *maximal, then N and L are
adjacent. Otherwise, since ∗Rad(M) = 0, there are *maximal submodules P1

and P2 of M such that N 6⊆ P1 and L 6⊆ P2. If P1 = P2, then d(N,L) = 2 and
if P1 6= P2, then d(N,L) = 3. So always there is a path from N to L in GM .

Conversely, suppose that GM is connected and ∗Rad(M) 6= 0. If ∗Rad(M)
= M , then every vertex of GM is *small in M and so is isolated in GM , by
Lemma 2.1. If ∗Rad(M) 6= M , then for each nonzero homogeneous element
x ∈ ∗Rad(M), the proper homogeneous submodule Rx of M is *small and
therefore, is an isolated vertex of GM . Both of these cases contradict the
connectedness of GM .

The last assertion follows from the first part of the proof. �
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Suppose that G = Z and L =
⊕

n∈Z Ln is a *simple R-module. Then
it is easy to see that L is a semisimple R0-module (see [5, Corollary 9.1.18.]).
Therefore, by Theorem 2.14, GLR0

is connected.

Example 2.15. ConsiderR=M=Z4 with trivial grading. Then, ∗Max(M)
= {(2̄)}. Therefore, ∗Rad(M) = (2̄) 6= 0. But GM = K1 is connected. This
shows that the condition |GM | ≥ 2 in Theorem 2.14 is necessary and cannot
be omitted.

A non-isolated vertex N ∈ GM is called reduced if there exists a vertex
L ∈ GM adjacent to N and no proper submodule of N is adjacent to L.

Proposition 2.16. Let N be a homogeneous submodule of M .

(1) If M is finitely generated and N is a reduced vertex of GM , then N is
finitely generated.

(2) If N is finitely generated and degGM
(N) 6= 0, then there exists L ∈ GM

such that M/L is a G-graded finitely generated R-module.

Proof. (1) Let N =
∑

λ∈ΛRxλ, where xλ is a homogeneous element of
N for each λ ∈ Λ. By assumption, there is a vertex L ∈ GM such that
L+

∑
λ∈ΛRxλ = M . Since M is finitely generated, there is a finite subset

Λ′ ⊆ Λ such that L+
∑

λ∈Λ′ Rxλ = M . Since N is a reduced vertex and∑
λ∈Λ′ Rxλ ⊆ N , we infer that N =

∑
λ∈Λ′ Rxλ. Thus, N is finitely

generated.

(2) Since degGM
(N) 6= 0, there is a homogeneous submodule L of M such

that M = N + L. By assumption, there are elements m1, . . . ,mt ∈ N
such that M = (

∑t
i=1Rmi)+L. Therefore, M/L =

∑t
i=1R(mi+L). �

3. ON THE CONNECTED COMPONENT

In this section, we will show that if we ignore the isolated vertices of GM ,
then it always has only one connected component, namely G′M . So, in a sense,
G′M is the main part of the graph GM . We would like to find the relationship
between the algebraic structure of M and the properties of G′M .

Remark 3.1. Let N be a nonzero proper homogeneous submodule of M .
It follows from Lemma 2.1 that if N is an isolated vertex in GM , then N ⊆
∗Rad(M). Assume that ∗Max(M) 6= ∅. Put Λ := {N ∈ GM | N * ∗Rad(M)}.
We denote the subgraph induced by the set Λ by G′M . Note that if GM 6= ∅,
then G′M = GM if and only if ∗Rad(M) = 0.

Lemma 3.2. Let |G′M | ≥ 1. Then the graph G′M is connected and
diamG′M ≤ 3.
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Proof. In the case |G′M | < 2 there is nothing to prove. So, we may assume
that |G′M | ≥ 2. Let N and L be two distinct elements of G′M . By assumption,
there are *maximal submodules P1 and P2 of M such that N 6⊆ P1 and L 6⊆ P2.
Either P1 = P2 or P1 6= P2. In either case, we have a path from N to L in G′M .
Also, we infer that diamG′M ≤ 3. �

Example 3.3. Consider S=Z2×Z4 with trivial grading. Then ∗Rad(SS) =
(0)× 2Z4 and G′SS

= {(0)× Z4,Z2 × (0),Z2 × 2Z4}. We have

Z2 × 2Z4 (0)× Z4 Z2 × (0).

Therefore, diamG′SS
= 2.

Theorem 3.4. Let M be a G-graded finitely generated R-module. Then
the following statements are equivalent:

(1) G′M is a complete bipartite graph.

(2) |∗Max(M)| = 2.

Proof. (1) ⇒ (2). Suppose that G′M is a complete bipartite graph with
two parts V1 and V2. Since M is a G-graded finitely generated R-module,
|∗Max(M)| ≥ 2. Suppose that |∗Max(M)| > 2. Then by the Pigeon Hole
Principle, two of the *maximal submodules of M should belong to one of the
Vi’s, a contradiction. Therefore, |∗Max(M)| = 2.

(2) ⇒ (1). Suppose that ∗Max(M) = {P1, P2}. Since M is a G-graded
finitely generated R-module, every proper homogeneous submodule of M is
contained in P1 or P2. Set V1 = {N ∈ G′M |N ⊆ P1} and V2 = {N ∈ G′M |N ⊆
P2}. Clearly, V1∩V2 = ∅, G′M = V1∪V2 and the elements of Vi are not adjacent.
Now, suppose that L ∈ V1 and N ∈ V2. Hence, N + L is a homogeneous
submodule of M such that N + L * ∗Rad(M). Since N + L 6⊆ P1 and
N + L 6⊆ P2 and M is finitely generated, we must have N + L = M . This
implies that G′M is a complete bipartite graph. �

The next example shows that for any two positive integers n and m, there
is a G-graded R-module M such that G′M = Kn,m.

Example 3.5. Consider S = (F [x]/(xn))⊕(F [y]/(ym)) with standard gra-
ding, where F is a field. Then ∗Rad(SS) = (x̄)× (ȳ) and so G′SS

= Kn,m.

Proposition 3.6. Let M be a G-graded finitely generated R-module and
n > 1. If |∗Max(M)| = n <∞, then G′M is n-partite.

Proof. Let ∗Max(M) = {P1, . . . , Pn} and set Ai = {N ∈ G′M |N ⊆ Pi}.
Suppose that V1 = A1 and Vi = Ai \

⋃i−1
j=1Aj for each i ≥ 2. Clearly, for each

i, Pi ∈ Vi and so Vi 6= ∅. Since M is finitely generated, G′M = V1 ∪ . . . ∪ Vn.
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And by construction, Vi ∩ Vj = ∅, for i 6= j. Now, let L,N ∈ Vi for some i. If
L and N are adjacent, then M = L+N ⊆ Pi, a contradiction. �

Example 3.7. Suppose that S = Z and consider the S-module M = Z60

with trivial grading. Then |∗Max(M)| = 3 and therefore, G′M is 3-partite, by
Proposition 3.6.

According to the Corollary 2.4, if M is a G-graded R-module with |GM | ≥
3, then GM is not a star graph. But, it is possible for G′M to be a star graph.
Now, we are going to obtain some algebraic properties of M when G′M is a star
graph.

Theorem 3.8. If G′M is a star graph, then |∗Max(M)| = 2 and M is
generated by two homogenous elements and so is finitely generated.

Proof. Since G′M is a star graph, |∗Max(M)| < 3, by Theorem 2.6(3), and
there exists a vertex P ∈ G′M such that P is adjacent to any other vertex of
G′M . We claim that P is a *maximal submodule of M . Let N be a proper
homogenous submodule of M such that P ⊆ N . Then P + N 6= M . So,
N ⊆ ∗Rad(M) ⊆ P . Hence, N ⊆ P and so P = N .

If |∗Max(M)| = 1, then ∗Rad(M) = P and so P /∈ G′M , a contradiction.
Therefore, |∗Max(M)| = 2.

Suppose that ∗Max(M) = {P,Q}. We claim that any proper homogenous
submodule of M is contained in a *maximal submodule of M . To do this, let
N be a proper homogenous submodule of M . If N ⊆ ∗Rad(M), then we are
done. Otherwise, N ∈ G′M and so P + N = M , because G′M is a star graph.
Thus, N * P . If N * Q, then N + Q = M . Hence, N − Q − P − N is a
cycle in G′M , which is impossible. Therefore, N ⊆ Q. Now, we show that M
is generated by two homogenous elements. Since P 6= Q, and they are both
*maximal, there exist two homogenous elements x ∈ P \ Q and y ∈ Q \ P .
So, 0 6= Rx * ∗Rad(M) and 0 6= Ry * ∗Rad(M). It is clear that Rx 6= M
and Ry 6= M . Hence, Rx and Ry are two vertices of G′M . Now, if Rx 6= P ,
since G′M is a star graph, Rx + P = M . But Rx + P = P 6= M , which is a
contradiction. Therefore, Rx = P . Consequently, Rx+Ry = P +Ry = M , as
desired. �

Corollary 3.9. If G′M is a star graph and ∗Rad(M) = 0, then |GM | =
|G′M | = 2.

Proof. Since ∗Rad(M) = 0, by definition, we have GM = G′M . By Corol-
lary 2.4, |GM | < 3. On the other hand, by Theorem 3.8, |∗Max(M)| = 2 and
so |GM | ≥ 2. Therefore, |GM | = |G′M | = 2. �

Proposition 3.10. If M has an infinite decreasing chain of reduced ver-
tices of G′M , then ω(G′M ) =∞.
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Proof. Let N1 % N2 % · · · % Ni % · · · be an infinite decreasing chain of
reduced vertices of G′M . By assumption, for each i ∈ N, there is a vertex Li in
G′M adjacent to Ni and no proper submodules of Ni is adjacent to Li. Since
Ni+1 $ Ni and Ni is reduced, Li + Ni+1 6= M . Hence, Hi := Li + Ni+1 is a
vertex of G′M , for each i ∈ N. We claim that {Hi | i ∈ N} is an infinite clique.
Let i 6= j ∈ N. Suppose that i ≥ j + 1. Then

Hi +Hj = Ni+1 + Lj + (Li +Nj+1) = Ni+1 + Lj +M = M.

Similarly, Hi +Hj = M when i < j. The fact that Hi +Hj = M when i 6= j,
also proves that Hi 6= Hj for i 6= j. This completes the proof. �

4. SOME EXAMPLES

Suppose that a graph Γ is given. Is there a G-graded R-module M such
that GM is isomorphic to Γ? If there is, what can we say about M? For
example, consider the following graphs:

• • • •

• • • • • •
Graph Γ1 Graph Γ2 Graph Γ3

• • • • • • •

• • • • • • •

• • • • •
Graph Γ4 Graph Γ5 Graph Γ6

Now, we state the following question:

Question 4.1. If there exists an R-module βi such that Gβi is isomorphic
to Γi, for each i, then what can we say about βi?

In this section, we collect our information from previous sections to pro-
vide a response to Question 4.1.

Graph Γ1: We consider the graph Γ1 and relabel it as follows:

N1•

N2• N3•
Graph Γ1
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If there exists a G-graded R-module M such that GM is isomorphic to
Γ1, then the following facts hold:

• M is finitely generated, by Theorem 2.8.

• Every minimal generating set of M has at most 2 elements, by Theo-
rem 2.6(2).

• M is not *sum-irreducible, by Lemma 2.1.

• M is not a direct sum of two *simple submodules, by Theorem 2.2.

• Theorem 2.6(3) gives us that M has at most two *maximal submodules.

• ∗Rad(M) = N3, by Lemma 2.1(1).

• N1 and N2 are reduced and so are finitely generated, by Proposition 2.16.

Graph Γ2: We relabel the graph Γ2 as follows:

N1•

N2• N3•
Graph Γ2

If there exists a graded R-module M such that GM is isomorphic to Γ2,
then the following facts hold:

• M is finitely generated, by Theorem 2.8.

• Every minimal generating set of M has at most 3 elements, by Theo-
rem 2.6(2).

• M is not *sum-irreducible, by Lemma 2.1.

• N1, N2 and N3 are finitely generated, by Proposition 2.16.

• |∗Max(M)| = 3, by Theorem 2.6(1).

• M is direct sum of two *simple submodules, by Theorem 2.2. Thus,
∗Rad(M) = 0.

Graph Γ3: If there exists a graded R-module M such that GM is isomor-
phic to Γ3, then it is finitely generated and *sum-irreducible, by Theorem 2.8
and Lemma 2.1. Hence, M is cyclic. For example, if H := S/(x5), where
S = C[x] with standard grading, then GHS

is isomorphic to Γ3.

Graph Γ4: We claim that there is no graded R-module M such that GM
is isomorphic to Γ4. Contrary, suppose that there is a graded R-module M
such that GM is isomorphic to Γ4. Since GM has no isolated vertices, we have
GM = G′M . Therefore, by Lemma 3.2, GM must be a connected graph, which
is not true.
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Graph Γ5: Suppose that there is a graded R-module M such that GM
is isomorphic to Γ5. Since Γ5 is connected, it follows from Theorem 2.14 that
diamGM ≤ 3, a contradiction. Therefore, there is no graded R-module M
such that GM is isomorphic to Γ5.

Graph Γ6: By Example 3.5, there exists a graded R-module M such
that G′M is isomorphic to Γ6. Every such module M is finitely generated, by
Theorem 2.8. Moreover, since G′M is a complete bipartite graph, |∗Max(M)| =
2, by Theorem 3.4. Also, every minimal generating set of M has at most 2
elements, by Theorem 2.6(2).
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[9] C. Nǎstǎsescu and F. Van Oystaeyen, Methods of graded rings. Lecture Notes in Math.
1836, Springer, Berlin, 2004.

[10] P.K. Sharma and S.M. Bhatwadekar, A note on graphical representation of rings. J.
Algebra 176 (1995), 124–127.

[11] R.Y. Sharp, Asymptotic behaviour of certain sets of attached prime ideals. J. Lond.
Math. Soc. (2) 34 (1986), 212–218.

[12] R. Swan, The number of generators of a module. Math. Z. 102 (1967), 318–322.

Received 27 June 2015 Arak University of Technology,
Department of Basic Sciences,

P.O. Box 38135-1177,
Arak, Iran

Dhmath@arakut.ac.ir
Lelekaami@gmail.com

Islamic Azad University,
Young Researchers and Elite Club,

Arak Branch,
Arak, Iran

Hrsmath@gmail.com
roshan@arakut.ac.ir


