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The main purpose of this paper is using the analytic methods and a relation
between the two-term cubic exponential sums and general Kloosterman sums
to study the computational problem of one kind fourth power mean of two-
term exponential sums, and give an exact computational formula for it. As an
application of our result, we proved an interesting conclusion for the number of
zeros of diagonal cubic forms.
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1. INTRODUCTION

Let q ≥ 3 be a positive integer. For any integers m and n, the two-term
exponential sum C(m,n, k; q) and general Kloosterman sums K(m,n; q) are
defined as follows:

C(m,n, k; q) =

q∑
a=1

e

(
mak + na

q

)
,

and

K(m,n; q) =

q∑′

a=1

e

(
ma+ na

q

)
,

where

q∑′

a=1

denotes the summation over all 1 ≤ a ≤ q such that (a, q) = 1,

e(y) = e2πiy, and a denotes the multiplicative inverse of a mod q, that is,
a · a ≡ 1 mod q.

Many authors have studied the various properties of C(m,n, k; q) and
K(m,n; q), and obtained a series of results in [2, 3, 5–11] and [13–17]. For
example, T. Cochrane and Z. Zheng [6] show for the general sum that

|C(m,n, k; q)| ≤ kω(q)q
1
2 ,

where ω(q) denotes the number of all distinct prime divisors of q.
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B.J. Birch [2] proved that for 1 ≤ R ≤ 4, one has the identities

(1)

p−1∑
a=0

p−1∑
b=0

∣∣∣∣∣
p−1∑
x=0

e

(
ax3 + bx

p

)∣∣∣∣∣
2R

= p2R +
(2R− 1)!(p− 1)

(R− 1)!(R+ 1)!
pR(2p−R+ 1).

W. Zhang [15], J. Li and Y. Liu [13] proved the identity

(2)

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=1

χ(a)e

(
ma+ na

p

)∣∣∣∣∣
4

=


2p3 − 3p2 − 3p− 1, if χ be the principal character mod p;
3p3 − 8p2, if χ be the Legendre mod p;
p2(2p− 7), if χ be a non-real character mod p,

where (n, p) = 1.
M. Zhu and D. Han [17] used analytic methods to prove the identity

p∑
m=1

∣∣∣∣∣
p−1∑
a=1

e

(
ma3 + na

p

)∣∣∣∣∣
4

=

{
2p3 − 3p2 − 3p, if 3 - p− 1;

2p3 − 5p2 − 15p+ 4τ3 (ψ) + 4τ3
(
ψ
)
, if 3|p− 1,

where (n, p) = 1, ψ be any three order character mod p.
The case 3|p−1 in Zhu and Han’s work is not explicit enough in the sense

that it involves characters of order three modulo p.
Recently, W. Zhang and D. Han [16] studied the sixth power mean of

the two-term exponential sums and proved that for any prime p > 3 with
(3, p− 1) = 1, one has the identity

p−1∑
a=1

∣∣∣∣∣
p−1∑
n=0

e

(
n3 + an

p

)∣∣∣∣∣
6

= 5p4 − 8p3 − p2.

However, the method used in [16] seems to be unsuitable for the 2k-th
power mean

p−1∑
a=1

∣∣∣∣∣
p−1∑
n=0

e

(
an3 + n

p

)∣∣∣∣∣
2k

, for all positive integers k ≥ 2.

This paper, as a note of [17], we shall combine the analytic methods,
W. Zhang’s work [15] and an interesting conversion formula of W. Duke and
H. Iwaniec [10] to study this problem, and give an exact computational formula
for the fourth power mean. That is, we shall prove the following conclusion.
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Theorem. Let p > 3 be a prime. Then for any integer n with (n, p) = 1,
we have the identity

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
4

=

{
2p3 − p2, if 3†p− 1,
2p3 − 7p2, if 3|p− 1.

From this theorem and the work of B.J. Birch [2], we may immediately
deduce a conclusion of S. Chowla, J. Cowles and M. Cowles [4]. That is, we
have the following.

Corollary. Let Ms be the number of solutions of the equation

X3
1 +X3

2 +X3
3 + · · ·+X3

s = 0

in the finite field GF (p). For any prime p ≡ 1 mod 3, one has the identity

M4 = p3 + 6(p2 − p).

Some notes: For k ≥ 4, the fourth moments for

p−1∑
n=1

|C(m,n, k; p)|4 can

not be calculated exactly by using our method, unless (k, p− 1) = 1. Since for
k|(p− 1), we can not change the two-term k-th exponential sums C(m,n, k; p)
into the general Kloosterman sums. So our method is not applicable. For the
same reason, our theorem also can not be generalized to any integer q, unless q
is a square-free number. That is, µ(q) 6= 0, where µ(n) is the Möbius function.

Here we propose the following two interesting open problems:
1. For general integers h ≥ 3, whether there exists an exact expression

for
p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2h

?

where p be an odd prime and (n, p) = 1.
2. Can the number of solutions to the cubic equation x31 +x32 +x33 +x34 ≡

b mod p be calculated when b 6= 0?

2. SEVERAL LEMMAS

In this section, we will give several lemmas which are necessary in the
proof of our theorem. First we have the following:

Lemma 1. Let p be an odd prime with (p − 1, 3) = 1, then we have the
identity

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2

= p2.
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Proof. Since (3, p−1) = 1, so for all integers 1 ≤ a, b ≤ p−1, the congru-
ence a3 ≡ b3 mod p holds if and only if a = b. Thus, from the trigonometric
identity

p−1∑
m=0

e

(
nm

p

)
=

{
p, if (p, n) = p;
0, if (p, n) = 1

we have

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2

=

p−1∑
m=0

∣∣∣∣∣
p−1∑
a=1

e

(
ma3 + na

p

)
+ 1

∣∣∣∣∣
2

=

p−1∑
a=1

p−1∑
b=1

p−1∑
m=0

e

(
m(a3 − b3) + n(a− b)

p

)
+

p−1∑
a=1

p−1∑
m=0

e

(
ma3 + na

p

)

+

p−1∑
b=1

p−1∑
m=0

e

(
−mb3 − nb

p

)
+ p

= p

p−1∑
a=1

p−1∑
b=1

a3≡b3 mod p

e

(
n(a− b)

p

)
+ p = p2.

This proves Lemma 1. �

Lemma 2. Let p be an odd prime with (p − 1, 3) = 1, and let χ be any
non-principal character mod p. Then for any integer n with (n, p) = 1, we
have the identity∣∣∣∣∣∣

p−1∑
m=1

χ (m)

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2
∣∣∣∣∣∣ =

{
p

3
2 , if χ 6= χ2;
p, if χ = χ2,

where χ2 =
(
∗
p

)
denotes the Legendre symbol mod p.

Proof. It is clear that if a pass through a complete residue system mod p
and (n, p) = 1, then na also pass through a complete residue system modp.
So from this property we have the identity

∣∣∣∣∣∣
p−1∑
m=1

χ (m)

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2
∣∣∣∣∣∣ =

∣∣∣∣∣∣
p−1∑
m=1

χ (m)

∣∣∣∣∣
p−1∑
a=0

e

(
mn2a3 + a

p

)∣∣∣∣∣
2
∣∣∣∣∣∣

=

∣∣∣∣∣∣
p−1∑
m=1

χ(n2)χ
(
mn2

) ∣∣∣∣∣
p−1∑
a=0

e

(
mn2a3 + a

p

)∣∣∣∣∣
2
∣∣∣∣∣∣=
∣∣∣∣∣∣
p−1∑
m=1

χ (m)

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + a

p

)∣∣∣∣∣
2
∣∣∣∣∣∣.
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Thus, without loss of generality, we can assume n = 1. Since χ is a non-
principal character mod p and (3, p−1) = 1, so χ is not a three order character
mod p, from the properties of Gauss sums we have

p−1∑
m=1

χ (m)

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + a

p

)∣∣∣∣∣
2

(3)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
m=1

χ (m) e

(
m(a3 − b3) + n(a− b)

p

)

= τ(χ)

p−1∑
a=0

p−1∑
b=0

χ
(
a3 − b3

)
e

(
a− b
p

)

= τ(χ)τ
(
χ3
)

+ τ(χ)

p−1∑
a=0

p−1∑
b=1

χ
(
a3 − 1

)
χ
(
b3
)
e

(
b(a− 1)

p

)

= τ(χ)τ
(
χ3
)

+ τ(χ)τ
(
χ3
) p−1∑
a=0

χ
(
a3 − 1

)
χ3(a− 1)

= 2τ(χ)τ
(
χ3
)

+ τ(χ)τ
(
χ3
) p−1∑
a=2

χ
(
a3 − 1

)
χ
(
(a− 1)3

)
= 2τ(χ)τ

(
χ3
)

+ τ(χ)τ
(
χ3
) p−2∑
a=1

χ
(
a3 + 3a2 + 3a

)
χ
(
a3
)

= 2τ(χ)τ
(
χ3
)

+ τ(χ)τ
(
χ3
) p−2∑
a=1

χ
(
3a2 + 3a+ 1

)
= τ(χ)τ

(
χ3
) p−1∑
a=0

χ
(
3a2 + 3a+ 1

)
= χ(3)χ(4)τ(χ)τ

(
χ3
) p−1∑
a=0

χ
(
(2a+ 1)2 + 4 · 3− 1

)
= χ(3)χ(4)τ(χ)τ

(
χ3
) p−1∑
b=0

χ
(
b2 + 3

)
.

On the other hand, if (c, P ) = 1, then, from Theorem 7.5.4 of [12], we have

(4)

p−1∑
a=0

e

(
ca2

p

)
= χ2(c)τ(χ2).
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From (4) and the definition and properties of Gauss sums, we have

p−1∑
b=0

χ
(
b2 + c

)
=

1

τ (χ)

p−1∑
a=1

χ(a)

p−1∑
b=0

e

(
a(b2 + c)

p

)
(5)

=
1

τ (χ)

p−1∑
a=1

χ(a)e

(
ca

p

) p−1∑
b=0

e

(
ab2

p

)

=
τ(χ2)

τ (χ)

p−1∑
a=1

χ(a)χ2(a)e

(
ca

p

)
= χ(c)χ2(c) ·

τ(χ2)τ(χχ2)

τ (χ)
.

Since |τ(χ)| = √p, by combining (3) and (5), we may deduce the identity∣∣∣∣∣∣
p−1∑
m=1

χ (m)

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2
∣∣∣∣∣∣ =

{
p

3
2 , if χ 6= χ2;
p, if χ = χ2.

This proves Lemma 2.

Lemma 3. Let p be an odd prime with 3|(p− 1). Then, for any integer a
with (a, p) = 1 and any three order character ψ, we have the identity

p−1∑
n=0

e

(
an3 + n

p

)
=

p−1∑
n=1

ψ (na) e

(
n− 27an

p

)
.

Proof. This is an interesting conversion formula between the two-term
cubic exponential sums and Kloosterman sums. Its proof can be found in W.
Duke and H. Iwaniec [10] for general conclusion. �

3. PROOF OF THE THEOREM

In this section, we shall complete the proof of our theorem. First, from
the orthogonality of characters mod p, we have
(6)∑
χ mod p

∣∣∣∣∣∣
p−1∑
m=1

χ (m)

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2
∣∣∣∣∣∣
2

= (p− 1)

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
4

.

On the other hand, if 3 - p − 1, then from Lemma 1 and Lemma 2, we also
have

∑
χ mod p

∣∣∣∣∣∣
p−1∑
m=1

χ (m)

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2
∣∣∣∣∣∣
2

(7)
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=

 p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2
2

+

∣∣∣∣∣∣
p−1∑
m=1

χ2 (m)

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2
∣∣∣∣∣∣
2

+
∑

χ mod p

χ 6=χ0,χ2

∣∣∣∣∣∣
p−1∑
m=1

χ (m)

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
2
∣∣∣∣∣∣
2

= p4 + p2 + (p− 3)p3 = 2p4 − 3p3 + p2 = (p− 1)(2p− 1)p2.

Combining (6) and (7), we can deduce the identity

(8)

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
4

= 2p3 − p2.

If 3|p− 1, let ψ be a three order character mod p, then ψ must be a non-real
character mod p, from identity (2) and Lemma 3 we have

p−1∑
a=1

∣∣∣∣∣
p−1∑
x=0

e

(
ax3 + nx

p

)∣∣∣∣∣
4

=

p−1∑
a=1

∣∣∣∣∣
p−1∑
x=0

e

(
ax3 + x

p

)∣∣∣∣∣
4

(9)

=

p−1∑
a=1

∣∣∣∣∣
p−1∑
x=1

ψ (xa) e

(
x− 27ax

p

)∣∣∣∣∣
4

=

p−1∑
a=1

∣∣∣∣∣
p−1∑
x=1

ψ (x) e

(
ax+ x

p

)∣∣∣∣∣
4

= p2 · (2p− 7).

Now from (8) and (9) we may immediately deduce

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
4

=

{
2p3 − p2, if 3†p− 1,
2p3 − 7p2, if 3|p− 1.

This completes the proof of our theorem.
Now, we are using formula (1) and our theorem to complete the proof of

our corollary. First, taking R = 2 in (1), we have

(10)
p−1∑
a=1

∣∣∣∣∣
p−1∑
x=0

e

(
ax3

p

)∣∣∣∣∣
4

+

p−1∑
b=1

∣∣∣∣∣
p−1∑
x=0

e

(
bx

p

)∣∣∣∣∣
4

+

p−1∑
a=1

p−1∑
b=1

∣∣∣∣∣
p−1∑
x=0

e

(
ax3 + bx

p

)∣∣∣∣∣
4

+ p4

= p4 + (p− 1)(2p− 1)p2.

For all 1 ≤ b ≤ p− 1, from the properties of reduced residue system modp, we
have

p−1∑
a=1

p−1∑
b=1

∣∣∣∣∣
p−1∑
x=0

e

(
ax3 + bx

p

)∣∣∣∣∣
4

=

p−1∑
b=1

p−1∑
a=1

∣∣∣∣∣
p−1∑
x=0

e

(
a(xb)3 + b(xb)

p

)∣∣∣∣∣
4

(11)
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=

p−1∑
b=1

p−1∑
a=1

∣∣∣∣∣
p−1∑
x=0

e

(
ab

3
x3 + x

p

)∣∣∣∣∣
4

= (p− 1)

p−1∑
a=1

∣∣∣∣∣
p−1∑
x=0

e

(
ax3 + x

p

)∣∣∣∣∣
4

.

From the properties of trigonometric sums, we have

(12)

p−1∑
b=1

∣∣∣∣∣
p−1∑
x=0

e

(
bx

p

)∣∣∣∣∣
4

= 0

and

(13)

p−1∑
a=1

∣∣∣∣∣
p−1∑
x=0

e

(
ax3

p

)∣∣∣∣∣
4

= pM4 − p4.

Combining (10), (11), (12), (13) and our theorem, we may immediately deduce
the identity

p4 + (p− 1)(2p− 1)p2 = pM4 − p4 + (p− 1)(2p3 − 7p2) + p4,

or

M4 = p3 + 6p(p− 1).

This completes the proof of our corollary. �
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