A recent question in generalized Ramsey theory is that for fixed positive integers \(s \leq t \), at least how many vertices can be covered by the vertices of no more than \(s \) monochromatic members of the family \(F \) in every edge coloring of \(K_n \) with \(t \) colors. This is related to \(d \)-chromatic Ramsey numbers introduced by Chung and Liu. In this paper, we first compute these numbers for stars generalizing the well-known result of Burr and Roberts. Then we extend a result of Cockayne and Lorimer to compute \(d \)-chromatic Ramsey numbers for stars and one matching.

AMS 2010 Subject Classification: 05C55, 05D10.

Key words: \(d \)-chromatic Ramsey number, edge coloring.

1. **INTRODUCTION**

Ramsey theory is an area of combinatorics which uses techniques from many branches of mathematics and is currently among the most active areas in combinatorics. Let \(G_1, \ldots, G_c \) be graphs. The Ramsey number denoted by \(r(G_1, \ldots, G_c) \) is defined to be the least number \(p \) such that if the edges of the complete graph \(K_p \) are arbitrarily colored with \(c \) colors, then for some \(i \) the spanning subgraph whose edges are colored with the \(i \)-th color contains \(G_i \). More information about the Ramsey numbers of known graphs can be found in the survey [10].

There are various types of Ramsey numbers that are important in the study of classical Ramsey numbers and also hypergraph Ramsey numbers. A question recently proposed by Gyárfás et al. in [6]; for fixed positive integers \(s \leq t \), at least how many vertices can be covered by the vertices of no more than \(s \) monochromatic members of the family \(F \) in every edge coloring of \(K_n \) with \(t \) colors. Several problems and interesting conjectures were presented in [6]. A basic problem here is to find the largest \(s \)-colored element of \(F \) that can be found in every \(t \)-coloring of \(K_n \). The answer for matchings when \(s = t - 1 \) was given in [6]; every \(t \)-coloring of \(K_n \) contains a \((t - 1)\)-colored matching of size

1 This research was in part supported by a grant from IPM (No.93030059).
k provided that $n \geq 2k + \left[\frac{k-1}{2^{t-1}-1}\right]$. Note that for $t = 2, 3, 4$, we can guarantee the existence of a $(t-1)$-colored path on $2k$ vertices instead of a matching of size k. This was proved in [5, 9] and [8], respectively.

The above mentioned question is related to an old problem of Chung and Liu [3]; for a given graph G and for fixed s, t, find the smallest n such that in every t-coloring of the edges of K_n there is a copy of G colored with at most s colors. More generally, let $1 \leq d < c$ and let $t = \binom{c}{d}$. Assume that A_1, \ldots, A_t are all d-subsets of a set containing c distinct colors. Let G_1, \ldots, G_t be graphs. The d-chromatic Ramsey numbers denoted by $r^t_d(G_1, \ldots, G_t)$ is the least number p such that, if the edges of the complete graph K_p are arbitrarily colored with c colors, then for some i, the subgraph whose edges are colored by colors in A_i contains G_i.

For complete graphs these numbers were partially determined in [3] and [7]. However for these graphs, the problem is very few known and there are many open problems. For stars, when $d = 1$ it is a well-know result [1], and for $d = t - 1 = 2$ the value of $r^3_2(K_{1,i}, K_{1,j}, K_{1,t})$ was determined in [2]. For stars and one matching, when $d = 1$ it is again a well-known result; see [4].

In this paper, we first extend the result of [2] for stars to arbitrary c, d with $d = c - 1 \geq 2$. Then we replace one of the stars by a matching generalizing the result of Cockayne and Lorimer to any c, d with $d = c - 1 \geq 2$. To fix the notation, we use $r^t_{t-1}(G_1, \ldots, G_t)$ to denote the minimum p such that any coloring of the edges of K_p with t colors $1, \ldots, t$ contains a copy of G_i for some i, missing the color i. It is assumed throughout the paper that $m_i \leq m_j$, where $i \leq j$ and graphs are all simple and finite. A matching of size m is denoted by mP_2 and a star of order $m + 1$ by $K_{1,m}$.

2. $(t - 1)$-COLORED STARS IN t-COLORED COMPLETE GRAPHS

In this section, we denote $\Sigma^t_{i=1}(m_i - 1)$ briefly by S_t. Let $\text{ex}(p, H)$ be the maximum number of edges in a graph on p vertices which is H-free, i.e. it does not have H as a subgraph. It is easily seen that $\text{ex}(p, K_{1,m}) \leq \frac{p(m-1)}{2}$. We use this fact in the proof of Theorem 2.1.

Theorem 2.1. Let $x = \left\lceil \frac{S_t+t-1}{t-1} \right\rceil$. Then $r^t_{t-1}(K_{1,m_1}, \ldots, K_{1,m_t}) \leq x + 1$.

Proof. Consider an edge coloring of K_{x+1} with t colors $1, \ldots, t$. Let l_i, $1 \leq i \leq t$ be the number of edges in color i and $l = \Sigma_{i=1}^t l_i$. Note that $l = \frac{x(x+1)}{2}$. If for every i, we have $l - l_i \leq \frac{(x+1)(m_i-1)}{2}$, then $x+1 \leq \frac{S_t+t-1}{t-1}$, a contradiction. So there exists an i with $l - l_i > \frac{(x+1)(m_i-1)}{2}$. Hence the induced subgraph on the edges with colors $\{1, \ldots, t\} - \{i\}$ contains a K_{1,m_i}, as required. □
For graphs $G_1, G_2,$ and G_3 with $|G_1| \leq |G_2| \leq |G_3|$ it is shown [3] that $r_2^2(G_1, G_2, G_3) \leq r(G_1, G_2)$ and the equality holds if $|G_3| \geq r(G_1, G_2)$, where $|G|$ is the number of vertices of G. Note that for graphs G_1 and G_2, $r(G_1, G_2) = r_1^2(G_1, G_2)$. So we can replace $|G_3| \geq r(G_1, G_2)$ by $|G_3| \geq r_1^2(G_1, G_2)$. Theorem 2.2, is a trivial generalization of this result.

Theorem 2.2. Let G_1, \ldots, G_t be graphs. Then we have $r_{t-1}^t(G_1, \ldots, G_t) \leq r_{t-2}^t(G_1, \ldots, G_{t-1})$ and the equality holds if $|G_t| \geq r_{t-2}^t(G_1, \ldots, G_{t-1})$.

Proof. Let $l = r_{t-2}^t(G_1, \ldots, G_{t-1})$ and $c : E(G) \to \{1, 2, \ldots, t\}$ be a coloring of $G = K_t$. Define a new coloring c' of G with $t-1$ colors $1, 2, \ldots, t-1$ with $c'(e) = i$ if $c(e) = i$, $1 \leq i \leq t - 2$, and $c'(e) = t-1$ if $c(e) = t - 1$ or $c(e) = t$. By definition, G contains a copy of G_i, for some $1 \leq i \leq t - 1$, in colors $\{1, \ldots, t-1\} - \{i\}$ which implies that G contains a copy of G_i, for some $1 \leq i \leq t$, in colors $\{1, \ldots, t\} - \{i\}$, as required.

Now suppose that $|G_t| \geq r_{t-2}^t(G_1, \ldots, G_{t-1})$. By definition, there exists a coloring of K_{t-1} with $t-1$ colors such that K_{t-1} does not contain G_i, for some $1 \leq i \leq t - 1$, in colors $\{1, \ldots, t-1\} - \{i\}$. This is also a coloring of K_{t-1} with t colors without G_i, $1 \leq i \leq t$, in colors $\{1, \ldots, t\} - \{i\}$. Thus

$l - 1 < r_{t-1}^t(G_1, \ldots, G_t) \leq l = r_{t-2}^t(G_1, \ldots, G_{t-1}),$

completing the proof. \square

For abbreviation, we let $R_t = r_{t-1}^t(K_1,m_1,\ldots, K_1,m_t)$ and $x_t = \left[\frac{(\Sigma_{i=1}^t m_i)}{t-1}\right]$. Then by Theorem 2.2, we can assume that $m_t + 1 \leq R_{t-1}$. On the other hand, $R_t \leq R_{t-1} \leq \ldots \leq R_2$ and by Theorem 2.1, $R_t \leq x_t+1$. Hence $m_t \leq R_{t-1} - 1 \leq x_{t-1}$, which implies that $(t-2)m_t \leq (\Sigma_{i=1}^{t-1} m_i) - 1$. The last inequality is equivalent to $x_{t-1} \geq x_t$. Similarly, $m_{t-1} \leq m_t \leq R_{t-1} - 1 \leq R_{t-2} - 1 \leq x_{t-2}$ implies $x_{t-2} \geq x_{t-1}$. We continue in this way, obtaining that $x_i \leq x_j$ for $j < i$. Using this observation, we next find a lower bound for $r_{t-1}^t(K_1,m_1,\ldots, K_1,m_t)$.

Theorem 2.3. Let $x = \left[\frac{S_{t+1} t}{t-1}\right]$ and $m_t \leq R_{t-1} - 1$. Then

$r_{t-1}^t(K_1,m_1,\ldots, K_1,m_t) > x - 1.$

Proof. Let $p = x - \epsilon$ where $\epsilon = 1$ if x is odd and $\epsilon = 0$, otherwise. By Vizing’s Theorem, there exists a proper edge coloring of K_p with $p - 1$ colors. Let r, $1 \leq r < t$ be the smallest index such that $p - m_r \geq 0$ and $p - m_{r+1} < 0$ if it exists, and $r = t - 1$ otherwise. Partition these $p - 1$ colors into $r + 1$ new color classes as follows. Consider $p - m_i$ colors as the new color i, for $1 \leq i \leq r$ and all of the remaining colors as the new color $r + 1$. Note that since $p \leq x = x_r = \left[\frac{(\Sigma_{i=1}^r m_i)}{r-1}\right]$, we have $\Sigma_{i=1}^r (p - m_i) \leq p - 1$. This
yields an edge coloring of K_p with t colors $\{1, \ldots, t\}$ such that for each $i \leq r$, every vertex v is adjacent to at least $p - m_i$ edges in color i which rules out the existence of K_{1,m_i} in colors $\{1, \ldots, t\} - \{i\}$. Moreover for $i \geq r + 1$, no K_{1,m_i} occurs since $p < m_i$. Hence $r^{t}_{t-1}(K_{1,m_1}, \ldots, K_{1,m_t}) > p$, which is our assertion. \[\square\]

The above proof gives more, namely if $x = \left\lceil \frac{S_t + t - 1}{t - 1} \right\rceil$ is even, then

$$r^{t}_{t-1}(K_{1,m_1}, \ldots, K_{1,m_t}) > x.$$

Combining this with Theorem 2.1, we conclude the following.

Corollary 2.4. Let $x = \left\lceil \frac{S_t + t - 1}{t - 1} \right\rceil$ be even and $m_t \leq R_{t-1} - 1$. Then

$$r^{t}_{t-1}(K_{1,m_1}, \ldots, K_{1,m_t}) = x + 1.$$

Remark. Let v_1, \ldots, v_x be vertices of K_x, where x is odd. Eliminating v_x, there exists corresponding matching M_{v_x} containing $(x - 1)/2$ independent edges $v_1v_{x-1}, v_2v_{x-2}, \ldots, v_{(x-1)/2}v_{(x+1)/2}$. Order these edges as above. Similarly, for each vertex v_i, $1 \leq i \leq x - 1$, there exists a matching M_{v_i} containing $(x - 1)/2$ ordered edges. These matchings are used to construct certain edge colorings of K_x, for example as in the proof of Theorem 2.5.

Theorem 2.5. Let $x = \left\lceil \frac{S_t + t - 1}{t - 1} \right\rceil$, $m_t \leq R_{t-1} - 1$ and $S_t = q(t - 1) + h$, where $0 \leq h \leq t - 2$. Then

$$r^{t}_{t-1}(K_{1,m_1}, \ldots, K_{1,m_t}) = \begin{cases} x & \text{if } x \text{ is odd, } h = 0 \text{ and some } m_i \text{ is even,} \\ x + 1 & \text{otherwise.} \end{cases}$$

Proof. If x is even, then by Corollary 2.4, $r^{t}_{t-1}(K_{1,m_1}, \ldots, K_{1,m_t}) = x + 1$. So we may assume that x is odd. We consider three cases as follows.

Case 1. $h \geq 1$. Then $r = x + S_t + t - tx = S_t + t - (t - 1)x \geq 2$. Partition the vertices of K_x as v_1, v_2, \ldots, v_r plus $x - m_1$ classes T_1, \ldots, T_{x-m_1} such that for $1 \leq i \leq t$, we have $T_i = \{u_{ij} : 1 \leq j \leq n_i\}$, where n_i is the largest value λ for which $i \leq x - m_\lambda$. For each vertex u_{ij}, $1 \leq j \leq t$, paint with j all edges in $M_{u_{ij}}$. Let v_1 and v_r be the vertices next to T_1 and T_{x-m_1}, respectively (see Fig. 1(a)).

For the vertex v_1 (respectively v_r) paint the edge $e = u_{ij}v_1 \in M_{v_1}$ (respectively M_{v_r}) with j and paint the edge $e = u_{ij}u_{i'j'} \in M_{v_1}$ (respectively M_{v_r}) with j if either $i < i'$ or $i = i'$ and $j < j'$ (respectively if either $i > i'$ or $i = i'$ and $j > j'$). The result is an edge coloring of K_x with the property that for each vertex, every color i appears on at least $x - m_i$ edges; that is, $r^{t}_{t-1}(K_{1,m_1}, \ldots, K_{1,m_t}) > x$, and so by Theorem 2.1, our assertion follows.

Case 2. $h = 0$, and every m_i is odd. Then $S_t = q(t - 1)$, and $(t - 1)(q - x) + t = 1$. Partition the vertices of K_x as a single vertex v_x plus
\[(x - m_1)/2 \text{ classes } T_1, \ldots, T_{(x-m_1)/2}, \text{ and } (x - m_1)/2 \text{ classes } T'_1, \ldots, T'_{(x-m_1)/2} \]

such that \(T_i = \{u_{ij} \colon 1 \leq j \leq n_i\} \) and \(T'_i = \{u'_{ij} \colon 1 \leq j \leq n_i\} \), where \(n_i \) is the largest value \(\lambda \) for which \(2i \leq x - m_\lambda \). Set the classes \(T_1, \ldots, T_{(x-m_1)/2} \) one side of \(v_x \) and the classes \(T'_1, \ldots, T'_{(x-m_1)/2} \) on the other side of \(v_x \), respectively (see Fig. 1(b)). For each vertex \(u_{ij} \) (also \(u'_{ij} \)), \(1 \leq j \leq t \), paint with \(j \) all edges in \(M_{u_{ij}} \) (also \(M_{u'_{ij}} \)). Moreover, for the vertex \(v_x \), paint with \(j \) the edge \(e = u_{ij}u'_{ij} \in M_{v_x} \). The result is an edge coloring of \(K_x \) with the property that for each vertex, every color \(i \) appears on exactly \(x - m_i \) edges; that is, \(r^t_{t-1}(K_{1,m_1}, \ldots, K_{1,m_t}) > x \), and so by Theorem 2.1, our assertion follows.

Case 3. \(h = 0 \), and some \(m_i \) is even. Let \(m_{i_0} \) be even. Then \(x - m_{i_0} \) is odd. Suppose, contrary to our claim, that \(r^t_{t-1}(K_{1,m_1}, \ldots, K_{1,m_t}) > x \). Consider the correspondent edge coloring of \(K_x \) with \(t \) colors \(1, \ldots, t \). As a sufficient condition, the degree of each vertex in color \(i \), \(1 \leq i \leq t \), is exactly \(x - m_i \). Then the induced subgraph with the edges in color \(i_0 \), is \((x - m_{i_0}) \)-regular on \(x \) vertices, a contradiction. Hence \(r^t_{t-1}(K_{1,m_1}, \ldots, K_{1,m_t}) \leq x \), and so by Theorem 2.3, our assertion follows. \(\Box \)

It may be worth reminding the reader that Theorem 2.5 is consistent with the well-known result of [1] that \(r(K_{1,n}, K_{1,m}) = m + n - \epsilon \) where \(\epsilon = 1 \) if both \(n \) and \(m \) are even and \(\epsilon = 0 \), otherwise.

3. \((t - 1)\)-COLORED STARS-MATCHING

IN \(t \)-COLORED COMPLETE GRAPHS

In this section, we calculate \(r^t_{t-1}(K_{1,m_1}, \ldots, K_{1,m_{t-1}}, sP_2) \). In [4] the value of \(r^2_1(K_{1,m_1}, sP_2) = r(K_{1,m_1}, sP_2) \) has been determined, so we can assume that \(t \geq 3 \). Continuing the notation of Section 2, we denote \(\Sigma_{i=1}^{t-1}(m_i - 1) \) briefly by \(S_{t-1} \) and write \(R \) instead of \(r^t_{t-1}(K_{1,m_1}, \ldots, K_{1,m_{t-1}}, sP_2) \). If \(2s \geq r^{t-1}_{t-2}(K_{1,m_1}, \ldots, K_{1,m_{t-1}}) \), then by Theorem 2.2, \(R = r^{t-1}_{t-2}(K_{1,m_1}, \ldots, K_{1,m_{t-1}}) \). Therefore in the following two lemmas we assume \(2s < r^{t-1}_{t-2}(K_{1,m_1}, \ldots, K_{1,m_{t-1}}) \).
Lemma 3.1. If $t \geq 3$, $S_{t-1} < (2t-3)s - t + 2$, and $2s < r_{t-2}^{t-1}(K_{1,m_1}, \ldots, K_{1,m_{t-1}})$, then $R = 2s$.

Proof. Since $2s < r_{t-2}^{t-1}(K_{1,m_1}, \ldots, K_{1,m_{t-1}})$, there exists an edge coloring of K_{2s-1} with colors $1, \ldots, t-1$, such that for each i, $1 \leq i \leq t-1$, the induced subgraph on the edges with colors $\{1, \ldots, t-1\} - i$ does not contain K_{1,m_i}. This also can be considered as an edge coloring of K_{2s-1} with t colors $1, \ldots, t$ such that in addition, the induced subgraph on the edges with colors $\{1, \ldots, t-1\}$ does not contain sP_2; that is, $R > 2s - 1$.

We now show that $R \leq 2s$. Consider an edge coloring of K_{2s} with colors $1, \ldots, t$. Let M be the maximal matching of edges with colors $1, \ldots, t-1$. Then M has at most $s' \leq s-1$ independent edges, since otherwise we are done. Let W be the set of those vertices that are not incident with these s' edges. Note that $|W| \geq 2$, and every edge incident with two vertices in W has color t. Moreover, every vertex is incident with at least $2s - m_i$ edges in color i, $1 \leq i \leq t-1$, since otherwise we are done. Thus every vertex is incident with at least $2(t-1)s - S_{t-1} - (t-1)$ edges in colors $1, \ldots, t-1$. Since $S_{t-1} < (2t-3)s - t + 2$, each of the vertices $w_1, w_2 \in W$ is incident with at least s edges in colors $1, \ldots, t-1$; that is, there exists $e = uv \in M$ such that the color of both w_1u, and w_2v belongs to $\{1, \ldots, t-1\}$, which contradicts the maximality of M. \[\square\]

Lemma 3.2. If $t \geq 3$, $S_{t-1} \geq (2t-3)s - t + 2$, and $2s < r_{t-2}^{t-1}(K_{1,m_1}, \ldots, K_{1,m_{t-1}})$, then $R = \left\lceil \frac{S_{t-1}+s}{t-1} \right\rceil + 1$.

Proof. Let $l = \left\lfloor \frac{S_{t-1}+s}{t-1} \right\rfloor$. To prove $R \leq l + 1$, consider an edge coloring of K_{l+1} with t colors $1, \ldots, t$. Let M be the maximal matching of edges with colors $1, \ldots, t-1$. Then M has at most $s' \leq s-1$ independent edges, since otherwise we are done. Let W be the set of those vertices that are not incident with these s' edges. Note that $|W| \geq 2$, and every edge incident with two vertices in W has color t. Moreover, every vertex is incident with at least $l+1-m_i$ edges in color i, $1 \leq i \leq t-1$. Thus every vertex is incident with at least $(t-1)(l+1) - S_{t-1} - (t-1)$ edges in colors $1, \ldots, t-1$. Let $w_1, w_2 \in W$. Since $l > \frac{S_{t-1}+s-1}{t-1}$, $(t-1)(l+1) - S_{t-1} - (t-1) > s-1$ and so each of the vertices w_1, w_2 is incident with at least s edges in colors $1, \ldots, t-1$. Therefore, there exists $e = uv \in M$ such that the color of both w_1u, and w_2v belong to $\{1, \ldots, t-1\}$, which contradicts the maximality of M.

We now turn our attention to the lower bound. Set $n_i = l - m_i$, $1 \leq i \leq t-1$. Partition the vertices of K_l into $t-1$ classes X_i, $1 \leq i \leq t-1$, with $|X_i| = n_i$ plus the set X consists of the rest of the vertices. Note that $n_i \geq 0$ and $\sum_{i=1}^{t-1} n_i < l$. First let $z = \sum_{i=1}^{t-1} n_i$ be odd and suppose that $x \in X$. \[\square\]
By Vizing’s Theorem, there exists an edge coloring of the complete graph on $z + 1$ vertices $\{x\} \cup \bigcup_{i=1}^{t-1} X_i$ with z colors. Set these z colors into $t - 1$ color classes by considering n_i colors as the new color i, $1 \leq i \leq t - 1$. This yields an edge coloring of K_z with $t - 1$ colors $\{1, \ldots, t - 1\}$ such that every vertex $v \in \{x\} \cup \bigcup_{i=1}^{t-1} X_i$ is adjacent to $n_i = l - m_i$ edges in color i, $1 \leq i \leq t - 1$. Moreover, for $1 \leq i \leq t - 1$, paint with i the edges having one vertex in X_i and one vertex in $X - \{x\}$. Finally, paint with t all the remaining edges. In this coloring of K_t, every vertex is adjacent to at least n_i edges in color i, $1 \leq i \leq t - 1$, which rules out the existence of K_{1,m_i} in colors $\{1, \ldots, t\} - \{i\}$. Moreover, the subgraph on the edges with colors $1, \ldots, t - 1$ contains at most $s - 1$ independent edges. We now suppose that $z = \Sigma_{i=1}^{t-1} n_i$ is even. Let $x, y \in X$. By Vizing’s Theorem, there exists an edge coloring of the complete graph on $z + 2$ vertices $\{x, y\} \cup \bigcup_{i=1}^{t-1} X_i$ with $z + 1$ colors. Without loss of generality we can assume that xy has color 1. Partition these $z + 1$ colors into $t - 1$ color classes by considering $n_1 + 1$ colors as the new color 1 and n_i colors as the new color i, $2 \leq i \leq t - 1$. This yields an edge coloring of K_{z+2} with $t - 1$ colors $\{1, \ldots, t - 1\}$ such that every vertex $v \in \{x, y\} \cup \bigcup_{i=1}^{t-1} X_i$ is adjacent to at least $n_i = l - m_i$ edges in color i, $1 \leq i \leq t - 1$. Moreover, for $1 \leq i \leq t - 1$, paint with i the edges having one vertex in X_i and one vertex in $X - \{x, y\}$. Finally, paint with t all the remaining edges and change the color of xy into t. Again in this coloring of K_t, every vertex is adjacent to at least n_i edges in color i, $1 \leq i \leq t - 1$, which rules out the existence of K_{1,m_i} in colors $\{1, \ldots, t\} - \{i\}$. Moreover, the subgraph on the edges with colors $1, \ldots, t - 1$ contains at most $s - 1$ independent edges. Therefore, $R > l$, completing the proof. \hfill \Box

Combining Lemmas 3.1, and 3.2 with the above discussion we have the following theorem.

Theorem 3.3. Let $t \geq 3$. Then

i. If $2s \geq R_{t-1}$, then $R = R_{t-1}$.

ii. If $2s < R_{t-1}$ and $S_{t-1} < (2t - 3)s - t + 2$, then $R = 2s$.

iii. If $2s < R_{t-1}$ and $S_{t-1} \geq (2t - 3)s - t + 2$, then $R = \left\lceil \frac{S_{t-1} + s}{t-1} \right\rceil + 1$.

Acknowledgments. We would like to thank the anonymous reviewer for his/her comments and suggestions that helped us to improve the manuscript.

REFERENCES

Received 8 July 2015

Kharazmi University,
Department of Mathematics,
15719-14911 Tehran, Iran
and
Institute for Research in Fundamental Sciences (IPM),
School of Mathematics,
P.O. Box: 19395-5746, Tehran, Iran

Isfahan University of Technology,
Department of Mathematical Sciences,
Isfahan, 84156-83111, Iran
and
Institute for Research in Fundamental Sciences (IPM),
School of Mathematics,
P.O. Box: 19395-5746, Tehran, Iran
khamseh@khu.ac.ir
romidi@cc.iut.ac.ir