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A recent question in generalized Ramsey theory is that for fixed positive integers
s ≤ t, at least how many vertices can be covered by the vertices of no more than
s monochromatic members of the family F in every edge coloring of Kn with
t colors. This is related to d-chromatic Ramsey numbers introduced by Chung
and Liu. In this paper, we first compute these numbers for stars generalizing the
well-known result of Burr and Roberts. Then we extend a result of Cockayne and
Lorimer to compute d-chromatic Ramsey numbers for stars and one matching.
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1. INTRODUCTION

Ramsey theory is an area of combinatorics which uses techniques from
many branches of mathematics and is currently among the most active areas
in combinatorics. Let G1, . . . , Gc be graphs. The Ramsey number denoted by
r(G1, . . . , Gc) is defined to be the least number p such that if the edges of the
complete graph Kp are arbitrarily colored with c colors, then for some i the
spanning subgraph whose edges are colored with the i-th color contains Gi.
More information about the Ramsey numbers of known graphs can be found
in the survey [10].

There are various types of Ramsey numbers that are important in the
study of classical Ramsey numbers and also hypergraph Ramsey numbers. A
question recently proposed by Gyárfás et al. in [6]; for fixed positive integers
s ≤ t, at least how many vertices can be covered by the vertices of no more than
s monochromatic members of the family F in every edge coloring of Kn with
t colors. Several problems and interesting conjectures were presented in [6]. A
basic problem here is to find the largest s-colored element of F that can be
found in every t-coloring of Kn. The answer for matchings when s = t− 1 was
given in [6]; every t-coloring of Kn contains a (t− 1)-colored matching of size
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k provided that n ≥ 2k + [ k−1
2t−1−1

]. Note that for t = 2, 3, 4, we can guarantee
the existence of a (t− 1)-colored path on 2k vertices instead of a matching of
size k. This was proved in [5, 9] and [8], respectively.

The above mentioned question is related to an old problem of Chung and
Liu [3]; for a given graph G and for fixed s, t, find the smallest n such that
in every t-coloring of the edges of Kn there is a copy of G colored with at
most s colors. More generally, let 1 ≤ d < c and let t =

(
c
d

)
. Assume that

A1, . . . , At are all d-subsets of a set containing c distinct colors. Let G1, . . . , Gt
be graphs. The d-chromatic Ramsey numbers denoted by rcd(G1, . . . , Gt) is the
least number p such that, if the edges of the complete graph Kp are arbitrarily
colored with c colors, then for some i, the subgraph whose edges are colored
by colors in Ai contains Gi.

For complete graphs these numbers were partially determined in [3] and
[7]. However for these graphs, the problem is very few known and there are
many open problems. For stars, when d = 1 it is a well-know result [1], and
for d = t − 1 = 2 the value of r3

2(K1,i,K1,j ,K1,l) was determined in [2]. For
stars and one matching, when d = 1 it is again a well-known result; see [4].

In this paper, we first extend the result of [2] for stars to arbitrary c, d with
d = c − 1 ≥ 2. Then we replace one of the stars by a matching generalizing
the result of Cockayne and Lorimer to any c, d with d = c − 1 ≥ 2. To fix
the notation, we use rtt−1(G1, . . . , Gt) to denote the minimum p such that any
coloring of the edges of Kp with t colors 1, . . . , t contains a copy of Gi for some
i, missing the color i. It is assumed throughout the paper that mi ≤ mj , where
i ≤ j and graphs are all simple and finite. A matching of size m is denoted by
mP2 and a star of order m+ 1 by K1,m.

2. (t − 1)-COLORED STARS IN t-COLORED COMPLETE GRAPHS

In this section, we denote Σt
i=1(mi− 1) briefly by St. Let ex(p,H) be the

maximum number of edges in a graph on p vertices which is H-free, i.e. it does
not have H as a subgraph. It is easily seen that ex(p,K1,m) ≤ p(m−1)

2 . We use
this fact in the proof of Theorem 2.1.

Theorem 2.1. Let x =
[
St+t−1
t−1

]
. Then rtt−1(K1,m1 , . . . ,K1,mt) ≤ x+ 1.

Proof. Consider an edge coloring of Kx+1 with t colors 1, . . . , t. Let li,

1 ≤ i ≤ t be the number of edges in color i and l = Σt
i=1li. Note that l = x(x+1)

2 .

If for every i, we have l− li ≤ (x+1)(mi−1)
2 , then x+1 ≤ St+t−1

t−1 , a contradiction.

So there exists an i with l − li > (x+1)(mi−1)
2 . Hence the induced subgraph on

the edges with colors {1, . . . , t} − {i} contains a K1,mi , as required. �
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For graphs G1, G2, and G3 with |G1| ≤ |G2| ≤ |G3| it is shown [3] that
r3

2(G1, G2, G3) ≤ r(G1, G2) and the equality holds if |G3| ≥ r(G1, G2), where
|G| is the number of vertices of G. Note that for graphs G1 and G2, r(G1, G2) =
r2

1(G1, G2). So we can replace |G3| ≥ r(G1, G2) by |G3| ≥ r2
1(G1, G2). Theorem

2.2, is a trivial generalization of this result.

Theorem 2.2. Let G1, . . . , Gt be graphs. Then we have rtt−1(G1, . . . , Gt)≤
rt−1
t−2(G1, . . . , Gt−1) and the equality holds if |Gt| ≥ rt−1

t−2(G1, . . . , Gt−1).

Proof. Let l = rt−1
t−2(G1, . . . , Gt−1) and c : E(G) → {1, 2, . . . , t} be a

coloring of G = Kl. Define a new coloring c′ of G with t−1 colors 1, 2, . . . , t-1
with c′(e) = i if c(e) = i, 1 ≤ i ≤ t − 2, and c′(e) = t-1 if c(e) = t − 1 or
c(e) = t. By definition, G contains a copy of Gi, for some 1 ≤ i ≤ t − 1, in
colors {1, . . . , t-1}− {i} which implies that G contains a copy of Gi, for some
1 ≤ i ≤ t, in colors {1, . . . , t} − {i}, as required.

Now suppose that |Gt| ≥ rt−1
t−2(G1, . . . , Gt−1). By definition, there exists

a coloring of Kl−1 with t − 1 colors such that Kl−1 does not contain Gi, for
some 1 ≤ i ≤ t−1, in colors {1, . . . , t−1}−{i}. This is also a coloring of Kl−1

with t colors without Gi, 1 ≤ i ≤ t, in colors {1, . . . , t} − {i}. Thus

l − 1 < rtt−1(G1, . . . , Gt) ≤ l = rt−1
t−2(G1, . . . , Gt−1),

completing the proof. �

For abbreviation, we letRt=rtt−1(K1,m1 , . . . ,K1,mt) and xt=
[
(Σt

i=1mi)−1
t−1

]
.

Then by Theorem 2.2, we can assume that mt + 1 ≤ Rt−1. On the other hand,
Rt ≤ Rt−1 ≤ . . . ≤ R2 and by Theorem 2.1, Rt ≤ xt+1. Hence mt ≤ Rt−1−1 ≤
xt−1, which implies that (t− 2)mt ≤ (Σt−1

i=1mi)− 1. The last inequality is equi-
valent to xt−1 ≥ xt. Similarly, mt−1 ≤ mt ≤ Rt−1 − 1 ≤ Rt−2 − 1 ≤ xt−2

implies xt−2 ≥ xt−1. We continue in this way, obtaining that xi ≤ xj for j < i.
Using this observation, we next find a lower bound for rtt−1(K1,m1 , . . . ,K1,mt).

Theorem 2.3. Let x =
[
St+t−1
t−1

]
and mt ≤ Rt−1 − 1. Then

rtt−1(K1,m1 , . . . ,K1,mt) > x− 1.

Proof. Let p = x − ε where ε = 1 if x is odd and ε = 0, otherwise. By
Vizing’s Theorem, there exists a proper edge coloring of Kp with p− 1 colors.
Let r, 1 ≤ r < t be the smallest index such that p−mr ≥ 0 and p−mr+1 < 0
if it exists, and r = t − 1 otherwise. Partition these p − 1 colors into r + 1
new color classes as follows. Consider p − mi colors as the new color i, for
1 ≤ i ≤ r and all of the remaining colors as the new color r + 1. Note that

since p ≤ x = xt ≤ xr =
[

(Σr
i=1mi)−1
r−1

]
, we have Σr

i=1(p −mi) ≤ p − 1. This
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yields an edge coloring of Kp with t colors {1, . . . , t} such that for each i ≤ r,
every vertex v is adjacent to at least p −mi edges in color i which rules out
the existence of K1,mi in colors {1, . . . , t} − {i}. Moreover for i ≥ r + 1, no
K1,mi occurs since p < mi. Hence rtt−1(K1,m1 , . . . ,K1,mt) > p, which is our
assertion. �

The above proof gives more, namely if x =
[
St+t−1
t−1

]
is even, then

rtt−1(K1,m1 , . . . ,K1,mt) > x.

Combining this with Theorem 2.1, we conclude the following.

Corollary 2.4. Let x =
[
St+t−1
t−1

]
be even and mt ≤ Rt−1 − 1. Then

rtt−1(K1,m1 , . . . ,K1,mt) = x+ 1.

Remark. Let v1, . . . , vx be vertices of Kx, where x is odd. Eliminating
vx, there exists corresponding matching Mvx containing (x− 1)/2 independent
edges v1vx−1, v2vx−2, . . . , v(x−1)/2v(x+1)/2. Order these edges as above. Simi-
larly, for each vertex vi, 1 ≤ i ≤ x− 1, there exists a matching Mvi containing
(x − 1)/2 ordered edges. These matchings are used to construct certain edge
colorings of Kx, for example as in the proof of Theorem 2.5.

Theorem 2.5. Let x =
[
St+t−1
t−1

]
, mt ≤ Rt−1 − 1 and St = q(t − 1) + h,

where 0 ≤ h ≤ t− 2. Then

rtt−1(K1,m1 , . . . ,K1,mt) =

{
x if x is odd, h = 0 and some mi is even,

x+ 1 otherwise.

Proof. If x is even, then by Corollary 2.4, rtt−1(K1,m1 , . . . ,K1,mt) = x+1.
So we may assume that x is odd. We consider three cases as follows.

Case 1. h ≥ 1. Then r = x+St+ t− tx = St+ t− (t−1)x ≥ 2. Partition
the vertices of Kx as v1, v2, . . . , vr plus x−m1 classes T1, . . . , Tx−m1 such that
for 1 ≤ i ≤ t, we have Ti = {uij : 1 ≤ j ≤ ni}, where ni is the largest value λ
for which i ≤ x −mλ. For each vertex uij , 1 ≤ j ≤ t, paint with j all edges
in Muij . Let v1 and vr be the vertices next to T1 and Tx−m1 , respectively (see
Fig. 1(a)).

For the vertex v1 (respectively vr) paint the edge e = uijvl ∈ Mv1 (re-
spectively Mvr) with j and paint the edge e = uijui′j′ ∈ Mv1 (respectively
Mvr) with j if either i < i′ or i = i′ and j < j′ (respectively if either i > i′

or i = i′ and j > j′). The result is an edge coloring of Kx with the property
that for each vertex, every color i appears on at least x −mi edges; that is,
rtt−1(K1,m1 , . . . ,K1,mt) > x, and so by Theorem 2.1, our assertion follows.

Case 2. h = 0, and every mi is odd. Then St = q(t − 1), and (t −
1)(q − x) + t = 1. Partition the vertices of Kx as a single vertex vx plus
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Fig. 1. Graph Kx.

(x−m1)/2 classes T1, . . . , T(x−m1)/2, and (x−m1)/2 classes T ′1, . . . , T
′
(x−m1)/2

such that Ti = {uij : 1 ≤ j ≤ ni} and T ′i = {u′ij : 1 ≤ j ≤ ni}, where ni is the
largest value λ for which 2i ≤ x −mλ. Set the classes T1, . . . , T(x−m1)/2 one
side of vx and the classes T ′1, . . . , T

′
(x−m1)/2 on the other side of vx, respectively

(see Fig. 1(b)). For each vertex uij (also u′ij), 1 ≤ j ≤ t, paint with j all
edges in Muij (also Mu′ij

). Moreover, for the vertex vx, paint with j the edge

e = uiju
′
ij ∈ Mvx . The result is an edge coloring of Kx with the property

that for each vertex, every color i appears on exactly x − mi edges; that is,
rtt−1(K1,m1 , . . . ,K1,mt) > x, and so by Theorem 2.1, our assertion follows.

Case 3. h = 0, and some mi is even. Let mi0 be even. Then x −
mi0 is odd. Suppose, contrary to our claim, that rtt−1(K1,m1 , . . . ,K1,mt) > x.
Consider the correspondent edge coloring of Kx with t colors 1, . . . , t. As a
sufficient condition, the degree of each vertex in color i, 1 ≤ i ≤ t, is exactly
x −mi. Then the induced subgraph with the edges in color i0, is (x −mi0)-
regular on x vertices, a contradiction. Hence rtt−1(K1,m1 , . . . ,K1,mt) ≤ x, and
so by Theorem 2.3, our assertion follows. �

It may be worth reminding the reader that Theorem 2.5 is consistent with
the well-known result of [1] that r(K1,n,K1,m) = m+n− ε where ε = 1 if both
n and m are even and ε = 0, otherwise.

3. (t − 1)-COLORED STARS-MATCHING
IN t-COLORED COMPLETE GRAPHS

In this section, we calculate rtt−1(K1,m1 , . . . ,K1,mt−1 , sP2). In [4] the va-
lue of r2

1(K1,m1 , sP2) = r(K1,m1 , sP2) has been determined, so we can assume
that t ≥ 3. Continuing the notation of Section 2, we denote Σt−1

i=1(mi − 1)
briefly by St−1 and write R instead of rtt−1(K1,m1 , . . . ,K1,mt−1 , sP2). If 2s ≥
rt−1
t−2(K1,m1 , . . . ,K1,mt−1), then by Theorem 2.2, R = rt−1

t−2(K1,m1 , . . . ,K1,mt−1).

Therefore in the following two lemmas we assume 2s < rt−1
t−2(K1,m1 , . . . ,K1,mt−1).
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Lemma 3.1. If t ≥ 3, St−1 < (2t− 3)s− t+ 2, and 2s < rt−1
t−2(K1,m1 , . . . ,

K1,mt−1), then R = 2s.

Proof. Since 2s < rt−1
t−2(K1,m1 , . . . ,K1,mt−1), there exists an edge coloring

of K2s−1 with colors 1, . . . , t − 1, such that for each i, 1 ≤ i ≤ t − 1, the
induced subgraph on the edges with colors {1, . . . , t− 1} − i does not contain
K1,mi . This also can be considered as an edge coloring of K2s−1 with t colors
1, . . . , t such that in addition, the induced subgraph on the edges with colors
{1, . . . , t− 1} does not contain sP2; that is, R > 2s− 1.

We now show that R ≤ 2s. Consider an edge coloring of K2s with colors
1, . . . , t. Let M be the maximal matching of edges with colors 1, . . . , t − 1.
Then M has at most s′ ≤ s − 1 independent edges, since otherwise we are
done. Let W be the set of those vertices that are not incident with these s′

edges. Note that |W | ≥ 2, and every edge incident with two vertices in W
has color t. Moreover, every vertex is incident with at least 2s − mi edges
in color i, 1 ≤ i ≤ t − 1, since otherwise we are done. Thus every vertex is
incident with at least 2(t−1)s−St−1− (t−1) edges in colors 1, . . . , t−1. Since
St−1 < (2t − 3)s − t + 2, each of the vertices w1, w2 ∈ W is incident with at
least s edges in colors 1, . . . , t − 1; that is, there exists e = uv ∈ M such that
the color of both w1u, and w2v belongs to {1, . . . , t− 1}, which contradicts the
maximality of M . �

Lemma 3.2. If t ≥ 3, St−1 ≥ (2t− 3)s− t+ 2, and 2s < rt−1
t−2(K1,m1 , . . . ,

K1,mt−1), then R =
⌈
St−1+s
t−1

⌉
+ 1.

Proof. Let l =
⌈
St−1+s
t−1

⌉
. To prove R ≤ l + 1, consider an edge coloring

of Kl+1 with t colors 1, . . . , t. Let M be the maximal matching of edges with
colors 1, . . . , t − 1. Then M has at most s′ ≤ s − 1 independent edges, since
otherwise we are done. Let W be the set of those vertices that are not incident
with these s′ edges. Note that |W | ≥ 2, and every edge incident with two
vertices in W has color t. Moreover, every vertex is incident with at least
l+ 1−mi edges in color i, 1 ≤ i ≤ t− 1. Thus every vertex is incident with at
least (t− 1)(l+ 1)−St−1− (t− 1) edges in colors 1, . . . , t− 1. Let w1, w2 ∈W .
Since l > St−1+s−1

t−1 , (t − 1)(l + 1) − St−1 − (t − 1) > s − 1 and so each of the
vertices w1, w2 is incident with at least s edges in colors 1, . . . , t−1. Therefore,
there exists e = uv ∈ M such that the color of both w1u, and w2v belong to
{1, . . . , t− 1}, which contradicts the maximality of M .

We now turn our attention to the lower bound. Set ni = l − mi, 1 ≤
i ≤ t − 1. Partition the vertices of Kl into t − 1 classes Xi, 1 ≤ i ≤ t − 1,
with |Xi| = ni plus the set X consists of the rest of the vertices. Note that
ni ≥ 0 and Σt=1

i=1ni < l. First let z = Σt−1
i=1ni be odd and suppose that x ∈ X.
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By Vizing’s Theorem, there exists an edge coloring of the complete graph on
z + 1 vertices {x} ∪

⋃t−1
i=1 Xi with z colors. Set these z colors into t − 1 color

classes by considering ni colors as the new color i, 1 ≤ i ≤ t − 1. This yields
an edge coloring of Kz with t − 1 colors {1, . . . , t − 1} such that every vertex
v ∈ {x} ∪

⋃t−1
i=1 Xi is adjacent to ni = l −mi edges in color i, 1 ≤ i ≤ t − 1.

Moreover, for 1 ≤ i ≤ t − 1, paint with i the edges having one vertex in Xi

and one vertex in X − {x}. Finally, paint with t all the remaining edges. In
this coloring of Kl, every vertex is adjacent to at least ni edges in color i,
1 ≤ i ≤ t− 1, which rules out the existence of K1,mi in colors {1, . . . , t} − {i}.
Moreover, the subgraph on the edges with colors 1, . . . , t− 1 contains at most
s − 1 independent edges. We now suppose that z = Σt−1

i=1ni is even. Let
x, y ∈ X. By Vizing’s Theorem, there exists an edge coloring of the complete
graph on z + 2 vertices {x, y} ∪

⋃t−1
i=1 Xi with z + 1 colors. Without loss of

generality we can assume that xy has color 1. Partition these z + 1 colors
into t− 1 color classes by considering n1 + 1 colors as the new color 1 and ni
colors as the new color i, 2 ≤ i ≤ t − 1. This yields an edge coloring of Kz+2

with t − 1 colors {1, . . . , t − 1} such that every vertex v ∈ {x, y} ∪
⋃t−1
i=1 Xi is

adjacent to at least ni = l −mi edges in color i, 1 ≤ i ≤ t − 1. Moreover, for
1 ≤ i ≤ t− 1, paint with i the edges having one vertex in Xi and one vertex in
X − {x, y}. Finally, paint with t all the remaining edges and change the color
of xy into t. Again in this coloring of Kl, every vertex is adjacent to at least ni
edges in color i, 1 ≤ i ≤ t− 1, which rules out the existence of K1,mi in colors
{1, . . . , t} − {i}. Moreover, the subgraph on the edges with colors 1, . . . , t− 1
contains at most s − 1 independent edges. Therefore, R > l, completing the
proof. �

Combining Lemmas 3.1, and 3.2 with the above discussion we have the
following theorem.

Theorem 3.3. Let t ≥ 3. Then

i. If 2s ≥ Rt−1, then R = Rt−1.

ii. If 2s < Rt−1 and St−1 < (2t− 3)s− t+ 2, then R = 2s.

iii. If 2s < Rt−1 and St−1 ≥ (2t− 3)s− t+ 2, then R =
⌈
St−1+s
t−1

⌉
+ 1.
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