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Recall that A-statistical core theorem determines a class of regular matrices for
which limsup(Tz) < st4 — limsupxz for all x € m. The main object of this
paper is to study an inequality between functionals which is sharper than that
of the A-statistical core theorem. We also study the relationship between these
functionals and some generalized limits which are called S 4-limits and A-Banach
limits.
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1. INTRODUCTION

Let m and c be the spaces of all bounded and convergent real sequences
x = (x}) normed by ||z|| = sup,, |z,|, respectively. Let

n
mo = {xEm:sup Z:ck <oo}.
" k=1
Observe that (x,) € m if and only if (2,41 — ) € mg. Let A = (anx) be
an infinite matrix with real entries. Given a sequence x the A-transform of x,
denoted as Az = ((Ax),), is given by (Az), = ), anrxy provided that the
series converges for each n. Let lim4 z := lim,,(Ax),, whenever the limit exists.
By ca we denote the summability domain of A, i.e., c4 = {x : lim4 z exists} .
We say that A is regular [3,22] if lim,, (Az), = limj z}, for each = € c.
For any nonnegative regular matrix A we define the A-density of a set
K C N, denoted as d4(K) as

da(K) = liénZank xk (k) = lign(AXK)n,
k

provided that the limit exists, where y i denotes the characteristic sequence of
the set K. When A is the Cesaro matrix, C1, the resulting C-density is called
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the natural density, which we will denote by §(K). Throughout the paper the
statement 0(K) # 0 will mean either §(K) > 0 or that the natural density of
K does not exist.

Using a density, we say that a sequence = = (xy) is A-statistically con-
vergent to a number £ if, for every € > 0,

da({k e N: |z — €] > €}) = 0.
We denote this limit by stq4 — limz = £. In particular, when A = C{, the
resulting notation is simply st — limz = ¢ [5,12,14,16, 18,21, 26].
Now we recall the concepts of statistical limit superior and statistical
limit inferior from [6,10,15]. Let
sup By, if B, #10
—00, if B, =0,

where B, = {be€ R:da({k € N: z > b}) # 0}. Also the A-statistical limit
inferior of x is given by

sty — limsupz = {

inf A,, if Ay #0

stA—hmmf:c:{ oo, if A, = 0,

where A, = {a € R:a({k e N: z} < a}) # 0}.

In this paper, we define some functionals and study their properties. We
obtain two inequalities which reduce to those given in [24] when A = C;. We
also provide a relationship between the A-statistical core theorem and absolute
equivalence.

2. THE RELATIONSHIP BETWEEN FUNCTIONALS
AND GENERALIZED LIMITS

Let B be the class of (necessarily continuous) linear functionals § on m
which are nonnegative and regular, that is, if x > 0, (i.e., xx > 0 for all
ke N:={1,2,---}) then 8(z) > 0, and S(z) = limy zy, for each z € ¢. If
B has the additional property that S(o(z)) = S(x) for all x € m, where o is
the left shift operator, defined by o(x1,z2, ) = (x2,x3, ) then 3 is called
a Banach limit. The existence of Banach limits has been shown by Banach [1]
and another proof may be found in [2]. It is well known [19] that the space
of all almost convergent sequences can be represented as the set of all x € m
which have the same value under any Banach limit.

A matrix A = [ap] is called translative [22] if for any x € m with limg x =
¢ we also get limg o(z) = £. A necessary and sufficient condition for a regular
matrix A to be (boundedly) translative [22] is that limy, > |ap k41 —ank| = 0.
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A regular matrix, A, is (boundedly) translative if and only if A sums all
almost convergent sequences and equals their Banach limits [22]. Such methods
are called strongly regular.

Following [27] we recall some definitions and notations.

Definition 1. Let L be a linear functional on m that satisfies the following
properties:

(1): L(z) >0, if z > 0, (positivity of L),
(2): L(z) = limy, z, for z € ¢, (regularity of L),
(3): For every E C N such that d4(F) = 0 implies that L(xg) = 0.

Every such L will be called an S4-limit, and denote their collection by
SLy. In the particular case when A = C7 is the Cesaro matrix, any such L
will be called an S-limit and their collection denoted by SL. Freedman [13]
proved that the space of all bounded statistically convergent sequences can
be represented as the set of all x € m which have the same value under any
S-limit.

Definition 2 (A-Banach limits). Let L be a bounded linear functional on
m that satisfies the following conditions:

(1): L(z) > 0 if o > 0 for all k.
(2): L(z) = limg xy if € ¢,
(3): L(z) < limsup,, sup; » ; ankTk; for every x € m.

Any such L will be called an A-Banach limit, and the collection of all
such functionals will be denoted by BL 4. In the particular case when A = C}
one gets BLc, = BL where BL is the set of all Banach limits.

In [27], the authors have proved that when A is a nonnegative regular
matrix, both A-Banach limits and S4-limits exist. The sublinear functionals
that generate or dominate these limits have also been examined.

Following Simons [25], we recall the definitions of functionals that gene-
rate and/or dominate generalized limits.

Definition 3. Let R and T be sublinear functionals on m and let £ be a
collection of bounded linear functionals on m.

(i): We say that R generates L if for any L € m* and L(x) < R(x) for all
x € m together imply that L € L,

(ii): We say that 7" dominates L if for every L € £ we have L(x) < T'(zx) for
all x € m,

where m* denotes the algebraic dual of m.
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A sublinear functional, R, on m generates L if and only if R(z) < W (z)
for all x, where

W(z) := sup{L(z): L€ L}, for all z € m.

Trivially a sublinear functional, R, dominates £ if and only if R(x) >
W (z) for all x € m. Combining these two statements, a sublinear functional
R on m generates as well as dominates £-limits if and only if it equals W.
We consider the following functionals on m :

L(z) = limsup zp , Pa(x) = sty — limsup x,,
Ly(x) = limsup sup Zankxkﬂ- ,
w(z) = inf L(z+ 2) , wh(z) = inf Ps(x+ 2).
zZEMo zZEMo

It should be noted that if z € m,, then L(z) > 0 (see, e.g. [4]), hence w is
well-defined on m (see [11]). The same argument also applies to show that
P4 is also well-defined on m. Since P4(z + z) < L(x + z) (see [10]), we have
Py(z) < w¥(x). Let

U (r) = inf limsupsup Zank(az + 2) kg j-

zEMo n 7 X

It is also known from [8] that if A is a strongly regular matrix then ¥ is well
defined on m.

THEOREM 1. V% and w’ are sublinear functionals on m.

Proof. Given z,y € m and ¢ > 0, there exist respectively z1, zo € mg such
that

Pa(z + 21) <wj(z) + ¢, Paly+22) <wi(y) +e
Since z1 + 29 € my, it follows from the above inequalities that
wa(r +y) < Pa(x 4y + 21+ 22) Swi(x) +wi(y) + 2.
Since ¢ is arbitrary, w’ is subadditive.
Also for a > 0, w¥ (ax) = azie%fbo Ps(x + 2) = aw’(x) which completes the
proof. It is known from [8] that ¥¥ is also sublinear. [

THEOREM 2. w’ generates Sa-limits.

Proof. Let L be a linear functional such that L(z) < w¥(z), for every
x € m. Observe that L(z) < w(z) < Pa(z) on m since (0,0,0,...) € mo. It
is proved in [27] that the sublinear functional P4 generates S4-limits which
implies that L is an S4-limit. Thus w’ generates S4-limits. [J
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THEOREM 3. Let A be a strongly reqular matriz. Then ¥’ both generates
and dominates A-Banach limits.

Proof. Let L be a linear functional such that L(z) < W% (x) for every
x € m. Since (0,0,0,...) € mo again one can see that

lim inf inf E ankZryj < L(xz) < limsupsup E nkThtj, T EM
n J noj
k k

and A is strongly regular which gives that L is an A-Banach limit. Thus ¥%

generates A-Banach limits.
In order to see that ¥% dominates A-Banach limits note that if L is an

A-Banach limit then L(r) < limsup, sup; Zank$k+j holds on m. From [8]
k

it is known that limsup,, sup; ;anka:kﬂ- = Zler}?flo limnsup sgp ;ank(x + z)k+j
whenever A is strongly regular. Then we have for every z € m that L(z) <
U () which means ¥ dominates A-Banach limits. [

Let Q be a sublinear functional on m and define ¥Uq(z) = ienf Qx + 2).

zZEMgQ

If Q(z) > 0 for every z € mg then Uq is well defined [8,11]. Similarly it can
be shown that Wq is sublinear on m and the following holds.

THEOREM 4. If Q) generates Sa-limits then Wq generates S a-limits.

THEOREM 5. IfQ) generates A-Banach limits then Vg generates A-Banach
limats.

3. SOME INEQUALITIES BETWEEN FUNCTIONALS

In [10], for every = € m, the inequality
(3.1) limsup Tz < sty —limsupx
is studied. Recall from [10] and [15] that if supz |tnk| < oo then (3.1) holds
"k

if and only if
(i) T € 1}, i.e., T is regular and lim,, Z ltnik| = 0 whenever d4(F) =0,
keE

(ii) limp > [tne] = 1.
k

Now we are ready to give our inequalities. Note that the first one is
sharper than that of (3.1) and if we take A = C1, these inequalities reduce to
those given in [24].
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THEOREM 6. Assume that sup E |tnk| < 00. Then
n
k

(3.2) L(Tz) < wi(x) for every x € m
if and only if

(i) T is strongly regular,

(i) limy, Z |tnk| = 0 whenever 64(E) =0
keE

(iii) imy, Y~ [tnp| = 1.
k

Proof. Observe that w(z) < Pa(x) on m. So, by hypothesis, for every
x € m we have

L(Tz) < wi(z) < Pa(x).
By Theorem 7 of [10], we get that lim,, Z ltne] =1 and T' € 7. On the

k
other hand, since w¥(z) < w(x) on m, we have L(T'z) < w(x). So it follows
from Theorem 3 of [11] that T is also strongly regular. This completes the
proof of necessity.
For the proof of sufficiency, Theorem 7 of [10] implies that

limsup Tz < Py(z) for every = € m.

Hence, we have limsup T'(z + z) < P4(x + z) where z € m,. This implies

(3.3) inf limsupT'(z + 2) < inf Pa(z + 2) = wi(z).
ZEMo zZEMo

Now let 6(z) := ienf limsup T'(z + z). Then

(3.4) 0(z) > i€nf {limsup Tz + liminf Tz} .

i=1
B = (bng) is given by bpg, = tpg — ty k+1. Since A is strongly regular, Tz = By
tends to zero. Hence, by (3.4), we have

n
But by Lemma 4 of [11], Tz = By, where y = {Z%} €m, z € m, and

(3.5) 6(z) > limsup T'x.
Combining (3.3) and (3.5), we conclude, for every x € m, that
limsup Tz < w(x)

which completes the proof. [
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THEOREM 7. Let B be a normal matriz and denote its triangular inverse
by B~! = (b;kl) For an arbitrary matriz T, in order that, whenever Bx € m,
Ax exists, bounded and satisfy

(3.6) L(Tz) < w}(Bx)

it is necessary and sufficient that the following conditions hold:
(i) C :=TB™! exists,

(ii) C is strongly regular,

(#3) lim,, Z lenk] = 0 for every E C N with 64(F) =0,

keE
(iv) limp, Y |enk| =1,
k
(v) for fixed n, lim, Z Z tnjbj_kl =0.

k=0 |j=v+1

Proof. Recall that by a normal matrix we mean a triangular matrix with
non-zero diagonal entries. If (T'x),, exists for every n whenever Bx € m then
by Lemma 2 of [4] we see that (i) and (v) hold. That Lemma also implies
Tz = Cy, where y = Bzx. Since Tz € m we have Cy € m. Hence (3.6) implies
L(Cy) < w(y). Now it follows from Theorem 6 that (ii), (iii) and (iv) hold.
For the proof of sufficiency assume that (i-v) hold. Then (i), (ii), (iv) and (v)
imply the conditions of Lemma 2 of [4]. So it follows from the same Lemma
that C'y € m, hence Tx € m. Theorem 6 yields that L(Cy) < w(y). Since
y = Bx and Cy = Tx we conclude that

L(Tx) < wj(Bx),
which completes the proof. [

4. ABSOLUTE EQUIVALENCE AND CORE

In this section we establish a relationship between the A-statistical core
theorem and absolute equivalence which is complementary to [10] and [24]. To
give our results, we pause to collect some notation.

If z is a bounded real sequence then the Knopp core of x, denoted by
K — core{z}, is given by the closed interval [liminfz, limsupz| [17]. The
inequality

limsup Az < limsupz

for a bounded sequence x is studied in [4,9,20,23,25]. This inequality implies
that
liminf z < liminf Az <limsup Az < limsup z,
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or equivalently
K — core{Az} C K — core{z}.

The idea of statistical core of a real number sequence is studied in [15].

The sequence z is said to be A-statistically bounded if there is a number B
such that d4({k : |zx| > B}) = 0. The A-statistical core of such a sequence x of
real numbers is defined to be the closed interval [st 4 —liminf x, st4—limsup z],
i.e. stqg — core{x} = [st4 —liminfz, sty — limsupzx].

Recall that the matrices A and B are called absolutely equivalent on a
set of sequences if

liTan{(Ax)n — (Bx)p} =0

for all z in the set. It is well-known from [7] that the regular matrices A and
B are absolutely equivalent for bounded sequences if and only if

x
(4.1) lirrlnz b — ani| = 0.
k=1

Now we have
THEOREM 8. Let x € m and let A be a reqular matriz. Then
K — core{Tz} C sty — core{x}

if and only if T' is absolutely equivalent to a nonnegative matriz B in 73 for
r em.

Proof. Sufficiency: Since T' is absolutely equivalent to a nonnegative ma-
trix B in 7}, we have for every x € m,

(4.2) lim{(Tz),, — (Bx),} = 0.
Now Theorem 6.5.1 of Cooke of [7] implies that
(4.3) K — core{Tz} C K — core{x} for every x € m.

Since B is a nonnegative matrix in 77, we have, by Theorem 7 of [10], that

(4.4) K — core{Bx} C sty — core{z} for every z € m.
It follows from (4.2) and Theorem 6.3.2 of [7] that
(4.5) K —core{Tz} = K — core{Bx}.

Now (4.4) and (4.5) imply that K — core{Tz} C stq — core{z}.
Necessity: Let x € m and let T be a regular matrix. By hypothesis,

(4.6) K — core{Txz} C sty — core{z} C K — core{z}.
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Hence, it follows from Theorem 6.5.1 of [7] that there is a nonnegative regular
matrix B such that T' and B are absolutely equivalent on m. It remains to
show that

(4.7) lim } “byy = 0
" keE

for every E C N such that d4(E) = 0. In order to see this let E C N and
04(F)=0. Then (4.1) implies

(4.8) lim Y~ [bok — tnk| = 0.
" keE

Now, for any set of A-density zero, one can write

(49) ank < Z |bnk’ - tnk| =+ Z |tnk‘ .

keE keE keE
The first inclusion in (4.6) and Theorem 7 of [10] imply that
(4.10) lim ) [t] = 0.
keE

So, it follows from (4.8), (4.9) and (4.10) that (4.7) holds, whence the proof is
completed. [

The following result deals with st4 — lim sup equality of sequences.

THEOREM 9. If © = (x,) and y = (yn) are A-statistically bounded se-
quences and

(4.11) sta — limsup(zy, —yn) =0
then stqa — limsupx = st4 — limsupy.

Proof. stq —limsupz < st4 — limsup(z — y) + st4 — limsupy = sty —
lim sup y. Interchanging the roles of x and ¥y, we also get st4 — limsupy <
st4 — limsup x, hence we have the result. [

Similarly one can get that st4 — liminfz = st4 — liminf y.
So we immediately conclude the following which is an analogue of Theo-
rem 6.3.2 of [7].

COROLLARY 1. If x and y are A-statistically bounded sequences such that
(4.11) holds, then we have sty — core{x} = sty — core{y}.

If z and y are A-statistically bounded complex sequences satisfying (4.11),
we could get the same conclusion of Corollary 1 by using Theorem 6 in [10]
which provides an alternate form of the A-statistical core for A-statistically
bounded complex sequences.
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