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Recall that A-statistical core theorem determines a class of regular matrices for
which lim sup(Tx) ≤ stA − lim supx for all x ∈ m. The main object of this
paper is to study an inequality between functionals which is sharper than that
of the A-statistical core theorem. We also study the relationship between these
functionals and some generalized limits which are called SA-limits and A-Banach
limits.
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1. INTRODUCTION

Let m and c be the spaces of all bounded and convergent real sequences
x = (xk) normed by ‖x‖ = supn |xn|, respectively. Let

m0 :=

{
x ∈ m : sup

n

∣∣∣∣∣
n∑

k=1

xk

∣∣∣∣∣ <∞
}
.

Observe that (xn) ∈ m if and only if (xn+1 − xn) ∈ m0. Let A = (ank) be
an infinite matrix with real entries. Given a sequence x the A-transform of x,
denoted as Ax = ((Ax)n), is given by (Ax)n =

∑
k ankxk provided that the

series converges for each n. Let limA x := limn(Ax)n whenever the limit exists.
By cA we denote the summability domain of A, i.e., cA = {x : limA x exists} .
We say that A is regular [3, 22] if limn(Ax)n = limk xk for each x ∈ c.

For any nonnegative regular matrix A we define the A-density of a set
K ⊆ N, denoted as δA(K) as

δA(K) = lim
n

∑
k

ank χK(k) = lim
n

(AχK)n,

provided that the limit exists, where χK denotes the characteristic sequence of
the set K. When A is the Cesàro matrix, C1, the resulting C1-density is called
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the natural density, which we will denote by δ(K). Throughout the paper the
statement δ(K) 6= 0 will mean either δ(K) > 0 or that the natural density of
K does not exist.

Using a density, we say that a sequence x = (xk) is A-statistically con-
vergent to a number ` if, for every ε > 0,

δA({k ∈ N : |xk − `| ≥ ε}) = 0.

We denote this limit by stA − limx = `. In particular, when A = C1, the
resulting notation is simply st− limx = ` [5, 12,14,16,18,21,26].

Now we recall the concepts of statistical limit superior and statistical
limit inferior from [6,10,15]. Let

stA − lim supx =

{
supBx, if Bx 6= ∅
−∞, if Bx = ∅,

where Bx = {b ∈ < : δA({k ∈ N : xk > b}) 6= 0}. Also the A-statistical limit
inferior of x is given by

stA − lim inf x =

{
inf Ax, if Ax 6= ∅
+∞, if Ax = ∅,

where Ax = {a ∈ < : δA({k ∈ N : xk < a}) 6= 0}.
In this paper, we define some functionals and study their properties. We

obtain two inequalities which reduce to those given in [24] when A = C1. We
also provide a relationship between the A-statistical core theorem and absolute
equivalence.

2. THE RELATIONSHIP BETWEEN FUNCTIONALS
AND GENERALIZED LIMITS

Let B be the class of (necessarily continuous) linear functionals β on m
which are nonnegative and regular, that is, if x ≥ 0, (i.e., xk ≥ 0 for all
k ∈ N := {1, 2, · · · }) then β(x) ≥ 0, and β(x) = limk xk, for each x ∈ c. If
β has the additional property that β(σ(x)) = β(x) for all x ∈ m, where σ is
the left shift operator, defined by σ(x1, x2, · · · ) = (x2, x3, · · · ) then β is called
a Banach limit. The existence of Banach limits has been shown by Banach [1]
and another proof may be found in [2]. It is well known [19] that the space
of all almost convergent sequences can be represented as the set of all x ∈ m
which have the same value under any Banach limit.

A matrix A = [ank] is called translative [22] if for any x ∈ m with limA x =
` we also get limA σ(x) = `. A necessary and sufficient condition for a regular
matrix A to be (boundedly) translative [22] is that limn

∑
k |an,k+1−ank| = 0.
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A regular matrix, A, is (boundedly) translative if and only if A sums all
almost convergent sequences and equals their Banach limits [22]. Such methods
are called strongly regular.

Following [27] we recall some definitions and notations.

Definition 1. Let L be a linear functional on m that satisfies the following
properties:

(1): L(x) ≥ 0, if x ≥ 0, (positivity of L),

(2): L(x) = limk xk for x ∈ c, (regularity of L),

(3): For every E ⊆ N such that δA(E) = 0 implies that L(χE) = 0.

Every such L will be called an SA-limit, and denote their collection by
SLA. In the particular case when A = C1 is the Cesàro matrix, any such L
will be called an S-limit and their collection denoted by SL. Freedman [13]
proved that the space of all bounded statistically convergent sequences can
be represented as the set of all x ∈ m which have the same value under any
S-limit.

Definition 2 (A-Banach limits). Let L be a bounded linear functional on
m that satisfies the following conditions:

(1): L(x) ≥ 0 if xk ≥ 0 for all k.

(2): L(x) = limk xk if x ∈ c,
(3): L(x) ≤ lim supn supj

∑
k ankxk+j for every x ∈ m.

Any such L will be called an A-Banach limit, and the collection of all
such functionals will be denoted by BLA. In the particular case when A = C1

one gets BLC1 = BL where BL is the set of all Banach limits.

In [27], the authors have proved that when A is a nonnegative regular
matrix, both A-Banach limits and SA-limits exist. The sublinear functionals
that generate or dominate these limits have also been examined.

Following Simons [25], we recall the definitions of functionals that gene-
rate and/or dominate generalized limits.

Definition 3. Let R and T be sublinear functionals on m and let L be a
collection of bounded linear functionals on m.

(i): We say that R generates L if for any L ∈ m∗ and L(x) ≤ R(x) for all
x ∈ m together imply that L ∈ L,

(ii): We say that T dominates L if for every L ∈ L we have L(x) ≤ T (x) for
all x ∈ m,

where m∗ denotes the algebraic dual of m.
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A sublinear functional, R, on m generates L if and only if R(x) ≤ W (x)
for all x, where

W (x) := sup{L(x) : L ∈ L}, for all x ∈ m.

Trivially a sublinear functional, R, dominates L if and only if R(x) ≥
W (x) for all x ∈ m. Combining these two statements, a sublinear functional
R on m generates as well as dominates L-limits if and only if it equals W .

We consider the following functionals on m :

L(x) = lim supxn , PA(x) = stA − lim supxn,

LA(x) = lim sup
n

sup
j

∑
k

ankxk+j ,

w(x) = inf
z∈mo

L(x+ z) , w∗A(x) = inf
z∈mo

PA(x+ z).

It should be noted that if z ∈ mo, then L(z) ≥ 0 (see, e.g. [4]), hence w is
well-defined on m (see [11]). The same argument also applies to show that
PA is also well-defined on m. Since PA(x + z) ≤ L(x + z) (see [10]), we have
PA(x) ≤ w∗A(x). Let

Ψ∗A(x) = inf
z∈mo

lim sup
n

sup
j

∑
k

ank(x+ z)k+j .

It is also known from [8] that if A is a strongly regular matrix then Ψ∗A is well
defined on m.

Theorem 1. Ψ∗A and w∗A are sublinear functionals on m.

Proof. Given x, y ∈ m and ε > 0, there exist respectively z1, z2 ∈ m0 such
that

PA(x+ z1) < w∗A(x) + ε, PA(y + z2) < w∗A(y) + ε.

Since z1 + z2 ∈ m0, it follows from the above inequalities that

w∗A(x+ y) ≤ PA(x+ y + z1 + z2) ≤ w∗A(x) + w∗A(y) + 2ε.

Since ε is arbitrary, w∗A is subadditive.

Also for α > 0, w∗A(αx) = α inf
z∈mo

PA(x +
z

α
) = αw∗A(x) which completes the

proof. It is known from [8] that Ψ∗A is also sublinear. �

Theorem 2. w∗A generates SA-limits.

Proof. Let L be a linear functional such that L(x) ≤ w∗A(x), for every
x ∈ m. Observe that L(x) ≤ w∗A(x) ≤ PA(x) on m since (0, 0, 0, ...) ∈ m0. It
is proved in [27] that the sublinear functional PA generates SA-limits which
implies that L is an SA-limit. Thus w∗A generates SA-limits. �
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Theorem 3. Let A be a strongly regular matrix. Then Ψ∗A both generates
and dominates A-Banach limits.

Proof. Let L be a linear functional such that L(x) ≤ Ψ∗A(x) for every
x ∈ m. Since (0, 0, 0, ...) ∈ m0 again one can see that

lim inf
n

inf
j

∑
k

ankxk+j ≤ L(x) ≤ lim sup
n

sup
j

∑
k

ankxk+j , x ∈ m

and A is strongly regular which gives that L is an A-Banach limit. Thus Ψ∗A
generates A-Banach limits.

In order to see that Ψ∗A dominates A-Banach limits note that if L is an

A-Banach limit then L(x) ≤ lim supn supj

∑
k

ankxk+j holds on m. From [8]

it is known that lim supn supj

∑
k

ankxk+j = inf
z∈mo

lim sup
n

sup
j

∑
k

ank(x + z)k+j

whenever A is strongly regular. Then we have for every x ∈ m that L(x) ≤
Ψ∗A(x) which means Ψ∗A dominates A-Banach limits. �

Let Ω be a sublinear functional on m and define ΨΩ(x) = inf
z∈m0

Ω(x+ z).

If Ω(z) ≥ 0 for every z ∈ m0 then ΨΩ is well defined [8, 11]. Similarly it can
be shown that ΨΩ is sublinear on m and the following holds.

Theorem 4. If Ω generates SA-limits then ΨΩ generates SA-limits.

Theorem 5. If Ω generates A-Banach limits then ΨΩ generates A-Banach
limits.

3. SOME INEQUALITIES BETWEEN FUNCTIONALS

In [10], for every x ∈ m, the inequality

(3.1) lim supTx ≤ stA − lim supx

is studied. Recall from [10] and [15] that if sup
n

∑
k

|tnk| <∞ then (3.1) holds

if and only if

(i) T ∈ τ∗A, i.e., T is regular and limn

∑
k∈E
|tnk| = 0 whenever δA(E) = 0,

(ii) limn

∑
k

|tnk| = 1.

Now we are ready to give our inequalities. Note that the first one is
sharper than that of (3.1) and if we take A = C1, these inequalities reduce to
those given in [24].
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Theorem 6. Assume that sup
n

∑
k

|tnk| <∞. Then

(3.2) L(Tx) ≤ w∗A(x) for every x ∈ m

if and only if
(i) T is strongly regular,

(ii) limn

∑
k∈E
|tnk| = 0 whenever δA(E) = 0

(iii) limn

∑
k

|tnk| = 1.

Proof. Observe that w∗A(x) ≤ PA(x) on m. So, by hypothesis, for every
x ∈ m we have

L(Tx) ≤ w∗A(x) ≤ PA(x).

By Theorem 7 of [10], we get that limn

∑
k

|tnk| = 1 and T ∈ τ∗A. On the

other hand, since w∗A(x) ≤ w(x) on m, we have L(Tx) ≤ w(x). So it follows
from Theorem 3 of [11] that T is also strongly regular. This completes the
proof of necessity.

For the proof of sufficiency, Theorem 7 of [10] implies that

lim supTx ≤ PA(x) for every x ∈ m.

Hence, we have lim supT (x+ z) ≤ PA(x+ z) where z ∈ mo. This implies

(3.3) inf
z∈mo

lim supT (x+ z) ≤ inf
z∈mo

PA(x+ z) = w∗A(x).

Now let θ(x) := inf
z∈mo

lim supT (x+ z). Then

(3.4) θ(x) ≥ inf
z∈mo

{lim supTx+ lim inf Tz} .

But by Lemma 4 of [11], Tz = By, where y =

{
n∑

i=1

xi

}
∈ m, z ∈ mo and

B = (bnk) is given by bnk = tnk − tn,k+1. Since A is strongly regular, Tz = By
tends to zero. Hence, by (3.4), we have

(3.5) θ(x) ≥ lim supTx.

Combining (3.3) and (3.5), we conclude, for every x ∈ m, that

lim supTx ≤ w∗A(x)

which completes the proof. �



7 Some inequalities between functionals related to generalized limits 151

Theorem 7. Let B be a normal matrix and denote its triangular inverse
by B−1 = (b−1

nk ). For an arbitrary matrix T, in order that, whenever Bx ∈ m,
Ax exists, bounded and satisfy

(3.6) L(Tx) ≤ w∗A(Bx)

it is necessary and sufficient that the following conditions hold:
(i) C := TB−1 exists,
(ii) C is strongly regular,

(iii) limn

∑
k∈E
|cnk| = 0 for every E ⊆ N with δA(E) = 0,

(iv) limn

∑
k

|cnk| = 1,

(v) for fixed n, limv

v∑
k=0

∣∣∣∣∣∣
∞∑

j=v+1

tnjb
−1
jk

∣∣∣∣∣∣ = 0.

Proof. Recall that by a normal matrix we mean a triangular matrix with
non-zero diagonal entries. If (Tx)n exists for every n whenever Bx ∈ m then
by Lemma 2 of [4] we see that (i) and (v) hold. That Lemma also implies
Tx = Cy, where y = Bx. Since Tx ∈ m we have Cy ∈ m. Hence (3.6) implies
L(Cy) ≤ w∗A(y). Now it follows from Theorem 6 that (ii), (iii) and (iv) hold.
For the proof of sufficiency assume that (i-v) hold. Then (i), (ii), (iv) and (v)
imply the conditions of Lemma 2 of [4]. So it follows from the same Lemma
that Cy ∈ m, hence Tx ∈ m. Theorem 6 yields that L(Cy) ≤ w∗A(y). Since
y = Bx and Cy = Tx we conclude that

L(Tx) ≤ w∗A(Bx),

which completes the proof. �

4. ABSOLUTE EQUIVALENCE AND CORE

In this section we establish a relationship between the A-statistical core
theorem and absolute equivalence which is complementary to [10] and [24]. To
give our results, we pause to collect some notation.

If x is a bounded real sequence then the Knopp core of x, denoted by
K − core {x}, is given by the closed interval [lim inf x, lim supx] [17]. The
inequality

lim supAx ≤ lim supx

for a bounded sequence x is studied in [4,9, 20,23,25]. This inequality implies
that

lim inf x ≤ lim inf Ax ≤ lim supAx ≤ lim supx,
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or equivalently

K − core {Ax} ⊆ K − core {x} .

The idea of statistical core of a real number sequence is studied in [15].

The sequence x is said to be A-statistically bounded if there is a number B
such that δA({k : |xk| > B}) = 0. The A-statistical core of such a sequence x of
real numbers is defined to be the closed interval [stA−lim inf x, stA−lim supx] ,
i.e. stA − core{x} = [stA − lim inf x, stA − lim supx] .

Recall that the matrices A and B are called absolutely equivalent on a
set of sequences if

lim
n
{(Ax)n − (Bx)n} = 0

for all x in the set. It is well-known from [7] that the regular matrices A and
B are absolutely equivalent for bounded sequences if and only if

(4.1) lim
n

∞∑
k=1

|bnk − ank| = 0.

Now we have

Theorem 8. Let x ∈ m and let A be a regular matrix. Then

K − core {Tx} ⊆ stA − core {x}

if and only if T is absolutely equivalent to a nonnegative matrix B in τ∗A for
x ∈ m.

Proof. Sufficiency: Since T is absolutely equivalent to a nonnegative ma-
trix B in τ∗A, we have for every x ∈ m,

(4.2) lim
n
{(Tx)n − (Bx)n} = 0.

Now Theorem 6.5.1 of Cooke of [7] implies that

(4.3) K − core {Tx} ⊆ K − core {x} for every x ∈ m.

Since B is a nonnegative matrix in τ∗A, we have, by Theorem 7 of [10], that

(4.4) K − core {Bx} ⊆ stA − core {x} for every x ∈ m.

It follows from (4.2) and Theorem 6.3.2 of [7] that

(4.5) K − core {Tx} = K − core {Bx} .

Now (4.4) and (4.5) imply that K − core {Tx} ⊆ stA − core {x} .
Necessity: Let x ∈ m and let T be a regular matrix. By hypothesis,

(4.6) K − core {Tx} ⊆ stA − core {x} ⊆ K − core {x} .
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Hence, it follows from Theorem 6.5.1 of [7] that there is a nonnegative regular
matrix B such that T and B are absolutely equivalent on m. It remains to
show that

(4.7) lim
n

∑
k∈E

bnk = 0

for every E ⊆ N such that δA(E) = 0. In order to see this let E ⊆ N and
δA(E) = 0. Then (4.1) implies

(4.8) lim
n

∑
k∈E
|bnk − tnk| = 0.

Now, for any set of A-density zero, one can write

(4.9)
∑
k∈E

bnk ≤
∑
k∈E
|bnk − tnk|+

∑
k∈E
|tnk| .

The first inclusion in (4.6) and Theorem 7 of [10] imply that

(4.10) lim
n

∑
k∈E
|tnk| = 0.

So, it follows from (4.8), (4.9) and (4.10) that (4.7) holds, whence the proof is
completed. �

The following result deals with stA − lim sup equality of sequences.

Theorem 9. If x = (xn) and y = (yn) are A-statistically bounded se-
quences and

(4.11) stA − lim sup(xn − yn) = 0

then stA − lim supx = stA − lim sup y.

Proof. stA − lim supx ≤ stA − lim sup(x − y) + stA − lim sup y = stA −
lim sup y. Interchanging the roles of x and y, we also get stA − lim sup y ≤
stA − lim supx, hence we have the result. �

Similarly one can get that stA − lim inf x = stA − lim inf y.
So we immediately conclude the following which is an analogue of Theo-

rem 6.3.2 of [7].

Corollary 1. If x and y are A-statistically bounded sequences such that
(4.11) holds, then we have stA − core {x} = stA − core {y} .

If x and y are A-statistically bounded complex sequences satisfying (4.11),
we could get the same conclusion of Corollary 1 by using Theorem 6 in [10]
which provides an alternate form of the A-statistical core for A-statistically
bounded complex sequences.
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Çorum, Turkey

tugbayurdakadim@hotmail.com

Ankara University,
Faculty of Science,

Department of Mathematics,
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