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We consider the path ideal associated to a line graph, we compute sdepth for its
quotient ring and note that it is equal with its depth. In particular, it satisfies
the Stanley inequality.
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INTRODUCTION

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K.
Let M be a Zn-graded S-module. A Stanley decomposition of M is a direct
sum D : M =

⊕r
i=1miK[Zi] as a Zn-graded K-vector space, where mi ∈

M is homogeneous with respect to Zn-grading, Zi ⊂ {x1, . . . , xn} such that
miK[Zi] = {umi : u ∈ K[Zi]} ⊂ M is a free K[Zi]-submodule of M . We
define sdepth(D) = mini=1,...,r |Zi| and sdepthS(M) = max{sdepth(D)| D is a
Stanley decomposition of M}. The number sdepthS(M) is called the Stanley
depth of M . In [1], J. Apel restated a conjecture firstly given by Stanley in [16],
namely that sdepthS(M) ≥ depthS(M) for any Zn-graded S-module M . This
conjecture proves to be false, in general, for M = S/I and M = J/I, where
0 6= I ⊂ J ⊂ S are monomial ideals, see [7].

Herzog, Vladoiu and Zheng show in [11] that sdepthS(M) can be compu-
ted in a finite number of steps if M = I/J , where J ⊂ I ⊂ S are monomial
ideals. In [15], Rinaldo gives a computer implementation for this algorithm,
in the computer algebra system CoCoA [6]. However, it is difficult to com-
pute this invariant, even in some very particular cases. For instance in [2]
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Biro et al. proved that sdepth(m) = dn/2e where m = (x1, . . . , xn). For a
friendly introduction on Stanley depth we recommend [12].

Let ∆ ⊂ 2[n] be a simplicial complex. A face F ∈ ∆ is called a facet, if F
is maximal with respect to inclusion. We denote F(∆) the set of facets of ∆.
If F ∈ F(∆), we denote xF =

∏
j∈F xj . Then the facet ideal I(∆) associated

to ∆ is the squarefree monomial ideal I = (xF : F ∈ F(∆)) of S. The facet
ideal was studied by Faridi [8] from the depth perspective.

A line graph of lengh n, denoted by Ln, is a graph with the vertex set
V = [n] and the edge set E = {{1, 2}, {2, 3}, . . . , {n − 1, n}}. The Stanley
depth of the edge ideal associated to Ln (which is in fact the facet ideal of Ln,
if we look at Ln as a simplicial complex) was computed by Alin Ştefan in [17].

Let 1 ≤ m ≤ n be an integer and let ∆n,m be the simplicial complex
with the set of facets F(∆n,m) = {{1, 2, . . . ,m}, {2, 3, . . . ,m + 1}, · · · , {n −
m + 1, n −m + 2, . . . , n}}. We denote In,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . ,
xn−m+1xn−m+2 · · ·xn) , the associated facet ideal.

Note that In,m is the path ideal of the graph Ln, provided with the
direction given by 1 < 2 < . . . < n, see [10] for further details.

According to [10, Theorem 1.2],

pd(S/In,m) =

{
2(n−d)
m+1 , n ≡ d(mod (m+ 1)) with 0 ≤ d ≤ m− 1,

2n−m+1
m+1 , n ≡ m(mod (m+ 1)).

By Auslander-Buchsbaum formula (see [18]), it follows that depth(S/In,m) =
n − pd(S/In,m) and, by a straightforward computation, we can see

depth(S/In,m) = n+ 1−
⌊
n+1
m+1

⌋
−
⌈
n+1
m+1

⌉
.

We prove that sdepth(S/In,m) = depth(S/In,m) = n+1−
⌊
n+1
m+1

⌋
−
⌈
n+1
m+1

⌉
,

see Theorem 1.3. In particular, we give another prove for the result of [10,
Theorem 1.2]. Also, our result generalizes [17, Lemma 4].

We recall some notions introduced by Faridi in [8]. Let ∆ be a simplicial
complex. A facet F of ∆ is called a leaf, if either F is the only facet of ∆,
or there exists a facet G in ∆, G 6= F , such that F ∩ F ′ ⊆ F ∩ G for all
F ′ ∈ ∆ with F ′ 6= F . A connected simplicial complex ∆ is called a tree, if
every nonempty connected subcomplex of ∆ has a leaf. This notion generalizes
trees from graph theory. Note that ∆n,m is a tree, in the sense of the above
definition.

According to [9, Corollary 1.6], if I is the facet ideal associated to a tree
(which is the case for In,m), it follows that S/I would be pretty clean. However,
there is a mistake in the second line of the proof of [9, Proposition 1.4], and
therefore, this result might be wrong in general. On the other hand, if I ⊂ S
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is a pretty clean monomial ideal, it is known that sdepth(S/I) = depth(S/I),
see [12, Proposition 18] for further details.

1. MAIN RESULTS

We recall the well-known Depth Lemma, see for instance [18, Lemma 1.3.9].

Lemma 1.1 (Depth Lemma). If 0 → U → M → N → 0 is a short exact
sequence of modules over a local ring S, or a Noetherian graded ring with S0
local, then

a) depthM ≥ min{depthN, depthU}.
b) depthU ≥ min{depthM, depthN + 1}.
c) depthN ≥ min{depthU − 1,depthM}.

In [14], Asia Rauf proved the analog of Lemma 1.1(a) for sdepth:

Lemma 1.2. Let 0 → U → M → N → 0 be a short exact sequence of
Zn-graded S-modules. Then:

sdepth(M) ≥ min{sdepth(U), sdepth(N)}.

Our main result is the following theorem.

Theorem 1.3. sdepth(S/In,m) = depth(S/In,m) = n + 1 −
⌊
n+1
m+1

⌋
−⌈

n+1
m+1

⌉
.

Proof. We use induction on m ≥ 1 and n ≥ m. The case m = 1 is trivial.
The case m = 2 follows from [13, Lemma 2.8] and [17, Lemma 4].

We assume m ≥ 3. If n = m, then sdepth(S/In,m) = depth(S/In,m) =
m− 1, since In,n = (x1 · · ·xn) is principal. Assume m+ 1 ≤ n ≤ 2m− 1. Note
that In,m = xm(In,m : xm). We have sdepth(S/In,m) = sdepth(S/(In,m : xm)),
by [3, Theorem 1.4].

Also, we obviously have depth(S/In,m) = depth(S/(In,m : xm)). On
the other hand, S/(In,m : xm) is isomorphic to S′/(In−1,m−1)[y], where S′ =
K[x1, . . . , xm−1, xm+1, . . . , xn] and thus, by induction hypothesis and
[11, Lemma 3.6], sdepth(S/In,m) = depth(S/In,m) = 1 + (n −

⌊
n
m

⌋
−
⌈
n
m

⌉
) =

1 + n− 3 = n− 2, as required.

It remains to consider the case m ≥ 3 and n ≥ 2m. Let k :=
⌊
n+1
m+1

⌋
and

a = n + 1 − k(m + 1). We denote ϕ(n,m) := n + 1 −
⌊
n+1
m+1

⌋
−
⌈
n+1
m+1

⌉
. One

can easily see that ϕ(n,m) =

{
n+ 1− 2k, a = 0

n− 2k, a 6= 0
.
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We consider the ideals L0 := In,m and Lj := (Lj−1 : xj(m+1)−1), where
1 ≤ j ≤ k. We denote Uj := (Lj−1, xj(m+1)−1) for all 1 ≤ j ≤ k. We have the
following short exact sequences:

(Sk) : 0 −→ S/Lj
·xj(m+1)−1−→ S/Lj−1 −→ S/Uj −→ 0, 1 ≤ j ≤ k.

We denote ui := xi · · ·xi+m−1, for 1 ≤ i ≤ n−m+ 1. Note that G(L0) =
{u1, . . . , un−m+1}, G(L1) = { u1xm , . . . ,

um
xm
, um+2, . . . , un−m+1}, because um+1 ∈

(um/xm), and, also, G(U1) = {xm, um+1, . . . , un−m+1}. Moreover, one can
easily check that:

Lj = (
u1
xm

, . . . ,
um
xm

,
um+2

x2m+1
, . . . ,

u2m+1

x2m+1
, . . . ,

u(m+1)j−m

x(m+1)j−1
, . . . ,

u(m+1)j−1

x(m+1)j−1
,

u(m+1)j+1, . . . , un−m+1),

for all 1 ≤ j ≤ k − 1. It follows that:

Uj+1 = (
u1
xm

, . . . ,
um
xm

, . . . ,
u(m+1)j−m

x(m+1)j−1
, . . . ,

u(m+1)j−1

x(m+1)j−1
, x(m+1)(j+1)−1,

u(m+1)(j+1), . . . , un−m+1),

for all 1 ≤ j ≤ k − 1. Also, we have:

Lk = (
u1
xm

, . . . ,
um
xm

, . . . ,
u(m+1)(k−1)−m

x(m+1)(k−1)−1
, . . . ,

u(m+1)(k−1)−1

x(m+1)(k−1)−1
,
u(m+1)k−m

x(m+1)k−1
, . . . ,

ut
x(m+1)k−1

),

where t = n−m if a = m, or t = n−m+ 1 otherwise.

Note that |G(Lk)| = m(k − 1) + (t + 1) − (m + 1)k + m = t + 1 − k
and, moreover, Lk ∼= It+m−k−1,m−1S. Thus, by induction hypothesis and [11,
Lemma 3.6], we have depth(S/Lk) = sdepth(S/Lk) = n − (t + m − k − 1) +
ϕ(t+m− k − 1,m− 1) = n+ 1−

⌊
t+m−k
m

⌋
−
⌈
t+m−k
m

⌉
.

If a = m, then t = n −m, n = k(m + 1) + m − 1, t + m − k = n − k =
(k + 1)m − 1 and thus depth(S/Lk) = sdepth(S/Lk) = n + 1 − k − (k + 1) =
n − 2k = ϕ(n,m). If a = 0, then t + m − k = km and thus depth(S/Lk) =
sdepth(S/Lk) = n+ 1− 2k.

If 0 < a < m, then t + m − k = km + a and thus depth(S/Lk) =
sdepth(S/Lk) = n−2k. In all the cases, we have depth(S/Lk) = sdepth(S/Lk)
= ϕ(n,m).

Note that S/U1
∼=K[xm+1, . . . , xn]/(um+1, . . . , un−m+1)[x1, . . . , xm−1] and

therefore, by induction hypothesis, depth(S/U1) = sdepth(S/U1) = m − 1 +

ϕ(n−m,m) = n−
⌊
n−m+1
m+1

⌋
−
⌈
n−m+1
m+1

⌉
. Note that n−m+1

m+1 = k− 1 + a+1
m+1 and
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therefore
⌈
n−m+1
m+1

⌉
= k. On the other hand, if a < m then

⌊
n−m+1
m+1

⌋
= k−1 and

if a = m then
⌊
n−m+1
m+1

⌋
= k. It follows that depth(S/U1) = sdepth(S/U1) ={

n+ 1− 2k, a < m

n− 2k, a = m
≥ ϕ(n,m).

Moreover, depth(S/U1) = sdepth(S/U1) = ϕ(n,m) if and only if a = 0
or a = m. Otherwise, depth(S/U1) = sdepth(S/U1) = ϕ(n,m) + 1.

Assume a = 0 or a = m. From the exact sequence (S1)0 → S/L1 →
S/L0 → S/U1 → 0, Lemma 1.1 and Lemma 1.2, it follows that sdepth(S/L0) ≥
depth(S/L0) = ϕ(n,m). On the other hand, since Lk = (L0 : xmx2m+1 · · ·
xk(m+1)−1), for example by [5, Proposition 2.7], ϕ(n,m) = sdepth(S/Lk) ≥
sdepth(S/L0) ≥ ϕ(n,m). Thus, sdepth(S/Lk) = ϕ(n,m).

It remains to consider the case when 1 < a < m− 1. We claim that:

(∗) sdepth(S/Uj) ≥ depth(S/Uj) ≥ ϕ(n,m) for all 2 ≤ j ≤ k.

Assume this is the case. Using 1.1, 1.2 and the short exact sequences
(Sk), we get, inductively, that sdepth(S/Lj) ≥ depth(S/Lj) = ϕ(n,m) for all
j < k−1. Again, using for example [5, Proposition 2.7], we get sdepth(S/L0) =
ϕ(n,m).

In order to complete the proof, we need to show (∗). Note that Uk =
(Vk, x(m+1)k−1), where Vk = ( u1xm , . . . ,

um
xm
, . . . ,

u(m+1)j−m

x(m+1)j−1
, . . . ,

u(m+1)(k−1)−1

x(m+1)(k−1)−1
) ∼=

Imk−2,m−1S. By induction hypothesis and [11, Lemma 3.6], it follows that
sdepth(S/Uk) = depth(S/Uk) = n − (mk − 2) − 1 + ϕ(mk − 2,m − 1) =
n−

⌊
mk−1
m

⌋
−
⌈
mk−1
m

⌉
= n− (k − 1)− k = n− 2k + 1 = ϕ(n,m) + 1.

If 1 ≤ j < k, we have S/Uj ∼= (S/Vj ⊗S S/WjS)/(x(m+1)j−1)(S/Vj ⊗S
S/WjS), where Vj = ( u1xm , . . . ,

um
xm
, . . . ,

u(m+1)j−m

x(m+1)j−1
, . . . ,

u(m+1)j−1

x(m+1)j−1
) and Wj

= (u(m+1)(j+1), . . . , un−m+1). Since x(m+1)j−1 is regular on S/Vj ⊗S S/Wj

by [14, Corollary 1.12] and [14, Theorem 3.1] or [5, Theorem 1.2], it follows
that depth(S/Uj) = depth(S/Vj⊗SS/Wj)−1 = depth(S/Vj)+depth(S/Wj)−
n − 1 and sdepth(S/Uj) = sdepth(S/Vj ⊗S S/Wj) − 1 ≥ sdepth(S/Vj) +
sdepth(S/Wj)− n− 1.

On the other hand, Vj ∼= Im(j+1)−2,m−1S and thus, by induction hypot-

hesis, sdepth(S/Vj) = depth(S/Vj) = n + 1 −
⌊
m(j+1)−1

m

⌋
−
⌈
m(j+1)−1

m

⌉
=

n − 2j. Also, Wj
∼= In−(m+1)(j+1)+1,m and, by induction hypothesis, we have

sdepth(S/Wj) = depth(S/Wj) = n+1−
⌊
n−(m+1)(j+1)+2

m+1

⌋
−
⌈
n−(m+1)(j+1)+2

m+1

⌉
=

n+ 1 + 2(j + 1)−
⌊
n+2
m+1

⌋
−
⌈
n+2
m+1

⌉
.

It follows that sdepth(S/Uj) = depth(S/Uj) = n+ 2−
⌊
n+2
m+1

⌋
−
⌈
n+2
m+1

⌉
≥
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ϕ(n,m), since either
⌊
n+2
m+1

⌋
=
⌊
n+1
m+1

⌋
and

⌈
n+2
m+1

⌉
=
⌈
n+1
m+1

⌉
, either

⌊
n+2
m+1

⌋
=⌊

n+1
m+1

⌋
+ 1 and

⌈
n+2
m+1

⌉
=
⌈
n+1
m+1

⌉
or either

⌊
n+2
m+1

⌋
=
⌊
n+1
m+1

⌋
and

⌈
n+2
m+1

⌉
=⌈

n+1
m+1

⌉
+ 1. �

Example 1.4. Let I6,3=(x1x2x3, x2x3x4, x3x4x5, x4x5x6)⊂S := K[x1, . . . ,
x6]. Note that ϕ(7, 4) = 7 −

⌊
7
4

⌋
−
⌈
7
4

⌉
= 4. Let L0 = I6,3, L1 = (L0 :

x3) = (x1x2, x2x4, x4x5) and U1 = (L0, x3) = (x3, x4x5x6). Since L1
∼=

I4,2S, it follows that depth(S/L1) = sdepth(S/L1) = depth(S/I4,2S) = 2 +
depth(K[x1, . . . , x4]/I4,2) = 2 + ϕ(4, 2) = 4.

On the other hand, since U1 is a complete intersection, depth(S/U1) =
sdepth(S/U1) = 4. We consider the short exact sequence 0→ S/L1 → S/L0 →
S/U1 → 0. By Lemma 1.2, it follows that sdepth(S/L0) ≥ 4. On the other
hand, since L1 = (L0 : x3), one has sdepth(S/L0) ≤ sdepth(S/L1) = 4. Thus
sdepth(S/L0) = 4. Also, by Lemma 1.1, depth(S/L0) = 4.

In the following, we present another way to prove that sdepth(S/In,m) ≤
ϕ(n,m).

Let P ⊂ 2[n] be a poset. If C,D ⊂ [n], the interval [C,D] consist in
all the subsets X of [n] such that C ⊂ X ⊂ D. Let P : P =

⋃r
i=1[Fi, Gi]

be a partition of P, i.e. [Fi, Gi] ∩ [Fj , Gj ] = ∅ for all i 6= j. We denote
sdepth(P) := mini∈[r] |Di|. Also, we define the Stanley depth of P, to be the
number

sdepth(P) = max{sdepth(P) : P is a partition of P}.

Now, for d ∈ N and σ ∈ P, we denote

Pd = {τ ∈ P : |τ | = d} , Pd,σ = {τ ∈ Pd : σ ⊂ τ}.

Note that if σ ∈ P such that Pd,σ = ∅, then sdepth(P) < d. Indeed, let
P : P =

⋃r
i=1[Fi, Gi] be a partition of P with sdepth(P) = sdepth(P). Since

σ ∈ P, it follows that σ ∈ [Fi, Gi] for some i. If |Gi| ≥ d, then it follows that
Pd,σ 6= ∅, since there are subsets in the interval [Fi, Gi] of cardinality d which
contain σ, a contradiction. Thus, |Gi| < d and therefore sdepth(P) < d.

We recall the method of Herzog, Vladoiu and Zheng [11] for computing
the Stanley depth of S/I and I, where I is a squarefree monomial ideal. Let
G(I) = {u1, . . . , us} be the set of minimal monomial generators of I. We define
the following two posets:

PI := {σ ⊂ [n] : ui|xσ :=
∏
j∈σ

xj for some i } and PS/I := 2[n] \ PI .

Herzog, Vladoiu and Zheng proved in [11] that sdepth(I) = sdepth(PI) and
sdepth(S/I) = sdepth(PS/I).
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The above method is useful to give upper bounds for the sdepth(S/I),
where I ⊂ S is a monomial ideal, and, in particular cases, to compute the
exact value of sdepth(S/I). That’s exactly the case for S/In,m!

Let P := PS/In,m
. We denote k =

⌊
n

m+1

⌋
and we define

σ =

k−1⋃
j=0

{1 + j(m+ 1), 2 + j(m+ 1), . . . ,m− 1 + j(m+ 1)}.

We consider two cases.
(a) If n = (k + 1)(m + 1) − 1 or n = (k + 1)(m + 1) − 2, let τ =

σ∪{k(m+1)+1, k(m+1)+2, . . . , k(m+1)+m−1}. Note that |τ | = (k+1)(m−1)
and Pd,τ = ∅, for d = |τ |+ 1. Indeed, u =

∏
j∈τ xj /∈ In,m, but xiu ∈ In,m for

all i /∈ τ .
(b) If n is not as in the case (a), let τ = σ ∪{k(m+ 1), . . . , n}. Note that

n− |τ | = 2k− 1 and Pd,τ = ∅, for d = |τ |+ 1. Indeed, u =
∏
j∈τ xj /∈ In,m, but

xiu ∈ In,m for all i /∈ τ .
Therefore sdepth(S/In,m) ≤ |τ |, in both cases. On the other hand, one

can easily check that |τ | = n+1−
⌊
n+1
m+1

⌋
−
⌈
n+1
m+1

⌉
. Therefore sdepth(S/In,m) ≤

ϕ(n,m).

Remark 1.5. One possible way to generalize Theorem 1.3 and [17, Theo-
rem 6], at the same time, would be to prove that sdepth(S/Ikn,m)=depth(S/Ikn,m)
for any k ≥ 1. Furthermore, we might conjecture that if ∆ is a simplicial tree,
then sdepth(S/I(∆)k) = depth(S/I(∆)k) for any k ≥ 1.
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