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We consider the path ideal associated to a line graph, we compute sdepth for its
quotient ring and note that it is equal with its depth. In particular, it satisfies
the Stanley inequality.
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INTRODUCTION

Let K be a field and S = KJz1,...,x,] the polynomial ring over K.
Let M be a Z"-graded S-module. A Stanley decomposition of M is a direct
sum D : M = @._, m;K|[Z;] as a Z"-graded K-vector space, where m; €
M is homogeneous with respect to Z"-grading, Z; C {z1,...,2,} such that
m;K[Z;)] = {um; : v € K[Z;]} C M is a free K[Z;]-submodule of M. We
define sdepth(D) = min;— _,|Z;| and sdepthg(M) = max{sdepth(D)| D is a
Stanley decomposition of M}. The number sdepthg(M) is called the Stanley
depth of M. In [1], J. Apel restated a conjecture firstly given by Stanley in [16],
namely that sdepthg(M) > depthg(M) for any Z"-graded S-module M. This
conjecture proves to be false, in general, for M = S/I and M = J/I, where
0# I C J C S are monomial ideals, see [7].

Herzog, Vladoiu and Zheng show in [11] that sdepthg(M) can be compu-
ted in a finite number of steps if M = I/J, where J C I C S are monomial
ideals. In [15], Rinaldo gives a computer implementation for this algorithm,
in the computer algebra system CoCoA [6]. However, it is difficult to com-
pute this invariant, even in some very particular cases. For instance in [2]
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Biro et al. proved that sdepth(m) = [n/2] where m = (z1,...,z,). For a
friendly introduction on Stanley depth we recommend [12].

Let A 2" be a simplicial complex. A face F' € A is called a facet, if F
is maximal with respect to inclusion. We denote F(A) the set of facets of A.
If I € F(A), we denote zp = [[;cp ;. Then the facet ideal I(A) associated
to A is the squarefree monomial ideal I = (xp : F € F(A)) of S. The facet
ideal was studied by Faridi [8] from the depth perspective.

A line graph of lengh n, denoted by L,, is a graph with the vertex set
V = [n] and the edge set E = {{1,2},{2,3},...,{n — 1,n}}. The Stanley
depth of the edge ideal associated to L,, (which is in fact the facet ideal of L,
if we look at L,, as a simplicial complex) was computed by Alin Stefan in [17].

Let 1 < m < n be an integer and let A, ,, be the simplicial complex
with the set of facets F(A,m) = {{1,2,....,m},{2,3,..., m +1},--- {n —
m+1n—m+2,...,n}}. Wedenote I, = (T122+ Ty, T2T3 - - Tyt 15 - - -
Tpn—m+1Tn—m+2 - - Tp) , the associated facet ideal.

Note that I, ,, is the path ideal of the graph L,, provided with the
direction given by 1 < 2 < ... < n, see [10] for further details.

According to [10, Theorem 1.2],

2(n—d) — . _
pd(S/ I ) = g1 v =d(mod (m+ 1)) with0 <d <m—1,
’ %, n = m(mod (m + 1)).

By Auslander-Buchsbaum formula (see [18]), it follows that depth(S/I, ) =
n — pd(S/I,m) and, by a straightforward computation, we can see
depth(S/Inm) =n+1— U%J - [;ﬁ%ﬂ

We prove that sdepth(S/ I, ) = depth(S/I;m) = n+1— L%J - {%ﬁl—‘ ,
see Theorem 1.3. In particular, we give another prove for the result of [10,
Theorem 1.2]. Also, our result generalizes [17, Lemma 4].

We recall some notions introduced by Faridi in [8]. Let A be a simplicial
complex. A facet F' of A is called a leaf, if either F' is the only facet of A,
or there exists a facet G in A, G # F, such that FNF' C F NG for all
F' € A with F” # F. A connected simplicial complex A is called a tree, if
every nonempty connected subcomplex of A has a leaf. This notion generalizes
trees from graph theory. Note that A, ,, is a tree, in the sense of the above
definition.

According to [9, Corollary 1.6], if I is the facet ideal associated to a tree
(which is the case for I, ,,), it follows that S/I would be pretty clean. However,
there is a mistake in the second line of the proof of [9, Proposition 1.4], and
therefore, this result might be wrong in general. On the other hand, if I C §
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is a pretty clean monomial ideal, it is known that sdepth(S/I) = depth(S/I),
see [12, Proposition 18] for further details.

1. MAIN RESULTS

We recall the well-known Depth Lemma, see for instance [18, Lemma 1.3.9].

LEMMA 1.1 (Depth Lemma). If 0 - U — M — N — 0 is a short exact
sequence of modules over a local ring S, or a Noetherian graded ring with Sy
local, then

a) depth M > min{depth N, depth U}.

b) depthU > min{depth M, depth N + 1}.

¢) depth N > min{depth U — 1, depth M }.

In [14], Asia Rauf proved the analog of Lemma 1.1(a) for sdepth:

LEMMA 1.2. Let 0 - U — M — N — 0 be a short exact sequence of
Z"™-graded S-modules. Then:

sdepth(M) > min{sdepth(U), sdepth(NV)}.

Our main result is the following theorem.

THEOREM 1.3. sdepth(S/I,m) = depth(S/Ipm) = n+ 1 — L”—HJ -
B

m+1 |

Proof. We use induction on m > 1 and n > m. The case m = 1 is trivial.
The case m = 2 follows from [13, Lemma 2.8] and [17, Lemma 4].

We assume m > 3. If n = m, then sdepth(S/I, ;) = depth(S/IL,m) =
m — 1, since I, ,, = (21 - - xy,) is principal. Assume m+1 <n <2m — 1. Note
that I, ;m = T (Inm : Tm). We have sdepth(S/ 1, ) = sdepth(S/(Lnm : Tm)),
by [3, Theorem 1.4].

Also, we obviously have depth(S/I,.,) = depth(S/(Inm : &m)). On
the other hand, S/(Ijm : &) is isomorphic to S’/(Ip—1m—1)[y], where S’ =
Klzi,...,Tm—1,Tm+1,---,%,] and thus, by induction hypothesis and
[11, Lemma 3.6], sdepth(S/Inm) = depth(S/Inm) =1+ (n— | 2] - [2]) =
14+n—3=mn—2, as required.

It remains to consider the case m > 3 and n > 2m. Let k := L%J and

a=n+1-k(m+1). We denote ¢(n,m) :==n+1— [%J - {%—i—ll—‘ One
n+1—-2k a=0

can easily see that p(n,m) =
Y #( ) {n -2k, a#0
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We consider the ideals Lo := In, and Lj := (Lj—1 : Zjm41)—1), Where
1 < j < k. We denote U; := (Lj_l,xj(m+1)_1) for all 1 < j < k. We have the
following short exact sequences:

](m+1) 1

(Sk): 00— S/L; S/Li—y — S/U; — 0, 1<j<k.

We denote u; := x; - Tjym—1, for 1 <i <n—m+1. Note that G(Lg) =
{u, ..., un—ms1}, G(L1) = {g—;, e B U2 , Up—m+1}, because Uy, 41 €
(Um/xm), and, also, G(U1) = {Zm,Umt1,---sUn—m+1}- Moreover, one can
easily check that:

I — (ul Um  Um+42 U2m+1 U(m+1)j—m U(m41)j—1
]— 7’..-777 g ey 7--.77’.--,7’
Tm Tm T2m+1 T2m+1 L(m+1)j-1 L(m+1)j—1
U(m+1)j+1s - - - s Un—m+1),
forall 1 <j <k —1. It follows that:
U1 Um U(m41)j—m U(m+1)j—1
Uj+1:(77"'777"'7 IR y L(m+1)(5+1)—1
m Tm L(m+1)j-1 L(m+1)j-1
U(m41)(j+1)5 - - - s Un—m+1),

for all 1 < j <k —1. Also, we have:

Lk _ (ﬂ uﬂ u(m+1)(k—1)—m u(m—i—l)(k—l)—l u(m—l—l)k—m
Ty " ’ T(m+1)(k—1)—1 ’ ’$(m+1)(k71)717 L(m41)k—1 ’ 7
Ut
x(m-l—l)k—l)’

where t =n —m if a =m, or t = n — m + 1 otherwise.

Note that |G(Lg)| = mk—1)+(t+1)—(m+1Dk+m =t+1—-k
and, moreover, Ly = Iiyp, k—1m,m-15. Thus, by induction hypothesis and [11,
Lemma 3.6], we have depth(S/Ly) = sdepth(S/Ly) =n—(t+m—k—1)+
gp(t—l—m—k—l,m—l)—n—l—l Lt-ﬁ-m kJ [t-f—m k'|

Ifa=m,thent=n—m,n=k(m+1)+m—-1t+m—-k=n—k=
(k+1)m — 1 and thus depth(S/Ly) = sdepth(S/Lg) =n+1—-k—(k+1) =
n —2k = p(n,m). If a =0, then t + m — k = km and thus depth(S/Ly)
sdepth(S/Ly) =n+ 1 — 2k.

If 0 < a < m, then t +m —k = km + a and thus depth(S/Ly)
sdepth(S/Ly) = n—2k. In all the cases, we have depth(S/Ly) = sdepth(S/Ly
= (P(na m)

Note that /U1 = K [zmi1, - Tnl/(Umt1s - - o s Un—ms1)[T1, - -+, Tm—1] and
therefore, by induction hypothesis, depth(S/U;) = sdepth(S/Ui) = m — 1+
e(n—m,m)=mn— L"‘mHJ - [”_m‘*'l] Note that "_Trﬂrl =k—1+ 2t and

m-+1 m+1 m—+1
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m+1 m41
if @ = m then L”‘T’L“J — k. 1t follows that depth(S/U1) = sdepth(S/Uy) =

n+1—-2k a<m
n—2k, a=m

Moreover, depth(S/Uy) = sdepth(S/U1) = ¢(n,m) if and only if a = 0
or a = m. Otherwise, depth(S/U;) = sdepth(S/U1) = ¢(n,m) + 1.

Assume a = 0 or @ = m. From the exact sequence (51)0 — S/L1 —
S/Ly — S/U; — 0, Lemma 1.1 and Lemma 1.2, it follows that sdepth(S/Lg) >
depth(S/Lg) = ¢(n,m). On the other hand, since Ly = (Lo : TmTam+1---
Tp(m+1)—1), for example by [5, Proposition 2.7], ¢(n,m) = sdepth(S/Ly) >
sdepth(S/Lg) > ¢(n,m). Thus, sdepth(S/Li) = p(n,m).

It remains to consider the case when 1 < a < m — 1. We claim that:

therefore {”_7"&1—‘ = k. On the other hand, if a < m then Ln—im-HJ = k—1and

> @(n,m).

(%) sdepth(S/U;) > depth(S/U;) > ¢(n,m) for all 2 < j <k.

Assume this is the case. Using 1.1, 1.2 and the short exact sequences
(Sk), we get, inductively, that sdepth(S/L;) > depth(S/L;) = ¢(n,m) for all
j < k—1. Again, using for example [5, Proposition 2.7], we get sdepth(S/Lg) =
p(n,m).

In order to complete the proof, we need to show (). Note that Uy

_ (U1 Um, U(m41)j—m Umt D) (k=11 ~v
(Vkv x(m-i—l)k:—l)v where Vk - (g;mv U T Ty I(m+1)(k—1)—1) -

Imk—2,m—15. By induction hypothesis and [11, Lemma 3.6], it follows that
sdepth(S/Uy) = depth(S/Ux) = n — (mk —2) — 1+ p(mk —2,m — 1) =
n— menflj — (mlfnflw =n—(k—-1)—k=n—-2k+1=p(n,m)+1

161 2 j < b, we have S/U; 2 (S/V; @5 S/W;S)/ (@(msny 1)(S/V; @s
S/W;S), where V; = (&, Wm SCedtbio; oo RmdDiclyand B

T ? " Bm T B -1 T T(m41)j-1
= (U(m+1)(j+1),...,un_m+1). Since L(m4+1)j—1 is regular on S/V] ®s S/W]
by [14, Corollary 1.12] and [14, Theorem 3.1] or [5, Theorem 1.2], it follows
that depth(S/U;) = depth(S/V;®5S/W;)—1 = depth(S/V;)+depth(S/W;)—
n — 1 and sdepth(S/U;) = sdepth(S/V; ®s S/W;) — 1 > sdepth(S/V;) +
sdepth(S/W;) —n — 1.
On the other hand, V; = I,,(j41)-2,m—15 and thus, by induction hypot-

hesis, sdepth(S/V;) = depth(S/V;) = n+ 1 — Lm(jjnl)_lJ — [m(j+1)_1-| =

m

n —2j. Also, Wj = I,,_(;u41)(j+1)+1,m and, by induction hypothesis, we have
sdepth(S/W;) = depth(S/W;) = n+1— Ln—<m+1)(j+1>+2J _ [n—(m+1)(j+1)+2-‘ _

m+1 m—+1
n+1+2G+1) - L%J _ L%?l]

It follows that sdepth(S/U;) = depth(S/U;) =n+2— L”—“J - {”—“—‘ >

m—+1 m+1
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+1 m+1 m+1 m+1
oEL 1 41 and {”—HW = {"—HW or either [L”J = LLHJ and {n+21 _

©(n,m), since either U;—HJ = L"—‘HJ and {"—“1 = [”—“—‘, either L"—“‘ZJ =

m+1 m+1 m+1

Example 1.4. Let I 3= (212223, T2x3%4, 3T4Ts5, TaT526) CS 1= K[z1,. ..,
z¢]. Note that ¢(7,4) = 7— %] — [1] = 4. Let Lo = Is3, L1 = (Lo :
x3) = (z129, 2974, 2425) and Uy = (Lg,2z3) = (x3,x405x6). Since L; =
1,58, it follows that depth(S/Li) = sdepth(S/Lq) = depth(S/I1425) = 2 +
depth(K[a;l, R ,2?4]/[472) =2+ g0(4, 2) = 4.

On the other hand, since U; is a complete intersection, depth(S/U;) =
sdepth(S/U;) = 4. We consider the short exact sequence 0 — S/Ly — S/Ly —
S/U; — 0. By Lemma 1.2, it follows that sdepth(S/Lg) > 4. On the other
hand, since L1 = (Lg : x3), one has sdepth(S/Lg) < sdepth(S/L;) = 4. Thus
sdepth(S/Lg) = 4. Also, by Lemma 1.1, depth(S/Lg) = 4.

In the following, we present another way to prove that sdepth(S/1,, ) <
p(n,m).

Let P C 2/" be a poset. If C,D C [n], the interval [C, D] consist in
all the subsets X of [n] such that C € X C D. Let P : P = J_,[F}, Gi]
be a partition of P, i.e. [F;,G;] N [Fj,G;] = 0 for all ¢ # j. We denote
sdepth(P) := min;c,) |D;|. Also, we define the Stanley depth of P, to be the
number

sdepth(P) = max{sdepth(P) : P is a partition of P}.
Now, for d € N and o € P, we denote
Po={r€P :|r|=d}, Pio={7€Pg : c CT}.

Note that if ¢ € P such that P;, = (), then sdepth(P) < d. Indeed, let
P : P =J;_,[Fi,G;] be a partition of P with sdepth(P) = sdepth(P). Since
o € P, it follows that o € [F;, G;] for some i. If |G;| > d, then it follows that
Pas # 0, since there are subsets in the interval [F;, G;] of cardinality d which
contain o, a contradiction. Thus, |G;| < d and therefore sdepth(P) < d.

We recall the method of Herzog, Vladoiu and Zheng [11] for computing
the Stanley depth of S/I and I, where I is a squarefree monomial ideal. Let
G(I) = {ui,...,us} be the set of minimal monomial generators of I. We define
the following two posets:

Pr:={o Cn|: uilzs = ij for somei } and Pg)r = 2\ Py
jE€o
Herzog, Vladoiu and Zheng proved in [11] that sdepth(/) = sdepth(P;) and
sdepth(S/I) = sdepth(Pg ;).
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The above method is useful to give upper bounds for the sdepth(S/I),
where I C S is a monomial ideal, and, in particular cases, to compute the
exact value of sdepth(S/I). That’s exactly the case for S/1I,, !

Let P :="Pg/p, ,,- We denote k = LLJ and we define

m+1
k—1
o= J{0+jim+1),24jm+1),....m—1+4jm+1)}.
j=0

We consider two cases.

() Ifn=(k+1Dm+1)—1lorn=(k+1(m+1) -2 let 7 =
oU{k(m+1)+1, k(m+1)+2,...,k(m+1)+m—1}. Note that |7| = (k+1)(m—1)
and Py, =0, for d = |7| + 1. Indeed, u = HjE’T xj & Inm, but z;u € I, ,, for
all i & 7.

(b) If n is not as in the case (a), let 7 = cU{k(m+1),...,n}. Note that
n—|7| =2k —1and Py, =0, for d = |7|+ 1. Indeed, u = [[;c, z;j ¢ Inm, but
xiu € Iy for all i & 7.

Therefore sdepth(S/I, ) < |7], in both cases. On the other hand, one

can easily check that || = n+1— L%J - {%*‘111 Therefore sdepth(S/ 1, m) <
p(n,m).

Remark 1.5. One possible way to generalize Theorem 1.3 and [17, Theo-
rem 6], at the same time, would be to prove that sdepth(S/I% ) =depth(S/IF )
for any k > 1. Furthermore, we might conjecture that if A is a simplicial tree,
then sdepth(S/I(A)*) = depth(S/I(A)¥) for any &k > 1.
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