STANLEY DEPTH OF THE PATH IDEAL ASSOCIATED TO A LINE GRAPH

MIRCEA CIMPOEAŞ

Communicated by Vasile Brînzănescu

Abstract

We consider the path ideal associated to a line graph, we compute sdepth for its quotient ring and note that it is equal with its depth. In particular, it satisfies the Stanley inequality.

AMS 2010 Subject Classification: Primary 13C15; Secondary 13P10, 13F20. Key words: Stanley depth, Stanley inequality, path ideal, line graph, simplicial tree.

INTRODUCTION

Let K be a field and $S=K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring over K. Let M be a \mathbb{Z}^{n}-graded S-module. A Stanley decomposition of M is a direct sum $\mathcal{D}: M=\bigoplus_{i=1}^{r} m_{i} K\left[Z_{i}\right]$ as a \mathbb{Z}^{n}-graded K-vector space, where $m_{i} \in$ M is homogeneous with respect to \mathbb{Z}^{n}-grading, $Z_{i} \subset\left\{x_{1}, \ldots, x_{n}\right\}$ such that $m_{i} K\left[Z_{i}\right]=\left\{u m_{i}: \quad u \in K\left[Z_{i}\right]\right\} \subset M$ is a free $K\left[Z_{i}\right]$-submodule of M. We define $\operatorname{sdepth}(\mathcal{D})=\min _{i=1, \ldots, r}\left|Z_{i}\right|$ and $\operatorname{sdepth}_{S}(M)=\max \{\operatorname{sdepth}(\mathcal{D}) \mid \mathcal{D}$ is a Stanley decomposition of $M\}$. The number $\operatorname{sdepth}_{S}(M)$ is called the Stanley depth of M. In [1], J. Apel restated a conjecture firstly given by Stanley in [16], namely that $\operatorname{sdepth}_{S}(M) \geq \operatorname{depth}_{S}(M)$ for any \mathbb{Z}^{n}-graded S-module M. This conjecture proves to be false, in general, for $M=S / I$ and $M=J / I$, where $0 \neq I \subset J \subset S$ are monomial ideals, see [7].

Herzog, Vladoiu and Zheng show in [11] that $\operatorname{sdepth}_{S}(M)$ can be computed in a finite number of steps if $M=I / J$, where $J \subset I \subset S$ are monomial ideals. In [15], Rinaldo gives a computer implementation for this algorithm, in the computer algebra system $\operatorname{CoCoA}[6]$. However, it is difficult to compute this invariant, even in some very particular cases. For instance in [2]
${ }^{1}$ We gratefully acknowledge the use of the computer algebra system CoCoA [6] for our experiments.
${ }^{2}$ The support from grant ID-PCE-2011-1023 of the Romanian Ministry of Education, Research and Innovation is gratefully acknowledged.

Biro et al. proved that $\operatorname{sdepth}(\mathbf{m})=\lceil n / 2\rceil$ where $\mathbf{m}=\left(x_{1}, \ldots, x_{n}\right)$. For a friendly introduction on Stanley depth we recommend [12].

Let $\Delta \subset 2^{[n]}$ be a simplicial complex. A face $F \in \Delta$ is called a facet, if F is maximal with respect to inclusion. We denote $\mathcal{F}(\Delta)$ the set of facets of Δ. If $F \in \mathcal{F}(\Delta)$, we denote $x_{F}=\prod_{j \in F} x_{j}$. Then the facet ideal $I(\Delta)$ associated to Δ is the squarefree monomial ideal $I=\left(x_{F}: F \in \mathcal{F}(\Delta)\right)$ of S. The facet ideal was studied by Faridi [8] from the depth perspective.

A line graph of lengh n, denoted by L_{n}, is a graph with the vertex set $V=[n]$ and the edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$. The Stanley depth of the edge ideal associated to L_{n} (which is in fact the facet ideal of L_{n}, if we look at L_{n} as a simplicial complex) was computed by Alin Ştefan in [17].

Let $1 \leq m \leq n$ be an integer and let $\Delta_{n, m}$ be the simplicial complex with the set of facets $\mathcal{F}\left(\Delta_{n, m}\right)=\{\{1,2, \ldots, m\},\{2,3, \ldots, m+1\}, \cdots,\{n-$ $m+1, n-m+2, \ldots, n\}\}$. We denote $I_{n, m}=\left(x_{1} x_{2} \cdots x_{m}, x_{2} x_{3} \cdots x_{m+1}, \ldots\right.$, $\left.x_{n-m+1} x_{n-m+2} \cdots x_{n}\right)$, the associated facet ideal.

Note that $I_{n, m}$ is the path ideal of the graph L_{n}, provided with the direction given by $1<2<\ldots<n$, see [10] for further details.

According to [10, Theorem 1.2],

$$
p d\left(S / I_{n, m}\right)=\left\{\begin{array}{l}
\frac{2(n-d)}{m+1}, n \equiv d(\bmod (m+1)) \text { with } 0 \leq d \leq m-1 \\
\frac{2 n-m+1}{m+1}, n \equiv m(\bmod (m+1))
\end{array}\right.
$$

By Auslander-Buchsbaum formula (see [18]), it follows that depth $\left(S / I_{n, m}\right)=$ $n-p d\left(S / I_{n, m}\right)$ and, by a straightforward computation, we can see $\operatorname{depth}\left(S / I_{n, m}\right)=n+1-\left\lfloor\frac{n+1}{m+1}\right\rfloor-\left\lceil\frac{n+1}{m+1}\right\rceil$.

We prove that $\operatorname{sdepth}\left(S / I_{n, m}\right)=\operatorname{depth}\left(S / I_{n, m}\right)=n+1-\left\lfloor\frac{n+1}{m+1}\right\rfloor-\left\lceil\frac{n+1}{m+1}\right\rceil$, see Theorem 1.3. In particular, we give another prove for the result of [10, Theorem 1.2]. Also, our result generalizes [17, Lemma 4].

We recall some notions introduced by Faridi in [8]. Let Δ be a simplicial complex. A facet F of Δ is called a leaf, if either F is the only facet of Δ, or there exists a facet G in $\Delta, G \neq F$, such that $F \cap F^{\prime} \subseteq F \cap G$ for all $F^{\prime} \in \Delta$ with $F^{\prime} \neq F$. A connected simplicial complex Δ is called a tree, if every nonempty connected subcomplex of Δ has a leaf. This notion generalizes trees from graph theory. Note that $\Delta_{n, m}$ is a tree, in the sense of the above definition.

According to [9, Corollary 1.6], if I is the facet ideal associated to a tree (which is the case for $I_{n, m}$), it follows that S / I would be pretty clean. However, there is a mistake in the second line of the proof of [9, Proposition 1.4], and therefore, this result might be wrong in general. On the other hand, if $I \subset S$
is a pretty clean monomial ideal, it is known that $\operatorname{sdepth}(S / I)=\operatorname{depth}(S / I)$, see [12, Proposition 18] for further details.

1. MAIN RESULTS

We recall the well-known Depth Lemma, see for instance [18, Lemma 1.3.9].
Lemma 1.1 (Depth Lemma). If $0 \rightarrow U \rightarrow M \rightarrow N \rightarrow 0$ is a short exact sequence of modules over a local ring S, or a Noetherian graded ring with S_{0} local, then
a) depth $M \geq \min \{\operatorname{depth} N$, depth $U\}$.
b) depth $U \geq \min \{\operatorname{depth} M$, depth $N+1\}$.
c) depth $N \geq \min \{\operatorname{depth} U-1$, depth $M\}$.

In [14], Asia Rauf proved the analog of Lemma 1.1(a) for sdepth:
Lemma 1.2. Let $0 \rightarrow U \rightarrow M \rightarrow N \rightarrow 0$ be a short exact sequence of \mathbb{Z}^{n}-graded S-modules. Then:

$$
\operatorname{sdepth}(M) \geq \min \{\operatorname{sdepth}(U), \operatorname{sdepth}(N)\} .
$$

Our main result is the following theorem.
ThEOREM 1.3. $\operatorname{sdepth}\left(S / I_{n, m}\right)=\operatorname{depth}\left(S / I_{n, m}\right)=n+1-\left\lfloor\frac{n+1}{m+1}\right\rfloor-$ $\left\lceil\frac{n+1}{m+1}\right\rceil$.

Proof. We use induction on $m \geq 1$ and $n \geq m$. The case $m=1$ is trivial. The case $m=2$ follows from [13, Lemma 2.8] and [17, Lemma 4].

We assume $m \geq 3$. If $n=m$, then $\operatorname{sdepth}\left(S / I_{n, m}\right)=\operatorname{depth}\left(S / I_{n, m}\right)=$ $m-1$, since $I_{n, n}=\left(x_{1} \cdots x_{n}\right)$ is principal. Assume $m+1 \leq n \leq 2 m-1$. Note that $I_{n, m}=x_{m}\left(I_{n, m}: x_{m}\right)$. We have $\operatorname{sdepth}\left(S / I_{n, m}\right)=\operatorname{sdepth}\left(S /\left(I_{n, m}: x_{m}\right)\right)$, by [3, Theorem 1.4].

Also, we obviously have $\operatorname{depth}\left(S / I_{n, m}\right)=\operatorname{depth}\left(S /\left(I_{n, m}: x_{m}\right)\right)$. On the other hand, $S /\left(I_{n, m}: x_{m}\right)$ is isomorphic to $S^{\prime} /\left(I_{n-1, m-1}\right)[y]$, where $S^{\prime}=$ $K\left[x_{1}, \ldots, x_{m-1}, x_{m+1}, \ldots, x_{n}\right]$ and thus, by induction hypothesis and [11, Lemma 3.6], $\operatorname{sdepth}\left(S / I_{n, m}\right)=\operatorname{depth}\left(S / I_{n, m}\right)=1+\left(n-\left\lfloor\frac{n}{m}\right\rfloor-\left\lceil\frac{n}{m}\right\rceil\right)=$ $1+n-3=n-2$, as required.

It remains to consider the case $m \geq 3$ and $n \geq 2 m$. Let $k:=\left\lfloor\frac{n+1}{m+1}\right\rfloor$ and $a=n+1-k(m+1)$. We denote $\varphi(n, m):=n+1-\left\lfloor\frac{n+1}{m+1}\right\rfloor-\left\lceil\frac{n+1}{m+1}\right\rceil$. One can easily see that $\varphi(n, m)=\left\{\begin{array}{l}n+1-2 k, a=0 \\ n-2 k, a \neq 0\end{array}\right.$.

We consider the ideals $L_{0}:=I_{n, m}$ and $L_{j}:=\left(L_{j-1}: x_{j(m+1)-1}\right)$, where $1 \leq j \leq k$. We denote $U_{j}:=\left(L_{j-1}, x_{j(m+1)-1}\right)$ for all $1 \leq j \leq k$. We have the following short exact sequences:

$$
\left(\mathcal{S}_{k}\right): 0 \longrightarrow S / L_{j} \xrightarrow{\cdot x_{j(m+1)-1}} S / L_{j-1} \longrightarrow S / U_{j} \longrightarrow 0,1 \leq j \leq k .
$$

We denote $u_{i}:=x_{i} \cdots x_{i+m-1}$, for $1 \leq i \leq n-m+1$. Note that $G\left(L_{0}\right)=$ $\left\{u_{1}, \ldots, u_{n-m+1}\right\}, G\left(L_{1}\right)=\left\{\frac{u_{1}}{x_{m}}, \ldots, \frac{u_{m}}{x_{m}}, u_{m+2}, \ldots, u_{n-m+1}\right\}$, because $u_{m+1} \in$ $\left(u_{m} / x_{m}\right)$, and, also, $G\left(U_{1}\right)=\left\{x_{m}, u_{m+1}, \ldots, u_{n-m+1}\right\}$. Moreover, one can easily check that:

$$
\begin{array}{r}
L_{j}=\left(\frac{u_{1}}{x_{m}}, \ldots, \frac{u_{m}}{x_{m}}, \frac{u_{m+2}}{x_{2 m+1}}, \ldots, \frac{u_{2 m+1}}{x_{2 m+1}}, \ldots, \frac{u_{(m+1) j-m}}{x_{(m+1) j-1}}, \ldots, \frac{u_{(m+1) j-1}}{x_{(m+1) j-1}},\right. \\
\left.u_{(m+1) j+1}, \ldots, u_{n-m+1}\right),
\end{array}
$$

for all $1 \leq j \leq k-1$. It follows that:

$$
\begin{array}{r}
U_{j+1}=\left(\frac{u_{1}}{x_{m}}, \ldots, \frac{u_{m}}{x_{m}}, \ldots, \frac{u_{(m+1) j-m}}{x_{(m+1) j-1}}, \ldots, \frac{u_{(m+1) j-1}}{x_{(m+1) j-1}}, x_{(m+1)(j+1)-1},\right. \\
\left.u_{(m+1)(j+1)}, \ldots, u_{n-m+1}\right)
\end{array}
$$

for all $1 \leq j \leq k-1$. Also, we have:

$$
\begin{array}{r}
L_{k}=\left(\frac{u_{1}}{x_{m}}, \ldots, \frac{u_{m}}{x_{m}}, \ldots, \frac{u_{(m+1)(k-1)-m}}{x_{(m+1)(k-1)-1}}, \ldots, \frac{u_{(m+1)(k-1)-1}}{x_{(m+1)(k-1)-1}}, \frac{u_{(m+1) k-m}}{x_{(m+1) k-1}}, \ldots,\right. \\
\left.\frac{u_{t}}{x_{(m+1) k-1}}\right),
\end{array}
$$

where $t=n-m$ if $a=m$, or $t=n-m+1$ otherwise.
Note that $\left|G\left(L_{k}\right)\right|=m(k-1)+(t+1)-(m+1) k+m=t+1-k$ and, moreover, $L_{k} \cong I_{t+m-k-1, m-1} S$. Thus, by induction hypothesis and [11, Lemma 3.6], we have depth $\left(S / L_{k}\right)=\operatorname{sdepth}\left(S / L_{k}\right)=n-(t+m-k-1)+$ $\varphi(t+m-k-1, m-1)=n+1-\left\lfloor\frac{t+m-k}{m}\right\rfloor-\left\lceil\frac{t+m-k}{m}\right\rceil$.

If $a=m$, then $t=n-m, n=k(m+1)+m-1, t+m-k=n-k=$ $(k+1) m-1$ and thus $\operatorname{depth}\left(S / L_{k}\right)=\operatorname{sdepth}\left(S / L_{k}\right)=n+1-k-(k+1)=$ $n-2 k=\varphi(n, m)$. If $a=0$, then $t+m-k=k m$ and thus $\operatorname{depth}\left(S / L_{k}\right)=$ $\operatorname{sdepth}\left(S / L_{k}\right)=n+1-2 k$.

If $0<a<m$, then $t+m-k=k m+a$ and thus $\operatorname{depth}\left(S / L_{k}\right)=$ $\operatorname{sdepth}\left(S / L_{k}\right)=n-2 k$. In all the cases, we have depth $\left(S / L_{k}\right)=\operatorname{sdepth}\left(S / L_{k}\right)$ $=\varphi(n, m)$.

Note that $S / U_{1} \cong K\left[x_{m+1}, \ldots, x_{n}\right] /\left(u_{m+1}, \ldots, u_{n-m+1}\right)\left[x_{1}, \ldots, x_{m-1}\right]$ and therefore, by induction hypothesis, $\operatorname{depth}\left(S / U_{1}\right)=\operatorname{sdepth}\left(S / U_{1}\right)=m-1+$ $\varphi(n-m, m)=n-\left\lfloor\frac{n-m+1}{m+1}\right\rfloor-\left\lceil\frac{n-m+1}{m+1}\right\rceil$. Note that $\frac{n-m+1}{m+1}=k-1+\frac{a+1}{m+1}$ and
therefore $\left\lceil\frac{n-m+1}{m+1}\right\rceil=k$. On the other hand, if $a<m$ then $\left\lfloor\frac{n-m+1}{m+1}\right\rfloor=k-1$ and if $a=m$ then $\left\lfloor\frac{n-m+1}{m+1}\right\rfloor=k$. It follows that $\operatorname{depth}\left(S / U_{1}\right)=\operatorname{sdepth}\left(S / U_{1}\right)=$ $\left\{\begin{array}{l}n+1-2 k, a<m \\ n-2 k, a=m\end{array} \geq \varphi(n, m)\right.$.

Moreover, $\operatorname{depth}\left(S / U_{1}\right)=\operatorname{sdepth}\left(S / U_{1}\right)=\varphi(n, m)$ if and only if $a=0$ or $a=m$. Otherwise, $\operatorname{depth}\left(S / U_{1}\right)=\operatorname{sdepth}\left(S / U_{1}\right)=\varphi(n, m)+1$.

Assume $a=0$ or $a=m$. From the exact sequence $\left(\mathcal{S}_{1}\right) 0 \rightarrow S / L_{1} \rightarrow$ $S / L_{0} \rightarrow S / U_{1} \rightarrow 0$, Lemma 1.1 and Lemma 1.2, it follows that $\operatorname{sdepth}\left(S / L_{0}\right) \geq$ $\operatorname{depth}\left(S / L_{0}\right)=\varphi(n, m)$. On the other hand, since $L_{k}=\left(L_{0}: x_{m} x_{2 m+1} \cdots\right.$ $\left.x_{k(m+1)-1}\right)$, for example by [5, Proposition 2.7], $\varphi(n, m)=\operatorname{sdepth}\left(S / L_{k}\right) \geq$ $\operatorname{sdepth}\left(S / L_{0}\right) \geq \varphi(n, m)$. Thus, $\operatorname{sdepth}\left(S / L_{k}\right)=\varphi(n, m)$.

It remains to consider the case when $1<a<m-1$. We claim that: (*) $\operatorname{sdepth}\left(S / U_{j}\right) \geq \operatorname{depth}\left(S / U_{j}\right) \geq \varphi(n, m)$ for all $2 \leq j \leq k$.

Assume this is the case. Using 1.1, 1.2 and the short exact sequences $\left(\mathcal{S}_{k}\right)$, we get, inductively, that $\operatorname{sdepth}\left(S / L_{j}\right) \geq \operatorname{depth}\left(S / L_{j}\right)=\varphi(n, m)$ for all $j<k-1$. Again, using for example [5, Proposition 2.7], we get $\operatorname{sdepth}\left(S / L_{0}\right)=$ $\varphi(n, m)$.

In order to complete the proof, we need to show $(*)$. Note that $U_{k}=$ $\left(V_{k}, x_{(m+1) k-1}\right)$, where $V_{k}=\left(\frac{u_{1}}{x_{m}}, \ldots, \frac{u_{m}}{x_{m}}, \ldots, \frac{u_{(m+1) j-m}}{x_{(m+1) j-1}}, \ldots, \frac{u_{(m+1)(k-1)-1}}{x_{(m+1)(k-1)-1}}\right) \cong$ $I_{m k-2, m-1} S$. By induction hypothesis and [11, Lemma 3.6], it follows that $\operatorname{sdepth}\left(S / U_{k}\right)=\operatorname{depth}\left(S / U_{k}\right)=n-(m k-2)-1+\varphi(m k-2, m-1)=$ $n-\left\lfloor\frac{m k-1}{m}\right\rfloor-\left\lceil\frac{m k-1}{m}\right\rceil=n-(k-1)-k=n-2 k+1=\varphi(n, m)+1$.

If $1 \leq j<k$, we have $S / U_{j} \cong\left(S / V_{j} \otimes_{S} S / W_{j} S\right) /\left(x_{(m+1) j-1}\right)\left(S / V_{j} \otimes_{S}\right.$ $\left.S / W_{j} S\right)$, where $V_{j}=\left(\frac{u_{1}}{x_{m}}, \ldots, \frac{u_{m}}{x_{m}}, \ldots, \frac{u_{(m+1) j-m}}{x_{(m+1) j-1}}, \ldots, \frac{u_{(m+1) j-1}}{x_{(m+1) j-1}}\right)$ and W_{j} $=\left(u_{(m+1)(j+1)}, \ldots, u_{n-m+1}\right)$. Since $x_{(m+1) j-1}$ is regular on $S / V_{j} \otimes_{S} S / W_{j}$ by [14, Corollary 1.12] and [14, Theorem 3.1] or [5, Theorem 1.2], it follows that depth $\left(S / U_{j}\right)=\operatorname{depth}\left(S / V_{j} \otimes_{S} S / W_{j}\right)-1=\operatorname{depth}\left(S / V_{j}\right)+\operatorname{depth}\left(S / W_{j}\right)-$ $n-1$ and $\operatorname{sdepth}\left(S / U_{j}\right)=\operatorname{sdepth}\left(S / V_{j} \otimes_{S} S / W_{j}\right)-1 \geq \operatorname{sdepth}\left(S / V_{j}\right)+$ $\operatorname{sdepth}\left(S / W_{j}\right)-n-1$.

On the other hand, $V_{j} \cong I_{m(j+1)-2, m-1} S$ and thus, by induction hypothesis, $\operatorname{sdepth}\left(S / V_{j}\right)=\operatorname{depth}\left(S / V_{j}\right)=n+1-\left\lfloor\frac{m(j+1)-1}{m}\right\rfloor-\left\lceil\frac{m(j+1)-1}{m}\right\rceil=$ $n-2 j$. Also, $W_{j} \cong I_{n-(m+1)(j+1)+1, m}$ and, by induction hypothesis, we have $\operatorname{sdepth}\left(S / W_{j}\right)=\operatorname{depth}\left(S / W_{j}\right)=n+1-\left\lfloor\frac{n-(m+1)(j+1)+2}{m+1}\right\rfloor-\left\lceil\frac{n-(m+1)(j+1)+2}{m+1}\right\rceil=$ $n+1+2(j+1)-\left\lfloor\frac{n+2}{m+1}\right\rfloor-\left\lceil\frac{n+2}{m+1}\right\rceil$.

It follows that $\operatorname{sdepth}\left(S / U_{j}\right)=\operatorname{depth}\left(S / U_{j}\right)=n+2-\left\lfloor\frac{n+2}{m+1}\right\rfloor-\left\lceil\frac{n+2}{m+1}\right\rceil \geq$
$\varphi(n, m)$, since either $\left\lfloor\frac{n+2}{m+1}\right\rfloor=\left\lfloor\frac{n+1}{m+1}\right\rfloor$ and $\left\lceil\frac{n+2}{m+1}\right\rceil=\left\lceil\frac{n+1}{m+1}\right\rceil$, either $\left\lfloor\frac{n+2}{m+1}\right\rfloor=$ $\left\lfloor\frac{n+1}{m+1}\right\rfloor+1$ and $\left\lceil\frac{n+2}{m+1}\right\rceil=\left\lceil\frac{n+1}{m+1}\right\rceil$ or either $\left\lfloor\frac{n+2}{m+1}\right\rfloor=\left\lfloor\frac{n+1}{m+1}\right\rfloor$ and $\left\lceil\frac{n+2}{m+1}\right\rceil=$ $\left\lceil\frac{n+1}{m+1}\right\rceil+1$.

Example 1.4. Let $I_{6,3}=\left(x_{1} x_{2} x_{3}, x_{2} x_{3} x_{4}, x_{3} x_{4} x_{5}, x_{4} x_{5} x_{6}\right) \subset S:=K\left[x_{1}, \ldots\right.$, $\left.x_{6}\right]$. Note that $\varphi(7,4)=7-\left\lfloor\frac{7}{4}\right\rfloor-\left\lceil\frac{7}{4}\right\rceil=4$. Let $L_{0}=I_{6,3}, L_{1}=\left(L_{0}\right.$: $\left.x_{3}\right)=\left(x_{1} x_{2}, x_{2} x_{4}, x_{4} x_{5}\right)$ and $U_{1}=\left(L_{0}, x_{3}\right)=\left(x_{3}, x_{4} x_{5} x_{6}\right)$. Since $L_{1} \cong$ $I_{4,2} S$, it follows that $\operatorname{depth}\left(S / L_{1}\right)=\operatorname{sdepth}\left(S / L_{1}\right)=\operatorname{depth}\left(S / I_{4,2} S\right)=2+$ $\operatorname{depth}\left(K\left[x_{1}, \ldots, x_{4}\right] / I_{4,2}\right)=2+\varphi(4,2)=4$.

On the other hand, since U_{1} is a complete intersection, $\operatorname{depth}\left(S / U_{1}\right)=$ $\operatorname{sdepth}\left(S / U_{1}\right)=4$. We consider the short exact sequence $0 \rightarrow S / L_{1} \rightarrow S / L_{0} \rightarrow$ $S / U_{1} \rightarrow 0$. By Lemma 1.2, it follows that $\operatorname{sdepth}\left(S / L_{0}\right) \geq 4$. On the other hand, since $L_{1}=\left(L_{0}: x_{3}\right)$, one has $\operatorname{sdepth}\left(S / L_{0}\right) \leq \operatorname{sdepth}\left(S / L_{1}\right)=4$. Thus $\operatorname{sdepth}\left(S / L_{0}\right)=4$. Also, by Lemma 1.1, $\operatorname{depth}\left(S / L_{0}\right)=4$.

In the following, we present another way to prove that $\operatorname{sdepth}\left(S / I_{n, m}\right) \leq$ $\varphi(n, m)$.

Let $\mathcal{P} \subset 2^{[n]}$ be a poset. If $C, D \subset[n]$, the interval $[C, D]$ consist in all the subsets X of $[n]$ such that $C \subset X \subset D$. Let $\mathbf{P}: \mathcal{P}=\bigcup_{i=1}^{r}\left[F_{i}, G_{i}\right]$ be a partition of \mathcal{P}, i.e. $\left[F_{i}, G_{i}\right] \cap\left[F_{j}, G_{j}\right]=\emptyset$ for all $i \neq j$. We denote $\operatorname{sdepth}(\mathbf{P}):=\min _{i \in[r]}\left|D_{i}\right|$. Also, we define the Stanley depth of \mathcal{P}, to be the number

$$
\operatorname{sdepth}(\mathcal{P})=\max \{\operatorname{sdepth}(\mathbf{P}): \mathbf{P} \text { is a partition of } \mathcal{P}\} .
$$

Now, for $d \in \mathbb{N}$ and $\sigma \in \mathcal{P}$, we denote

$$
\mathcal{P}_{d}=\{\tau \in \mathcal{P}:|\tau|=d\}, \mathcal{P}_{d, \sigma}=\left\{\tau \in \mathcal{P}_{d}: \sigma \subset \tau\right\}
$$

Note that if $\sigma \in \mathcal{P}$ such that $P_{d, \sigma}=\emptyset$, then $\operatorname{sdepth}(\mathcal{P})<d$. Indeed, let $\mathbf{P}: \mathcal{P}=\bigcup_{i=1}^{r}\left[F_{i}, G_{i}\right]$ be a partition of \mathcal{P} with $\operatorname{sdepth}(\mathcal{P})=\operatorname{sdepth}(\mathbf{P})$. Since $\sigma \in \mathcal{P}$, it follows that $\sigma \in\left[F_{i}, G_{i}\right]$ for some i. If $\left|G_{i}\right| \geq d$, then it follows that $\mathcal{P}_{d, \sigma} \neq \emptyset$, since there are subsets in the interval $\left[F_{i}, G_{i}\right]$ of cardinality d which contain σ, a contradiction. Thus, $\left|G_{i}\right|<d$ and therefore $\operatorname{sdepth}(\mathcal{P})<d$.

We recall the method of Herzog, Vladoiu and Zheng [11] for computing the Stanley depth of S / I and I, where I is a squarefree monomial ideal. Let $G(I)=\left\{u_{1}, \ldots, u_{s}\right\}$ be the set of minimal monomial generators of I. We define the following two posets:

$$
\mathcal{P}_{I}:=\left\{\sigma \subset[n]: u_{i} \mid x_{\sigma}:=\prod_{j \in \sigma} x_{j} \text { for some } i\right\} \text { and } \mathcal{P}_{S / I}:=2^{[n]} \backslash \mathcal{P}_{I} .
$$

Herzog, Vladoiu and Zheng proved in [11] that $\operatorname{sdepth}(I)=\operatorname{sdepth}\left(\mathcal{P}_{I}\right)$ and $\operatorname{sdepth}(S / I)=\operatorname{sdepth}\left(\mathcal{P}_{S / I}\right)$.

The above method is useful to give upper bounds for the $\operatorname{sdepth}(S / I)$, where $I \subset S$ is a monomial ideal, and, in particular cases, to compute the exact value of sdepth (S / I). That's exactly the case for $S / I_{n, m}$!

Let $\mathcal{P}:=\mathcal{P}_{S / I_{n, m}}$. We denote $k=\left\lfloor\frac{n}{m+1}\right\rfloor$ and we define

$$
\sigma=\bigcup_{j=0}^{k-1}\{1+j(m+1), 2+j(m+1), \ldots, m-1+j(m+1)\}
$$

We consider two cases.
(a) If $n=(k+1)(m+1)-1$ or $n=(k+1)(m+1)-2$, let $\tau=$ $\sigma \cup\{k(m+1)+1, k(m+1)+2, \ldots, k(m+1)+m-1\}$. Note that $|\tau|=(k+1)(m-1)$ and $\mathcal{P}_{d, \tau}=\emptyset$, for $d=|\tau|+1$. Indeed, $u=\prod_{j \in \tau} x_{j} \notin I_{n, m}$, but $x_{i} u \in I_{n, m}$ for all $i \notin \tau$.
(b) If n is not as in the case (a), let $\tau=\sigma \cup\{k(m+1), \ldots, n\}$. Note that $n-|\tau|=2 k-1$ and $\mathcal{P}_{d, \tau}=\emptyset$, for $d=|\tau|+1$. Indeed, $u=\prod_{j \in \tau} x_{j} \notin I_{n, m}$, but $x_{i} u \in I_{n, m}$ for all $i \notin \tau$.

Therefore $\operatorname{sdepth}\left(S / I_{n, m}\right) \leq|\tau|$, in both cases. On the other hand, one can easily check that $|\tau|=n+1-\left\lfloor\frac{n+1}{m+1}\right\rfloor-\left\lceil\frac{n+1}{m+1}\right\rceil$. Therefore sdepth $\left(S / I_{n, m}\right) \leq$ $\varphi(n, m)$.

Remark 1.5. One possible way to generalize Theorem 1.3 and [17, Theorem 6], at the same time, would be to prove that $\operatorname{sdepth}\left(S / I_{n, m}^{k}\right)=\operatorname{depth}\left(S / I_{n, m}^{k}\right)$ for any $k \geq 1$. Furthermore, we might conjecture that if Δ is a simplicial tree, then $\operatorname{sdepth}\left(S / I(\Delta)^{k}\right)=\operatorname{depth}\left(S / I(\Delta)^{k}\right)$ for any $k \geq 1$.

REFERENCES

[1] J. Apel, On a conjecture of R.P. Stanley; Part II - Quotients Modulo Monomial Ideals. J. Algebraic Combin. 17 (2003), 57-74.
[2] C. Biro, D.M. Howard, M.T. Keller, W.T. Trotter and S.J. Young, Interval partitions and Stanley depth. J. Combin. Theory Ser. A 117 (2010), 475-482.
[3] M. Cimpoeas, Stanley depth of monomial ideals with small number of generators. Cent. Eur. J. Math. 7 (2009), 4, 629-634.
[4] M. Cimpoeaş, Stanley depth for monomial complete intersection. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 51(99) (2008), 3, 205-211.
[5] M. Cimpoeas, Several inequalities regarding Stanley depth. Rom. J. Math. Comput. Sci 2(1) (2012), 28-40.
[6] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it.
[7] A.M. Duval, B. Goeckneker, C.J. Klivans and J.L. Martine, A non-partitionable CohenMacaulay simplicial complex. Adv. Math. 299 (2016), 381-395.
[8] S. Faridi, The facet ideal of a simplicial complex. Manuscripta Math. 109 (2002), 159-174.
[9] A.S. Jahan and X. Zheng, Monomial ideals of forest type. Comm. Algebra 40 (2012), 8, 2786-2797.
[10] Jing He and Adam Van Tuyl, Algebraic properties of the path ideal of a tree. Comm. Algebra 38 (2010), 5, 1725-1742.
[11] J. Herzog, M. Vladoiu and X. Zheng, How to compute the Stanley depth of a monomial ideal. J. Algebra 322(9) (2009), 3151-3169.
[12] J. Herzog, A Survey on Stanley Depth. Lecture Notes in Math. 2083, Springer (2013).
[13] S. Morey, Depths of powers of the edge ideal of a tree. Comm. Algebra 38(11) (2010), 4042-4055.
[14] A. Rauf, Depth and sdepth of multigraded module. Comm. Algebra 38 (2010), 2, 773784.
[15] G. Rinaldo, An algorithm to compute the Stanley depth of monomial ideals. Matematiche LXIII (ii) (2008), 243-256.
[16] R.P. Stanley, Linear Diophantine equations and local cohomology. Invent. Math. 68 (1982), 175-193.
[17] A. Ştefan, Stanley depth of powers of the edge ideal. Preprint 2014, http://arxiv.org/pdf/ 1409.6072.pdf.
[18] R.H. Villarreal, Monomial algebras. Monographs and Textbooks in Pure and Applied Mathematics 238, Marcel Dekker, Inc., New York, 2001.
Received 2 September $2015 \quad$ Simion Stoilow Institute of Mathematics,
Research unit 5, P.O.Box 1-764,
Bucharest 014700, Romania
mircea.cimpoeas@imar.ro

