METRIC PROPERTIES OF N-CONTINUED FRACTIONS

DAN LASCU

Communicated by Marius Iosifescu

A generalization of the regular continued fractions was given by Burger et al. in 2008 [3]. In this paper, we give metric properties of this expansion. For the transformation which generates this expansion, its invariant measure and Perron-Frobenius operator are investigated.

AMS 2010 Subject Classification: 11J70, 11K50.

Key words: continued fractions, invariant measure, Perron-Frobenius operator.

1. INTRODUCTION

The modern history of continued fractions started with Gauss who found a natural invariant measure of the so-called regular continued fraction (or Gauss) transformation, i.e., $T : [0,1] \rightarrow [0,1], T(x) = 1/x - \lfloor 1/x \rfloor, x \neq 0$, and T(0) = 0. Here $\lfloor \cdot \rfloor$ denotes the floor (or entire) function. Let G be this measure which is called Gauss measure. The Gauss measure of an interval $A \in \mathcal{B}_{[0,1]}$ is $G(A) = (1/\log 2) \int_A 1/(x+1) dx$, where $\mathcal{B}_{[0,1]}$ denotes the σ -algebra of all Borel subsets of [0,1]. This measure is T-invariant in the sense that $G(T^{-1}(A)) = G(A)$ for any $A \in \mathcal{B}_I$.

By the very definition, any irrational 0 < x < 1 can be written as the infinite regular continued fraction

(1)
$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}} := [a_1, a_2, a_3, \ldots],$$

where $a_n \in \mathbb{N}_+ := \{1, 2, 3, ...\}$ [5]. Such a_n 's are called *incomplete quotients (or continued fraction digits)* of x and they are given by the formulas $a_1(x) = \lfloor 1/x \rfloor$ and $a_{n+1}(x) = a_1(T^n(x))$, where T^n denotes the *n*th iterate of T.

Thus, the continued fraction representation conjugates the Gauss transformation and the shift on the space of infinite integer-valued sequence $(a_n)_{n \in \mathbb{N}_+}$.

Other famous probabilists like Paul Lévy and Wolfgang Doeblin also contributed to what is nowadays called the "metric theory of continued fractions".

MATH. REPORTS 19(69), 2 (2017), 165–181

The first problem in the metric theory of continued fractions was Gauss' famous 1812 problem [2]. In a letter dated 1812, Gauss asked Laplace how fast $\lambda(T^{-n}([0, x]))$ converges to the invariant measure G([0, x]), where λ denotes the Lebesgue measure on [0, 1]. Gauss' question was answered independently in 1928 by Kuzmin [10], and in 1929 by Paul Lévy [13].

Apart from regular continued fractions, there are many other continued fraction expansions: Engel continued fractions, Rosen expansions, the nearest integer continued fraction, the grotesque continued fractions, f-expansions etc. For most of these expansions the Gauss-Kuzmin-Lévy theorem has been proved [7,9,12,15-19]

The purpose of this paper is to show and prove some metric properties of N-continued fraction expansions introduced by Burger *et al.* [3].

In Section 2, we present the current framework. Next we show a Legendretype result and the Brodén-Borel-Lévy formula by using the probability structure of $(a_n)_{n \in \mathbb{N}_+}$ under the Lebesgue measure. In Section 6, we find the invariant measure G_N of T_N the transformation which generate the N-continued fraction expansions. In Section 7, we consider the so-called natural extension of $([0,1],\mathcal{B}_{[0,1]},G_N,T_N)$ [15]. In Section 8, we derive its Perron-Frobenius operator under different probability measures on $([0,1],\mathcal{B}_{[0,1]})$. Especially, we derive the asymptotic behavior for the Perron-Frobenius operator of $([0,1],\mathcal{B}_{[0,1]},G_N,T_N)$.

2. N-CONTINUED FRACTION EXPANSIONS AS DYNAMICAL SYSTEM

In this paper, we consider a generalization of the Gauss transformation. Fix an integer $N \ge 1$. In [3], Burger *et al.* proved that any irrational 0 < x < 1 can be written in the form

(2)
$$x = \frac{N}{a_1 + \frac{N}{a_2 + \frac{N}{a_3 + \cdots}}} := [a_1, a_2, a_3, \ldots]_N,$$

where a_n 's are non-negative integers. We will call (2) the *N*-continued fraction expansion of x.

This continued fraction is treated as the following dynamical systems.

Definition 2.1. Fix an integer $N \ge 1$.

(i) The measure – theoretical dynamical system (I, \mathcal{B}_I, T_N) is defined as follows: $I := [0, 1], \mathcal{B}_I$ denotes the σ –algebra of all Borel subsets of I, and T_N is the transformation

(3)
$$T_N: I \to I; \quad T_N(x) := \begin{cases} \frac{N}{x} - \left\lfloor \frac{N}{x} \right\rfloor & \text{if } x \in I, \\ 0 & \text{if } x = 0. \end{cases}$$

(ii) In addition to (i), we write $(I, \mathcal{B}_I, G_N, T_N)$ as (I, \mathcal{B}_I, T_N) with the following probability measure G_N on (I, \mathcal{B}_I) :

(4)
$$G_N(A) := \frac{1}{\log \frac{N+1}{N}} \int_A \frac{\mathrm{d}x}{x+N}, \quad A \in \mathcal{B}_I.$$

Define the quantized index map $\eta: I \to \mathbb{N} := \mathbb{N}_+ \cup \{0\}$ by

(5)
$$\eta(x) := \begin{cases} \left\lfloor \frac{N}{x} \right\rfloor & \text{if } x \neq 0, \\ \infty & \text{if } x = 0. \end{cases}$$

By using T_N and η , the sequence (a_n) in (2) is obtained as follows:

(6)
$$a_n = \eta \left(T_N^{n-1}(x) \right), \quad n \ge 1$$

with $T_N^0(x) = x$. Since $x \in (0, 1)$ we have that $a_n \ge N$ for any $n \ge 1$.

In this way, T_N gives the algorithm of N-continued fraction expansion which is an obvious generalization of the regular continued fraction.

- PROPOSITION 2.2. Let $(I, \mathcal{B}_I, G_N, T_N)$ be as in Definition 2.1(ii).
- (i) $(I, \mathcal{B}_I, G_N, T_N)$ is ergodic.
- (ii) The measure G_N is invariant under T_N .

Proof. See [4] and Section 6.

By Proposition 2.2(ii), $(I, \mathcal{B}_I, G_N, T_N)$ is a "dynamical system" in the sense of Definition 3.1.3 in [1].

3. SOME ELEMENTARY PROPERTIES OF N-CONTINUED FRACTIONS

Roughly speaking, the metrical theory of continued fraction expansions is the asymptotic analysis of incomplete quotients $(a_n)_{n \in \mathbb{N}_+}$ and related sequences [8]. First, note that in the rational case, the continued fraction expansion (2) is finite, unlike the irrational case, when we have an infinite number of digits. In [20], Van der Wekken showed the convergence of the expansion. For $x \in I \setminus \mathbb{Q}$, define the *n*-th order convergent $[a_1, a_2, \ldots, a_n]_N$ of x by truncating the expansion on the right-hand side of (2), that is,

(7)
$$[a_1, a_2, \dots, a_n]_N \to x, \quad n \to \infty.$$

To this end, for $n \in \mathbb{N}_+$, define integer-valued functions $p_n(x)$ and $q_n(x)$ by

(8) $p_n(x) := a_n p_{n-1} + N p_{n-2}, \quad n \ge 2$

(9)
$$q_n(x) := a_n q_{n-1} + N q_{n-2}, \quad n \ge 1$$

with $p_0(x) := 0$, $q_0(x) := 1$, $p_{-1}(x) := 1$, $q_{-1}(x) := 0$, $p_1(x) := N$, $q_1(x) := a_1$. By induction, we have

(10)
$$p_{n-1}(x)q_n(x) - p_n(x)q_{n-1}(x) = (-N)^n, \quad n \in \mathbb{N}.$$

By using (8) and (9), we can verify that

(11)
$$x = \frac{p_n(x) + T_N^n(x)p_{n-1}(x)}{q_n(x) + T_N^n(x)q_{n-1}(x)}, \quad n \ge 1.$$

By taking $T_N^n(x) = 0$ in (11), we obtain $[a_1, a_2, \ldots, a_n]_N = p_n(x)/q_n(x)$. From this and by using (10) and (11), we obtain

(12)
$$\left| x - \frac{p_n(x)}{q_n(x)} \right| = \frac{N^n \cdot T_N^n(x)}{q_n(x) \left(T_N^n(x) q_{n-1}(x) + q_n(x) \right)}, \quad n \ge 1.$$

Now, since $T_N^n(x) < 1$ and $\left| T_N^n(x) \frac{q_{n-1}(x)}{q_n(x)} + 1 \right| \ge 1$, we have

(13)
$$\left|x - \frac{p_n(x)}{q_n(x)}\right| < \frac{N^n}{q_n^2(x)}, \quad n \ge 1.$$

In order to prove (7), it is sufficient to show the following inequality:

(14)
$$\left|x - \frac{p_n(x)}{q_n(x)}\right| \le \frac{1}{N^n}, \quad n \ge 1.$$

From (9), we have that $q_n(x) > Nq_{n-1}(x)$ and because $q_0 = 1$ we have $q_n(x) > N^n$. Finally, (14) follows from (13).

4. DIOPHANTINE APPROXIMATION

Diophantine approximation deals with the approximation of real numbers by rational numbers [5]. We approximate $x \in I \setminus \mathbb{Q}$ by incomplete quotients in (8) and (9).

For $x \in I \setminus \mathbb{Q}$, let a_n be as in (6). For any $n \in \mathbb{N}_+$ and $i^{(n)} = (i_1, \ldots, i_n) \in \mathbb{N}^n$, define the fundamental interval associated with $i^{(n)}$ by

(15)
$$I_N\left(i^{(n)}\right) = \{x \in I \setminus \mathbb{Q} : a_k(x) = i_k \text{ for } k = 1, \dots, n\}$$

where we write $I_N(i^{(0)}) = I \setminus \mathbb{Q}$. Remark that $I_N(i^{(n)})$ is not connected by definition. For example, we have

(16)
$$I_N(i) = \{x \in I \setminus \mathbb{Q} : a_1 = i\} = (I \setminus \mathbb{Q}) \cap \left(\frac{N}{i+1}, \frac{N}{i}\right) \text{ for any } i \in \mathbb{N}.$$

LEMMA 4.1. Let λ denote the Lebesgue measure. Then

(17)
$$\lambda\left(I_N\left(i^{(n)}\right)\right) = \frac{N^n}{q_n(x)(q_n(x) + q_{n-1}(x))},$$

where (q_n) is as in (9).

Proof. From the definition of T_N and (11), we have

(18)
$$I_N\left(i^{(n)}\right) = (I \setminus \mathbb{Q}) \cap \left(u(i^{(n)}), v(i^{(n)})\right),$$

where both $u(i^{(n)})$ and $v(i^{(n)})$ are rational numbers defined as

(19)
$$u\left(i^{(n)}\right) := \begin{cases} \frac{p_n(x) + p_{n-1}(x)}{q_n(x) + q_{n-1}(x)} & \text{if } n \text{ is odd,} \\ \\ \frac{p_n(x)}{q_n(x)} & \text{if } n \text{ is even,} \end{cases}$$

and

(20)
$$v\left(i^{(n)}\right) := \begin{cases} \frac{p_n(x)}{q_n(x)} & \text{if } n \text{ is odd,} \\ \\ \frac{p_n(x) + p_{n-1}(x)}{q_n(x) + q_{n-1}(x)} & \text{if } n \text{ is even.} \end{cases}$$

By using (10), we have (17). \Box

We now give a Legendre-type result for N-continued fraction expansions. For $x \in I \setminus \mathbb{Q}$, we define the *approximation coefficient* $\Theta_N(x, n)$ by

(21)
$$\Theta_N(x,n) := \frac{q_n^2}{N^n} \left| x - \frac{p_n}{q_n} \right|, \quad n \ge 1$$

where p_n/q_n is the *n*th continued fraction convergent of x in (2).

PROPOSITION 4.2. For $x \in I \setminus \mathbb{Q}$ and an irreducible fraction 0 < p/q < 1, assume that p/q is written as follows:

(22)
$$\frac{p}{q} = [i_1, \dots, i_n]_N$$

where $[i_1, \ldots, i_n]_N$ is as in (7), and the length $n \in \mathbb{N}_+$ of N-continued fraction expansion of p/q is chosen in such a way that it is even if p/q < x and odd otherwise. Then

(23)
$$\Theta_N(x,n) < \frac{q}{q+q_{n-1}}$$
 if and only if $\frac{p}{q}$ is the nth convergent of x

where $\Theta_N(x,n)$ is as in (21) and the positive integer q_{n-1} is defined as the denominator of the irreducible fraction representation of the rational number $[i_1, \ldots, i_{n-1}]_N$ with $q_0 = 1$ for the sequence i_1, \ldots, i_n .

Proof. Fix $x \in I \setminus \mathbb{Q}$ and $n \geq 1$. Let $\Theta := \Theta_N(x, n)$. (\Leftarrow) Assume that p/q is the *n*th convergent of x. By (12) and the definition of Θ , we have

(24)
$$\Theta = \frac{q^2}{N^n} \left| x - \frac{p}{q} \right| = \frac{T_N^n(x)q}{q + T_N^n(x)q_{n-1}(x)} \le \frac{q}{q + q_{n-1}}$$

where we use $q_{n-1} = q_{n-1}(x)$. (\Rightarrow) Conversely,

If n is even, then x > p/q and we have

(26)
$$x - \frac{p}{q} < \frac{N^n}{q(q+q_{n-1})}$$

From these,

(27)
$$\frac{p}{q} < x < \frac{p}{q} + \frac{N^n}{q(q+q_{n-1})} = \frac{p+p_{n-1}}{q+q_{n-1}}$$

where p_{n-1} is defined as $p_{n-1}/q_{n-1} = [i_1, \ldots, i_{n-1}]_N$. Hence $x \in I_N(i^{(n)})$, *i.e.*, $p/q = [i_1, \ldots, i_n]_N$ is a convergent of x. The case when n is odd is treated similarly. \Box

5. BRODÉN-BOREL-LÉVY FORMULA AND ITS CONSEQUENCES

We derive the so-called Brodén-Borel-Lévy formula [6,8] for N-continued fraction expansion. For $x \in I$, let a_n and q_n be as in (6) and (9), respectively. We define $(s_n)_{n\geq 0}$ by

(28)
$$s_0 := 0, \quad s_n := N \frac{q_n}{q_{n-1}}, \quad n \ge 1.$$

From (9), $s_n = N/(a_n + s_{n-1})$ for $n \ge 1$. Hence

(29)
$$s_n = \frac{N}{a_n + \frac{N}{a_{n-1} + \cdots + \frac{N}{a_1}}} = [a_n, a_{n-1}, \dots, a_2, a_1]_N,$$

for $n \geq 1$.

PROPOSITION 5.1 (Brodén-Borel-Lévy formula). Let λ denote the Lebesgue measure on I. For any $n \in \mathbb{N}_+$, the conditional probability $\lambda(T_N^n < x|a_1,\ldots,a_n)$ is given as follows:

(30)
$$\lambda(T_N^n < x | a_1, \dots, a_n) = \frac{(s_n + N)x}{s_n x + N}, \quad x \in I$$

where s_n is as in (28) and a_1, \ldots, a_n are as in (6).

Proof. By definition, we have

(31)
$$\lambda(T_N^n < x | a_1, \dots, a_n) = \frac{\lambda((T_N^n < x) \cap I_N(a_1, \dots, a_n))}{\lambda(I_N(a_1, \dots, a_n))}$$

for any $n \in \mathbb{N}_+$ and $x \in I$. From (11) and (18) we have

(32)
$$\lambda \left((T_N^n < x) \cap I_N(a_1, \dots, a_n) \right) = \left| \frac{p_n}{q_n} - \frac{p_n + x p_{n-1}}{q_n + x q_{n-1}} \right|$$
$$= \frac{N^n x}{q_n (q_n + x q_{n-1})}.$$

From this and (17), we have

$$\lambda \left(T_N^n < x | a_1, \dots, a_n \right) = \frac{\lambda \left((T_N^n < x) \cap I_N(a_1, \dots, a_n) \right)}{\lambda \left(I_N(a_1, \dots, a_n) \right)}$$
$$= \frac{x \left(q_n + q_{n-1} \right)}{q_n + x q_{n-1}} = \frac{(s_n + N)x}{s_n x + N}$$

for any $n \in \mathbb{N}_+$ and $x \in I$. \Box

(33)

The Brodén-Borel-Lévy formula allows us to determine the probability structure of incomplete quotients $(a_n)_{n \in \mathbb{N}_+}$ under λ .

PROPOSITION 5.2. For any $i \geq N$ and $n \in \mathbb{N}_+$, we have

(34)
$$\lambda(a_1 = i) = \frac{N}{i(i+1)}, \quad \lambda(a_{n+1} = i|a_1, \dots, a_n) = V_{N,i}(s_n)$$

where (s_n) is as in (28), and

(35)
$$V_{N,i}(x) := \frac{x+N}{(x+i)(x+i+1)}$$

Proof. From (16), the case $\lambda(a_1 = i)$ holds. For $n \ge N$ and $x \in I \setminus \mathbb{Q}$, we have $T_N^n(x) = [a_{n+1}, a_{n+2}, \ldots]_N$ where (a_n) is as in (6). By using (30), we have

$$\lambda(a_{n+1} = i \mid a_1, \dots, a_n) = \lambda\left(T_N^n \in \left(\frac{N}{i+1}, \frac{N}{i}\right] \mid a_1, \dots, a_n\right).$$

Dan Lascu

(36)
$$= \frac{(s_n + N)\frac{N}{i}}{s_n\frac{N}{i} + N} - \frac{(s_n + N)\frac{N}{i+1}}{s_n\frac{N}{i+1} + N} = V_{N,i}(s_n). \quad \Box$$

In (34), $\sum_{i=N}^{\infty} \lambda(a_{n+1} = i | a_1, \dots, a_n)$ must be 1 because λ is a probability measure on (I, \mathcal{B}_I) . This can be verified from (34) and (36) by using the partial fraction decomposition. By the same token, we see that

(37)
$$\sum_{i=N}^{\infty} V_{N,i}(x) = 1 \quad \text{for any } x \in I.$$

Remark 5.3. Proposition (5.2) is the starting point of an approach to the metrical theory of N-continued fraction expansions via dependence with complete connections (see [6], Section 5.2). We apply this method in [11] to obtain a solution of Gauss-Kuzmin-type problem for N-continued fraction expansions.

COROLLARY 5.4. The sequence $(s_n)_{n \in \mathbb{N}_+}$ with $s_0 = 0$ is a homogeneous *I*-valuated Markov chain on $(I, \mathcal{B}_I, \lambda)$ with the following transition mechanism: from state $s \in I$ the only possible one-step transitions are those to states N/(s+i), $i \geq N$, with corresponding probabilities $V_{N,i}(s)$, $i \geq N$.

6. THE INVARIANT MEASURE OF T_N

Let (I, \mathcal{B}_I) be as in Definition 2.1(i). In this section, we will give the explicit form of the invariant probability measure G_N of the transformation T_N in (3), *i.e.*, $G_N(T_N^{-1}(A)) = G_N(A)$ for any $A \in \mathcal{B}_I$. From the aspect of metric theory, the digits a_n in (6) can be viewed as random variables on (I, \mathcal{B}_I) that are defined almost surely with respect to any probability measure on \mathcal{B}_I assigning probability 0 to the set of rationals in I. Such a probability measure is Lebesgue measure λ , but a more important one in the present context is the invariant probability measure G_N of the transformation T_N .

PROPOSITION 6.1. The invariant probability density ρ_N of the transformation T_N is given by

(38)
$$\rho_N(x) = \frac{k_N}{x+N}, \quad x \in I$$

where k_N is the normalized constant such that the invariant measure G_N is a probability measure. Furthermore, the constant k_N is given in (4), i.e., $k_N = \left(\log\left(\frac{N+1}{N}\right)\right)^{-1}$.

Proof. We will give a proof which involves properties of the Perron-Frobenius operator of T_N under G_N . Therefore, the proof will be given in Section 8. \Box

7. NATURAL EXTENSION AND EXTENDED RANDOM VARIABLES

Fix an integer $N \ge 1$. In this section, we introduce the natural extension $\overline{T_N}$ of T_N in (3) and its extended random variables [15].

Let (I, \mathcal{B}_I, T_N) be as in Definition 2.1(i). Define $(u_{N,i})_{i \geq N}$ by

(39)
$$u_{N,i}: I \to I; \quad u_{N,i}(x) := \frac{N}{x+i}, \quad x \in I.$$

For each $i \geq N$, $u_{N,i}$ is a right inverse of T_N , that is,

(40)
$$(T_N \circ u_{N,i})(x) = x, \text{ for any } x \in I.$$

Furthermore, if $\eta(x) = i$, then $(u_{N,i} \circ T_N)(x) = x$ where η is as in (5).

Definition 7.1. The natural extension $(I^2, \mathcal{B}_{I^2}, \overline{T_N})$ of (I, \mathcal{B}_I, T_N) is the transformation $\overline{T_N}$ of the square space $(I^2, \mathcal{B}_I^2) := (I, \mathcal{B}_I) \times (I, \mathcal{B}_I)$ defined as follows [14]:

(41)
$$\overline{T_N}: I^2 \to I^2; \quad \overline{T_N}(x,y) := \left(T_N(x), u_{N,\eta(x)}(y)\right), \quad (x,y) \in I^2.$$

From (40), we see that $\overline{T_N}$ is bijective on I^2 with the inverse

(42)
$$(\overline{T_N})^{-1}(x,y) = (u_{N,\eta(y)}(x), T_N(y)), \quad (x,y) \in I^2.$$

Iterations of (41) and (42) are given as follows for each $n \ge 2$:

(43)
$$(\overline{T_N})^n(x,y) = (T_N^n(x), [x_n, x_{n-1}, \dots, x_2(x), x_1 + y]_N),$$

(44)
$$(\overline{T_N})^{-n}(x,y) = ([y_n, y_{n-1}, \dots, y_2, y_1 + x]_N, T_N^n(y))$$

where $x_i := \eta \left(T_N^{i-1}(x) \right)$ and $y_i := \eta \left(T_N^{i-1}(y) \right)$ for $i = 1, \dots, n$.

For G_N in (4), Dajani *et al.* [4] define its *extended measure* $\overline{G_N}$ on (I^2, \mathcal{B}_I^2) as

(45)
$$\overline{G_N}(B) := \frac{1}{\log\left(\frac{N+1}{N}\right)} \iint_B \frac{N \mathrm{d}x \mathrm{d}y}{(xy+N)^2}, \quad B \in \mathcal{B}_I^2.$$

Then $\overline{G_N}(A \times I) = \overline{G_N}(I \times A) = G_N(A)$ for any $A \in \mathcal{B}_I$. The measure $\overline{G_N}$ is preserved by $\overline{T_N}$ [4].

Define the projection $E: I^2 \to I$ by E(x, y) := x. With respect to $\overline{T_N}$ in (41), define extended incomplete quotients $\overline{a}_l(x, y), l \in \mathbb{Z}$ at $(x, y) \in I^2$ by

(46)
$$\overline{a}_l(x,y) := (\eta \circ E) \left(\left(\overline{T_N} \right)^{l-1} (x,y) \right), \quad l \in \mathbb{Z}.$$

Remark 7.2. (i) Remark that $\overline{a}_l(x, y)$ in (46) is also well-defined for $l \leq 0$ because $\overline{T_N}$ is invertible. By (43) and (44), we have

(47)
$$\overline{a}_n(x,y) = x_n$$
, $\overline{a}_0(x,y) = y_1$, $\overline{a}_{-n}(x,y) = y_{n+1}$, $n \in \mathbb{N}_+$, $(x,y) \in I^2$
where we use notations in (43) and (44).

(ii) Since the measure $\overline{G_N}$ is preserved by $\overline{T_N}$, the doubly infinite sequence $(\overline{a}_l(x, y))_{l \in \mathbb{Z}}$ is strictly stationary (*i.e.*, its distribution is invariant under a shift of the indices) under $\overline{G_N}$.

THEOREM 7.3. Fix $(x, y) \in I^2$ and let $\overline{a}_l := \overline{a}_l(x, y)$ for $l \in \mathbb{Z}$. Define $a := [\overline{a}_0, \overline{a}_{-1}, \ldots]_N$. Then the following holds for any $x \in I$:

(48)
$$\overline{G}_N([0,x] \times I \mid \overline{a}_0, \overline{a}_{-1}, \ldots) = \frac{(N+a)x}{ax+N} \quad \overline{G}_N \text{-a.s.}$$

Proof. Recall fundamental interval in (15). Let $I_{N,n}$ denote the fundamental interval $I_N(\overline{a}_0, \overline{a}_{-1}, \ldots, \overline{a}_{-n})$ for $n \in \mathbb{N}$. We have

(49)
$$\overline{G_N}([0,x] \times I \mid \overline{a}_0, \overline{a}_{-1}, \ldots) = \lim_{n \to \infty} \overline{G_N}([0,x] \times I \mid \overline{a}_0, \ldots, \overline{a}_{-n}) \quad \overline{G_N}$$
-a.s.

and

(50)

$$\overline{G_N}([0,x] \times I \mid \overline{a}_0, \dots, \overline{a}_{-n}) = \frac{G_N([0,x] \times I_{N,n})}{\overline{G_N}(I \times I_{N,n})}$$

$$= \frac{k_m}{G_N(I_{N,n})} \int_{I_{N,n}} dy \int_0^x \frac{N du}{(yu+N)^2}$$

$$= \frac{1}{G_N(I_{N,n})} \int_{I_{N,n}} \frac{x(y+N)}{xy+N} G_N(dy)$$

$$= \frac{x(y_n+N)}{xy_n+N}$$

for some $y_n \in I_{N,n}$ where k_m is as in Proposition (6.1). Since (51) $\lim_{n \to \infty} y_n = [\overline{a}_0, \overline{a}_{-1}, \ldots]_N = a,$

the proof is completed. \Box

The stochastic property of $(\overline{a}_l)_{l \in \mathbb{Z}}$ under $\overline{G_N}$ is given as follows.

COROLLARY 7.4. For any $i \in \mathbb{N}$, we have

(52)
$$\overline{G_N}(\overline{a}_1 = i | \overline{a}_0, \overline{a}_{-1}, \ldots) = V_{N,i}(a) \quad \overline{G_N}\text{-a.s.}$$

where $a = [\overline{a}_0, \overline{a}_{-1}, \ldots]_N$ and $V_{N,i}$ is as in (35).

Proof. Let $I_{N,n}$ be as in the proof of Theorem 7.3. We have

(53)
$$\overline{G_N}(\overline{a}_1 = i \mid \overline{a}_0, \overline{a}_{-1}, \ldots) = \lim_{n \to \infty} \overline{G_N}(\overline{a}_1 = i \mid I_{N,n}).$$

Now

$$\overline{G_N}\left(\left(\frac{N}{i+1}, \frac{N}{i}\right] \times [0, 1) \middle| I_{N,n}\right) = \frac{\overline{G_N}\left(\left(\frac{N}{i+1}, \frac{N}{i}\right] \times I_{N,n}\right)}{\overline{G_N}(I \times I_{N,n})}$$

$$= \frac{1}{G_N(I_{N,n})} \int_{I_{N,n}} V_{N,i}(y) G_N(\mathrm{d}y)$$

$$= V_{N,i}(y_n)$$

for some $y_n \in I_{N,n}$. From (51), the proof is completed. \Box

Remark 7.5. The strict stationarity of $(\overline{a}_l)_{l \in \mathbb{Z}}$, under $\overline{G_N}$ implies that

(55)
$$\overline{G_N}(\overline{a}_{l+1} = i \mid \overline{a}_l, \overline{a}_{l-1}, \ldots) = V_{N,i}(a) \quad \overline{G_N}\text{-a.s.}$$

for any $i \in \mathbb{N}$ and $l \in \mathbb{Z}$, where $a = [\overline{a}_l, \overline{a}_{l-1}, \ldots]_N$. The last equation emphasizes that $(\overline{a}_l)_{l \in \mathbb{Z}}$ is a chain of infinite order in the theory of dependence with complete connections [6].

8. PERRON-FROBENIUS OPERATORS

Let $(I, \mathcal{B}_I, G_N, T_N)$ be as in Definition 2.1(ii). In this section, we derive its Perron-Frobenius operator.

Let μ be a probability measure on (I, \mathcal{B}_I) such that $\mu(T_N^{-1}(A)) = 0$ whenever $\mu(A) = 0$ for $A \in \mathcal{B}_I$. For example, this condition is satisfied if T_N is μ -preserving, that is, $\mu T_N^{-1} = \mu$. Let $L^1(I, \mu) := \{f : I \to \mathbb{C} : \int_I |f| d\mu < \infty\}$. The *Perron-Frobenius operator* of $(I, \mathcal{B}_I, \mu, G_N)$ is defined as the bounded linear operator U on the Banach space $L^1(I, \mu)$ such that the following holds:

(56)
$$\int_{A} Uf \,\mathrm{d}\mu = \int_{T_{N}^{-1}(A)} f \,\mathrm{d}\mu \quad \text{for all } A \in \mathcal{B}_{I}, f \in L^{1}(I,\mu).$$

For more details, see [1,8] or Appendix A in [12].

PROPOSITION 8.1. Let $(I, \mathcal{B}_I, G_N, T_N)$ be as in Definition 2.1(ii), and let U denote its Perron-Frobenius operator. Then:

(i) The following equation holds:

(57)
$$\{Uf\}(x) = \sum_{i \ge N} V_{N,i}(x) f\left(\frac{N}{x+i}\right), \quad f \in L^1(I, G_N),$$

where $V_{N,i}$ is as in (35).

- (ii) Let μ be a probability measure on (I, \mathcal{B}_I) such that μ is absolutely continuous with respect to the Lebesgue measure λ and let $h := d\mu/d\lambda$ a.e. in I. Then the following holds:
 - (a) Let S denote the Perron-Frobenius operator of T_N under μ . Then the following holds a.e. in I:

(58)
$$\{Sf\}(x) = \frac{N}{h(x)} \sum_{i \ge N} \frac{h\left(\frac{N}{x+i}\right)}{(x+i)^2} f\left(\frac{N}{x+i}\right)$$

(59)
$$= \frac{\{Uf\}(x)}{(x+N)h(x)}$$

for $f \in L^1(I, \mu)$, where $\hat{f}(x) := (x+N)f(x)h(x)$, $x \in I$. In addition, the nth power S^n of S is written as follows:

(60)
$$\{S^n f\}(x) = \frac{\{U^n f\}(x)}{(x+N)h(x)}$$

for any $f \in L^1(I,\mu)$ and any $n \ge 1$.

(b) Let K denote the Perron-Frobenius operator of T_N under λ . Then the following holds a.e. in I:

(61)
$$\{Kf\}(x) = \sum_{i \ge N} \frac{N}{(x+i)^2} f\left(\frac{N}{x+i}\right), \ f \in L^1(I,\lambda).$$

In addition, the nth power K^n of K is written as follows:

(62)
$$\{K^n f\}(x) = \frac{\{U^n \hat{f}\}(x)}{x+N}, \ f \in L^1(I,\lambda),$$

for any $f \in L^1(I, \lambda)$ and any $n \ge 1$, where $\hat{f}(x) := (x + N)f(x)$, $x \in I$.

(c) For any $n \in \mathbb{N}_+$ and $A \in \mathcal{B}_I$, we have

(63)
$$\mu\left(T_N^{-n}(A)\right) = \int_A \{U^n f\}(x) \mathrm{d}G_N(x)$$
$$where \ f(x) := \left(\log\left(\frac{N+1}{N}\right)\right)(x+N)h(x) \ for \ x \in I.$$

Proof. (i) Let $T_{N,i}$ denote the restriction of T_N to the subinterval $I_i := \left(\frac{N}{i+1}, \frac{N}{i}\right), i \geq N$, that is,

(64)
$$T_{N,i}(x) = \frac{N}{x} - 1, \quad x \in I_i.$$

Let $C(A) := (T_N)(A)$ and $C_i(A) := (T_{N,i})^{-1}(A)$ for $A \in \mathcal{B}_I$. Since $C(A) = \bigcup_i C_i(A)$ and $C_i \cap C_j$ is a null set when $i \neq j$, we have

(65)
$$\int_{C(A)} f \, \mathrm{d}G_N = \sum_{i \ge N} \int_{C_i(A)} f \, \mathrm{d}G_N, \quad f \in L^1(I, G_N), A \in \mathcal{B}_I.$$

For any $i \geq N$, by the change of variables $x = (T_{N,i})^{-1}(y) = \frac{N}{y+i}$, we successively obtain

$$\int_{C_i(A)} f(x) G_N(\mathrm{d}x) = \left(\log\left(\frac{N+1}{N}\right)\right)^{-1} \int_{C_i(A)} \frac{f(x)}{N+x} \mathrm{d}x$$
$$= \left(\log\left(\frac{N+1}{N}\right)\right)^{-1} \int_A \frac{f\left(\frac{N}{y+i}\right)}{N+\frac{N}{y+i}} \frac{N}{(y+i)^2} \mathrm{d}y$$
$$= \int_A V_{N,i}(y) f\left(\frac{N}{y+i}\right) G_N(\mathrm{d}y).$$

Now, (57) follows from (65) and (66). (ii)(a) From (64), for any $f \in L^1(I, G_N)$ and $A \in \mathcal{B}_I$, we have

(67)
$$\int_{C(A)} f(x) \,\mu(dx) = \sum_{i \ge N} \int_{C_i(A)} f(x) \,\mu(dx).$$

Then

(68)
$$\int_{C_i(A)} f(x)\mu(\mathrm{d}x) = \int_{C_i(A)} f(x)h(x)\,\mathrm{d}x = \int_A f\left(\frac{N}{y+i}\right)h\left(\frac{N}{y+i}\right)\frac{N}{(y+i)^2}\,\mathrm{d}y.$$

From (67) and (68),

(69)
$$\int_{C(A)} f(x) \,\mu(\mathrm{d}x) = \int_A \sum_{i \ge N} f\left(\frac{N}{x+i}\right) \,h\left(\frac{N}{x+i}\right) \frac{N}{(x+i)^2} \,\mathrm{d}x.$$

Since $d\mu = hdx$, (58) follows from (69). Now, since $\hat{f}(x) = (x + N)f(x)h(x)$, from (58), we have

(70)
$$\{U\hat{f}\}(x) = N(x+N)\sum_{i\geq N}\frac{h\left(\frac{N}{x+i}\right)}{(x+i)^2}f\left(\frac{N}{x+i}\right).$$

From (58) and (70), (59) follows immediately.

(ii)(b) The formula (61) is a consequence of (59) and follows immediately. (ii)(c) We will use mathematical induction. For n = 0, the equation (63) holds by definitions of f and h. Assume that (63) holds for some $n \in \mathbb{N}$. Then

(71)
$$\mu\left(T_N^{-(n+1)}(A)\right) = \mu\left(T_N^{-n}\left(T_N^{-1}(A)\right)\right) = \int_{C(A)} \{U^n f\}(x) G_N(\mathrm{d}x).$$

Since $U = U_{T_N}$ and (56), we have

(72)
$$\int_{C(A)} \{U^n f\}(x) G_N(\mathrm{d}x) = \int_A \{U^{n+1} f\}(x) G_N(\mathrm{d}x).$$

Therefore,

(73)
$$\mu\left(T_N^{-(n+1)}(A)\right) = \int_A \{U^{n+1}f\}(x)G_N(\mathrm{d}x)$$

which ends the proof.

For a function $f: I \to \mathbb{C}$, define the variation $\operatorname{var}_A f$ of f on a subset Aof I by

(74)
$$\operatorname{var}_A f := \sup \sum_{i=1}^{k-1} |f(t_{i+1}) - f(t_i)|$$

where the supremum being taken over $t_1 < \cdots < t_k, t_i \in A, 1 \le i \le k$, and $k \geq 2$ ([8], p. 75). We write simply var f for var f. Let $BV(I) := \{f : I \rightarrow I\}$ \mathbb{C} : var $f < \infty$ and let $L^{\infty}(I)$ denote the collection of all bounded measurable functions $f: I \to \mathbb{C}$. It is known that $BV(I) \subset L^{\infty}(I) \subset L^1(I,\mu)$. Let L(I)denote the Banach space of all complex-valued Lipschitz continuous functions on I with the following norm $\|\cdot\|_L$:

(75)
$$||f||_L := \sup_{x \in I} |f(x)| + s(f),$$

with

(76)
$$s(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|}, \quad f \in L(I).$$

In the following proposition we show that the operator U in (57) preserves monotonicity and enjoys a contraction property for Lipschitz continuous functions.

PROPOSITION 8.2. Let U be as in (57).

(i) Let $f \in L^{\infty}(I)$. Then the following holds:

(a) If f is non-decreasing (non-increasing), then Uf is non-increasing (non-decreasing).

(b) If f is monotone, then

(77)
$$\operatorname{var}(Uf) \leq \frac{1}{N+1} \cdot \operatorname{var} f.$$

(ii) For any $f \in L(I)$, we have

(78)
$$s(Uf) \le q \cdot s(f),$$

where

(79) where
$$q := N\left(\sum_{i \ge N} \left(\frac{N}{i^3(i+1)} + \frac{i+1-N}{i(i+1)^3}\right)\right).$$

Proof. (i)(a) To make a choice assume that f is non-decreasing. Let x < y, $x, y \in I$. We have $\{Uf\}(y) - \{Uf\}(x) = S_1 + S_2$, where

(80)
$$S_1 = \sum_{i \ge N} V_{N,i}(y) \left(f\left(\frac{N}{y+i}\right) - f\left(\frac{N}{x+i}\right) \right),$$

(81)
$$S_2 = \sum_{i \ge m} (V_{N,i}(y) - V_{N,i}(x)) f\left(\frac{N}{x+i}\right).$$

Clearly, $S_1 \leq 0$. Now, since $\sum_{i \geq N} V_{N,i}(x) = 1$ for any $x \in I$, we can write

(82)
$$S_2 = -\sum_{i\geq N} \left(f\left(\frac{N}{x+N}\right) - f\left(\frac{N}{x+i}\right) \right) \left(V_{N,i}(y) - V_{N,i}(x)\right).$$

As is easy to see, the functions $V_{N,i}$ are increasing for all $i \ge N$. Also, using that $f\left(\frac{N}{x+N}\right) \ge f\left(\frac{N}{x+i}\right)$, we have that $S_2 \le 0$. Thus $\{Uf\}(y) - \{Uf\}(x) \le 0$ and the proof is complete.

(i)(b) Assume that f is non-decreasing. Then by (a) we have

(83)
$$\operatorname{var} Uf = \{Uf\}(0) - \{Uf\}(1) = \sum_{i \ge N} \left(V_{N,i}(0)f\left(\frac{N}{i}\right) - V_{N,i}(1)f\left(\frac{N}{1+i}\right) \right).$$

By calculus, we have

$$\operatorname{var} Uf = \sum_{i \ge N} \left(\frac{N}{i(i+1)} f\left(\frac{N}{i}\right) - \frac{N+1}{(i+1)(i+2)} f\left(\frac{N}{i+1}\right) \right)$$
$$= \frac{1}{N+1} f(1) - \sum_{i \ge N} \frac{1}{(i+1)(i+2)} f\left(\frac{N}{i+1}\right)$$
$$\leq \frac{1}{N+1} f(1) - \sum_{i \ge N} \left(\frac{1}{i+1} - \frac{1}{i+2}\right) f(0)$$
$$= \frac{1}{N+1} (f(1) - f(0)) = \frac{1}{N+1} \operatorname{var} f.$$

(ii) For $x \neq y, x, y \in I$, we have $W_{-}(x) = W_{-}(x) = V_{-}(x)$

$$\frac{\{Uf\}(y) - \{Uf\}(x)}{y - x} = \sum_{i \ge N} \frac{V_{N,i}(y) - V_{N,i}(x)}{y - x} f\left(\frac{N}{x + i}\right)$$
(84)
$$- \sum_{i \ge N} V_{N,i}(y) \frac{f\left(\frac{N}{y + i}\right) - f\left(\frac{N}{x + i}\right)}{\frac{N}{x + i} - \frac{N}{x + i}} \cdot \left(\frac{N}{x + i}\right) \left(\frac{N}{y + i}\right).$$

Remark that

(85)
$$V_{N,i}(u) = \frac{i+1-N}{u+i+1} + \frac{N-i}{u+i}, \quad i \ge N_{i}$$

and then

$$\sum_{i\geq N} \frac{V_{N,i}(y) - V_{N,i}(x)}{y - x} f\left(\frac{N}{x+i}\right)$$

15

(86)
$$= \sum_{i\geq N} \frac{i+1-N}{(y+i+1)(x+i+1)} \left(f\left(\frac{N}{x+i+1}\right) - f\left(\frac{N}{x+i}\right) \right).$$

Assume that x > y. It then follows from (86) and (84) that

$$\left| \frac{\{Uf\}(y) - \{Uf\}(x)}{y - x} \right| \leq s(f) \sum_{i \geq N} \left(\frac{N(i + 1 - N)}{(y + i)(y + i + 1)^3} + \frac{N \cdot V_{N,i}(y)}{(y + i)^2} \right)$$

$$(87) \leq q \cdot s(f)$$

where q is as in (79). Since

(88)
$$s(Uf) = \sup_{x,y \in I, x \ge y} \left| \frac{\{Uf\}(y) - \{Uf\}(x)}{y - x} \right|$$

then the proof is complete. \Box

Proof of Proposition 6.1. For $(I, \mathcal{B}_I, G_N, T_N)$ in Definition 2.1(ii), let U denote its Perron-Frobenius operator. Let

(89)
$$\rho_N(x) := \frac{k_N}{x+N}, \quad x \in I,$$

where $k_N = \left(\log\left(\frac{N+1}{N}\right)\right)^{-1}$. From properties of the Perron-Frobenius operator, it is sufficient to show that the function ρ_N defined in (89) satisfies $U\rho_N = \rho_N$.

Since
$$T_N^{-1}(x) = \left\{ \frac{N}{x+i}, i \ge N, x \in I \right\}$$
, we have
 $\{U\rho_N\}(x) = \frac{d}{dx} \int_{T_N^{-1}([0,x])} \rho_N(t) dt = \sum_{t \in T_N^{-1}(x)} \frac{\rho_N(t)}{|(T_N)'(t)|}$
(90) $= \sum_{i\ge N} \frac{N}{(x+i)^2} \rho_N\left(\frac{N}{x+i}\right).$

By definition of ρ_N , we see that

(91)
$$\{U\rho_N\}(x) = \sum_{i \ge N} \frac{1}{(x+i)(x+i+1)} = \rho_N(x).$$

Hence the statement is proved. \Box

REFERENCES

- A. Boyarsky and P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension. Birkhäuser, Boston, 1997.
- [2] C. Brezinski, *History of Continued Fractions and Padé Approximants*. Springer Series in Computational Mathematics 12, Springer-Verlag, Berlin, 1991.

- [3] E.B. Burger, J. Gell-Redman, R. Kravitz, D. Walton and N. Yates, Shrinking the period lengths of continued fractions while still capturing convergents. J. Number Theory 128 (2008), 1, 144–153.
- [4] K. Dajani, C. Kraaikamp and N. Van der Wekken, Ergodicity of N-continued fraction expansions. J. Number Theory 133 (2013), 9, 3183–3204.
- [5] A.Ya. Khinchin, *Continued Fractions*. Univ. Chicago Press, Chicago, 1964 [Translation of the 3rd Russian Edition, 1961].
- [6] M. Iosifescu and S. Grigorescu, Dependence With Complete Connections and its Applications. Cambridge Tracts in Mathematics 96, Cambridge Univ. Press, Cambridge, 2nd edition, 2009.
- [7] M. Iosifescu and S. Kalpazidou, The nearest integer continued fraction expansion: an approach in the spirit of Doeblin. Contemp. Math. 149 (1993), 125–137.
- [8] M. Iosifescu and C. Kraaikamp, Metrical Theory of Continued Fractions. Kluwer Academic Publishers, Dordrecht, 2002.
- M. Iosifescu and G.I. Sebe, An exact convergence rate in a Gauss-Kuzmin-Lévy problem for some continued fraction expansion. In: Mathematical Analysis and Applications, pp. 90-109. AIP Conf. Proc. 835, 2006.
- [10] R.O. Kuzmin, On a problem of Gauss. Dokl. Akad. Nauk SSSR Ser. A (1928) 375–380. [Russian; French version in Atti Congr. Internaz.Mat. (Bologna, 1928), Tomo VI (1932), 83-89. Zanichelli, Bologna].
- [11] D. Lascu, Dependence with complete connections and the Gauss-Kuzmin theorem for N-continued fractions. J. Math. Anal. Appl. 444 (1) (2016), 610–623.
- [12] D. Lascu, On a Gauss-Kuzmin-type problem for a family of continued fraction expansions. J. Number Theory 133 (2013), 7, 2153–2181.
- [13] P. Lévy, Sur les lois de probabilité dont dépendent les quotients complets et incomplets d'une fraction continue. Bull. Soc. Math. France 57 (1929), 178–194.
- [14] H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions. Tokyo J. Math. 4 (1981), 2, 399–426.
- [15] F. Schweiger, Ergodic theory of fibred systems and metric number theory. Clarendon Press, Oxford, 1995.
- [16] G.I. Sebe, A two-dimensional Gauss-Kuzmin theorem for singular continued fractions. Indag. Mathem. N.S. 11 (2000), 4, 593–605
- [17] G.I. Sebe, On convergence rate in the Gauss-Kuzmin problem for grotesque continued fractions. Monatsh. Math. 133 (2001), 241–254.
- [18] G.I. Sebe, A Gauss-Kuzmin theorem for the Rosen fractions. J. Théor. Nombres Bordeaux 14(2) (2002), 667–682.
- [19] G.I. Sebe and D. Lascu, A Gauss-Kuzmin theorem and related questions for θ -expansions. Journal of Function Spaces **2014** (2014), 12 pages.
- [20] C.D. Van der Wekken, Lost periodicity in N-continued fraction expansions. Bachelor thesis, Delft University of Technology, Delft, 2011, http://repository.tudelft.nl/view/ir/ uuid:67317fff-f3e3-44e4-8e59-51e70782705e/.

Received 7 October 2015

Mircea cel Batran Naval Academy, 1 Fulgerului, 900218 Constanta, Romania lascudan@gmail.com