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1. INTRODUCTION

The modern history of continued fractions started with Gauss who found a
natural invariant measure of the so-called regular continued fraction (or Gauss)
transformation, i.e., T : [0, 1] → [0, 1], T (x) = 1/x − b1/xc, x 6= 0, and
T (0) = 0. Here b·c denotes the floor (or entire) function. Let G be this
measure which is called Gauss measure. The Gauss measure of an interval
A ∈ B[0,1] is G(A) = (1/ log 2)

∫
A 1/(x + 1)dx, where B[0,1] denotes the σ-

algebra of all Borel subsets of [0, 1]. This measure is T -invariant in the sense
that G(T−1(A)) = G(A) for any A ∈ BI .

By the very definition, any irrational 0 < x < 1 can be written as the
infinite regular continued fraction

(1) x =
1

a1 +
1

a2 +
1

a3 +
.. .

:= [a1, a2, a3, . . .],

where an ∈ N+ := {1, 2, 3, . . .} [5]. Such an’s are called incomplete quotients (or
continued fraction digits) of x and they are given by the formulas a1(x) = b1/xc
and an+1(x) = a1(T

n(x)), where Tn denotes the nth iterate of T .
Thus, the continued fraction representation conjugates the Gauss trans-

formation and the shift on the space of infinite integer-valued sequence (an)n∈N+ .
Other famous probabilists like Paul Lévy and Wolfgang Doeblin also con-

tributed to what is nowadays called the “metric theory of continued fractions”.
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The first problem in the metric theory of continued fractions was Gauss’
famous 1812 problem [2]. In a letter dated 1812, Gauss asked Laplace how fast
λ(T−n([0, x])) converges to the invariant measure G([0, x]), where λ denotes
the Lebesgue measure on [0, 1]. Gauss’ question was answered independently
in 1928 by Kuzmin [10], and in 1929 by Paul Lévy [13].

Apart from regular continued fractions, there are many other continued
fraction expansions: Engel continued fractions, Rosen expansions, the nearest
integer continued fraction, the grotesque continued fractions, f -expansions etc.
For most of these expansions the Gauss-Kuzmin-Lévy theorem has been proved
[7, 9, 12,15–19]

The purpose of this paper is to show and prove some metric properties
of N -continued fraction expansions introduced by Burger et al. [3].

In Section 2, we present the current framework. Next we show a Legendre-
type result and the Brodén-Borel-Lévy formula by using the probability struc-
ture of (an)n∈N+ under the Lebesgue measure. In Section 6, we find the inva-
riant measure GN of TN the transformation which generate the N -continued
fraction expansions. In Section 7, we consider the so-called natural extension of
([0,1],B[0,1],GN ,TN ) [15]. In Section 8, we derive its Perron-Frobenius operator
under different probability measures on ([0, 1],B[0,1]). Especially, we derive the
asymptotic behavior for the Perron-Frobenius operator of ([0, 1],B[0,1], GN , TN ).

2. N-CONTINUED FRACTION EXPANSIONS AS DYNAMICAL SYSTEM

In this paper, we consider a generalization of the Gauss transformation.
Fix an integer N ≥ 1. In [3], Burger et al. proved that any irrational 0 < x < 1
can be written in the form

(2) x =
N

a1 +
N

a2 +
N

a3 +
.. .

:= [a1, a2, a3, . . .]N ,

where an’s are non-negative integers. We will call (2) the N -continued fraction
expansion of x.

This continued fraction is treated as the following dynamical systems.

Definition 2.1. Fix an integer N ≥ 1.

(i) The measure− theoretical dynamical system (I,BI , TN ) is defined as fol-
lows: I := [0, 1], BI denotes the σ −algebra of all Borel subsets of I, and
TN is the transformation
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(3) TN : I → I; TN (x) :=


N

x
−
⌊
N

x

⌋
if x ∈ I,

0 if x = 0.

(ii) In addition to (i), we write (I,BI , GN , TN ) as (I,BI , TN ) with the follo-
wing probability measure GN on (I,BI):

(4) GN (A) :=
1

log N+1
N

∫
A

dx

x+N
, A ∈ BI .

Define the quantized index map η : I → N := N+ ∪ {0} by

(5) η(x) :=


⌊
N

x

⌋
if x 6= 0,

∞ if x = 0.

By using TN and η, the sequence (an) in (2) is obtained as follows:

(6) an = η
(
Tn−1N (x)

)
, n ≥ 1

with T 0
N (x) = x. Since x ∈ (0, 1) we have that an ≥ N for any n ≥ 1.

In this way, TN gives the algorithm of N -continued fraction expansion
which is an obvious generalization of the regular continued fraction.

Proposition 2.2. Let (I,BI , GN , TN ) be as in Definition 2.1(ii).

(i) (I,BI , GN , TN ) is ergodic.

(ii) The measure GN is invariant under TN .

Proof. See [4] and Section 6. �

By Proposition 2.2(ii), (I,BI , GN , TN ) is a “dynamical system” in the
sense of Definition 3.1.3 in [1].

3. SOME ELEMENTARY PROPERTIES OF N-CONTINUED FRACTIONS

Roughly speaking, the metrical theory of continued fraction expansions is
the asymptotic analysis of incomplete quotients (an)n∈N+ and related sequences
[8]. First, note that in the rational case, the continued fraction expansion
(2) is finite, unlike the irrational case, when we have an infinite number of
digits. In [20], Van der Wekken showed the convergence of the expansion. For
x ∈ I \Q, define the n-th order convergent [a1, a2, . . . , an]N of x by truncating
the expansion on the right-hand side of (2), that is,

(7) [a1, a2, . . . , an]N → x, n→∞.
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To this end, for n ∈ N+, define integer-valued functions pn(x) and qn(x) by

pn(x) := anpn−1 +Npn−2, n ≥ 2(8)

qn(x) := anqn−1 +Nqn−2, n ≥ 1(9)

with p0(x) := 0, q0(x) := 1, p−1(x) := 1, q−1(x) := 0, p1(x) := N , q1(x) := a1.
By induction, we have

(10) pn−1(x)qn(x)− pn(x)qn−1(x) = (−N)n, n ∈ N.
By using (8) and (9), we can verify that

(11) x =
pn(x) + TnN (x)pn−1(x)

qn(x) + TnN (x)qn−1(x)
, n ≥ 1.

By taking TnN (x) = 0 in (11), we obtain [a1, a2, . . . , an]N = pn(x)/qn(x). From
this and by using (10) and (11), we obtain

(12)

∣∣∣∣x− pn(x)

qn(x)

∣∣∣∣ =
Nn · TnN (x)

qn(x)
(
TnN (x)qn−1(x) + qn(x)

) , n ≥ 1.

Now, since TnN (x) < 1 and

∣∣∣∣TnN (x)
qn−1(x)

qn(x)
+ 1

∣∣∣∣ ≥ 1, we have

(13)

∣∣∣∣x− pn(x)

qn(x)

∣∣∣∣ < Nn

q2n(x)
, n ≥ 1.

In order to prove (7), it is sufficient to show the following inequality:

(14)

∣∣∣∣x− pn(x)

qn(x)

∣∣∣∣ ≤ 1

Nn
, n ≥ 1.

From (9), we have that qn(x) > Nqn−1(x) and because q0 = 1 we have qn(x) >
Nn. Finally, (14) follows from (13).

4. DIOPHANTINE APPROXIMATION

Diophantine approximation deals with the approximation of real numbers
by rational numbers [5]. We approximate x ∈ I \Q by incomplete quotients in
(8) and (9).

For x ∈ I \Q, let an be as in (6). For any n ∈ N+ and i(n) = (i1, . . . , in) ∈
Nn, define the fundamental interval associated with i(n) by

(15) IN

(
i(n)
)

= {x ∈ I \Q : ak(x) = ik for k = 1, . . . , n}

where we write IN (i(0)) = I \ Q. Remark that IN (i(n)) is not connected by
definition. For example, we have

(16) IN (i) = {x ∈ I \Q : a1 = i} = (I \Q) ∩
(

N

i+ 1
,
N

i

)
for any i ∈ N.
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Lemma 4.1. Let λ denote the Lebesgue measure. Then

(17) λ
(
IN

(
i(n)
))

=
Nn

qn(x)(qn(x) + qn−1(x))
,

where (qn) is as in (9).

Proof. From the definition of TN and (11), we have

(18) IN

(
i(n)
)

= (I \Q) ∩
(
u(i(n)), v(i(n))

)
,

where both u
(
i(n)
)

and v
(
i(n)
)

are rational numbers defined as

(19) u
(
i(n)
)

:=


pn(x) + pn−1(x)

qn(x) + qn−1(x)
if n is odd,

pn(x)

qn(x)
if n is even,

and

(20) v
(
i(n)
)

:=


pn(x)

qn(x)
if n is odd,

pn(x) + pn−1(x)

qn(x) + qn−1(x)
if n is even.

By using (10), we have (17). �

We now give a Legendre-type result for N -continued fraction expansions.
For x ∈ I \Q, we define the approximation coefficient ΘN (x, n) by

(21) ΘN (x, n) :=
q2n
Nn

∣∣∣∣x− pn
qn

∣∣∣∣ , n ≥ 1

where pn/qn is the nth continued fraction convergent of x in (2).

Proposition 4.2. For x ∈ I \Q and an irreducible fraction 0 < p/q < 1,
assume that p/q is written as follows:

(22)
p

q
= [i1, . . . , in]N

where [i1, . . . , in]N is as in (7), and the length n ∈ N+ of N -continued fraction
expansion of p/q is chosen in such a way that it is even if p/q < x and odd
otherwise. Then

(23) ΘN (x, n) <
q

q + qn−1
if and only if

p

q
is the nth convergent of x
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where ΘN (x, n) is as in (21) and the positive integer qn−1 is defined as the
denominator of the irreducible fraction representation of the rational number
[i1, . . . , in−1]N with q0 = 1 for the sequence i1, . . . , in.

Proof. Fix x ∈ I \Q and n ≥ 1. Let Θ := ΘN (x, n).

(⇐) Assume that p/q is the nth convergent of x. By (12) and the definition of
Θ, we have

(24) Θ =
q2

Nn

∣∣∣∣x− p

q

∣∣∣∣ =
TnN (x)q

q + TnN (x)qn−1(x)
≤ q

q + qn−1

where we use qn−1 = qn−1(x).

(⇒) Conversely,

(25) if Θ <
q

q + qn−1
, then q

∣∣∣∣x− p

q

∣∣∣∣ < Nn

q + qn−1
.

If n is even, then x > p/q and we have

(26) x− p

q
<

Nn

q(q + qn−1)
.

From these,

(27)
p

q
< x <

p

q
+

Nn

q(q + qn−1)
=
p+ pn−1
q + qn−1

where pn−1 is defined as pn−1/qn−1 = [i1, . . . , in−1]N . Hence x ∈ IN
(
i(n)
)
, i.e.,

p/q = [i1, . . . , in]N is a convergent of x. The case when n is odd is treated
similarly. �

5. BRODÉN-BOREL-LÉVY FORMULA AND ITS CONSEQUENCES

We derive the so-called Brodén-Borel-Lévy formula [6,8] for N -continued
fraction expansion. For x ∈ I, let an and qn be as in (6) and (9), respectively.
We define (sn)n≥0 by

(28) s0 := 0, sn := N
qn
qn−1

, n ≥ 1.

From (9), sn = N/(an + sn−1) for n ≥ 1. Hence

(29) sn =
N

an +
N

an−1 +
.. . +

N

a1

= [an, an−1, . . . , a2, a1]N ,

for n ≥ 1.
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Proposition 5.1 (Brodén-Borel-Lévy formula). Let λ denote the Le-
besgue measure on I. For any n ∈ N+, the conditional probability λ(TnN <
x|a1, . . . , an) is given as follows:

(30) λ(TnN < x|a1, . . . , an) =
(sn +N)x

snx+N
, x ∈ I

where sn is as in (28) and a1, . . . , an are as in (6).

Proof. By definition, we have

(31) λ (TnN < x|a1, . . . , an) =
λ ((TnN < x) ∩ IN (a1, . . . , an))

λ (IN (a1, . . . , an))

for any n ∈ N+ and x ∈ I. From (11) and (18) we have

λ ((TnN < x) ∩ IN (a1, . . . , an)) =

∣∣∣∣pnqn − pn + xpn−1
qn + xqn−1

∣∣∣∣(32)

=
Nnx

qn(qn + xqn−1)
.

From this and (17), we have

λ (TnN < x|a1, . . . , an) =
λ ((TnN < x) ∩ IN (a1, . . . , an))

λ (IN (a1, . . . , an))

=
x (qn + qn−1)

qn + xqn−1
=

(sn +N)x

snx+N
(33)

for any n ∈ N+ and x ∈ I. �

The Brodén-Borel-Lévy formula allows us to determine the probability
structure of incomplete quotients (an)n∈N+ under λ.

Proposition 5.2. For any i ≥ N and n ∈ N+, we have

(34) λ(a1 = i) =
N

i(i+ 1)
, λ (an+1 = i|a1, . . . , an) = VN,i(sn)

where (sn) is as in (28), and

(35) VN,i(x) :=
x+N

(x+ i) (x+ i+ 1)
.

Proof. From (16), the case λ(a1 = i) holds. For n ≥ N and x ∈ I \Q, we
have TnN (x) = [an+1, an+2, . . .]N where (an) is as in (6). By using (30), we have

λ( an+1 = i | a1, . . . , an ) = λ

(
TnN ∈

(
N

i+ 1
,
N

i

]
| a1, . . . , an

)
.
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=
(sn +N)Ni
sn

N
i +N

−
(sn +N) N

i+1

sn
N
i+1 +N

= VN,i(sn). �(36)

In (34),
∑∞

i=N λ(an+1 = i|a1, . . . , an) must be 1 because λ is a probability
measure on (I,BI). This can be verified from (34) and (36) by using the partial
fraction decomposition. By the same token, we see that

(37)
∞∑
i=N

VN,i(x) = 1 for any x ∈ I.

Remark 5.3. Proposition (5.2) is the starting point of an approach to
the metrical theory of N -continued fraction expansions via dependence with
complete connections (see [6], Section 5.2). We apply this method in [11]
to obtain a solution of Gauss-Kuzmin-type problem for N -continued fraction
expansions.

Corollary 5.4. The sequence (sn)n∈N+ with s0 = 0 is a homogeneous
I-valuated Markov chain on (I,BI , λ) with the following transition mechanism:
from state s ∈ I the only possible one-step transitions are those to states N/(s+
i), i ≥ N , with corresponding probabilities VN,i(s), i ≥ N .

6. THE INVARIANT MEASURE OF TN

Let (I,BI) be as in Definition 2.1(i). In this section, we will give the
explicit form of the invariant probability measure GN of the transformation
TN in (3), i.e., GN

(
T−1N (A)

)
= GN (A) for any A ∈ BI . From the aspect of

metric theory, the digits an in (6) can be viewed as random variables on (I,BI)
that are defined almost surely with respect to any probability measure on BI
assigning probability 0 to the set of rationals in I. Such a probability measure
is Lebesgue measure λ, but a more important one in the present context is the
invariant probability measure GN of the transformation TN .

Proposition 6.1. The invariant probability density ρN of the transfor-
mation TN is given by

(38) ρN (x) =
kN

x+N
, x ∈ I

where kN is the normalized constant such that the invariant measure GN is a
probability measure. Furthermore, the constant kN is given in (4), i.e., kN =(
log
(
N+1
N

))−1
.

Proof. We will give a proof which involves properties of the Perron-
Frobenius operator of TN under GN . Therefore, the proof will be given in
Section 8. �
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7. NATURAL EXTENSION AND EXTENDED RANDOM VARIABLES

Fix an integer N ≥ 1. In this section, we introduce the natural extension
TN of TN in (3) and its extended random variables [15].

Let (I,BI , TN ) be as in Definition 2.1(i). Define (uN,i)i≥N by

(39) uN,i : I → I; uN,i(x) :=
N

x+ i
, x ∈ I.

For each i ≥ N , uN,i is a right inverse of TN , that is,

(40) (TN ◦ uN,i)(x) = x, for any x ∈ I.

Furthermore, if η(x) = i, then (uN,i ◦ TN )(x) = x where η is as in (5).

Definition 7.1. The natural extension (I2,BI2 , TN ) of (I,BI , TN ) is the
transformation TN of the square space (I2,B2I ) := (I,BI) × (I,BI) defined as
follows [14]:

(41) TN : I2 → I2; TN (x, y) :=
(
TN (x), uN,η(x)(y)

)
, (x, y) ∈ I2.

From (40), we see that TN is bijective on I2 with the inverse

(42) (TN )−1(x, y) = (uN,η(y)(x), TN (y)), (x, y) ∈ I2.

Iterations of (41) and (42) are given as follows for each n ≥ 2:(
TN
)n

(x, y) = (TnN (x), [xn, xn−1, . . . , x2(x), x1 + y]N ) ,(43) (
TN
)−n

(x, y) = ( [yn, yn−1, . . . , y2, y1 + x]N , T
n
N (y) )(44)

where xi := η
(
T i−1N (x)

)
and yi := η

(
T i−1N (y)

)
for i = 1, . . . , n.

For GN in (4), Dajani et al. [4] define its extended measure GN on (I2,B2I )
as

(45) GN (B) :=
1

log
(
N+1
N

) ∫∫
B

Ndxdy

(xy +N)2
, B ∈ B2I .

Then GN (A× I) = GN (I ×A) = GN (A) for any A ∈ BI . The measure GN is
preserved by TN [4].

Define the projection E : I2 → I by E(x, y) := x. With respect to TN in
(41), define extended incomplete quotients al(x, y), l ∈ Z at (x, y) ∈ I2 by

(46) al(x, y) := (η ◦ E)
(

(TN )l−1(x, y)
)
, l ∈ Z.

Remark 7.2. (i) Remark that al(x, y) in (46) is also well-defined for
l ≤ 0 because TN is invertible. By (43) and (44), we have

(47) an(x, y)=xn, a0(x, y)=y1, a−n(x, y)=yn+1, n ∈ N+, (x, y) ∈ I2

where we use notations in (43) and (44).
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(ii) Since the measure GN is preserved by TN , the doubly infinite sequence
(al(x, y))l∈Z is strictly stationary (i.e., its distribution is invariant under
a shift of the indices) under GN .

Theorem 7.3. Fix (x, y) ∈ I2 and let al := al(x, y) for l ∈ Z. Define
a := [a0, a−1, . . .]N . Then the following holds for any x ∈ I:

(48) GN ([0, x]× I | a0, a−1, . . .) =
(N + a)x

ax+N
GN -a.s.

Proof. Recall fundamental interval in (15). Let IN,n denote the funda-
mental interval IN (a0, a−1, . . . , a−n) for n ∈ N. We have

(49) GN ([0, x]× I | a0, a−1, . . .) = lim
n→∞

GN ([0, x]× I | a0, . . . , a−n) GN -a.s.

and

GN ([0, x]× I | a0, . . . , a−n) =
GN ([0, x]× IN,n)

GN (I × IN,n)

=
km

GN (IN,n)

∫
IN,n

dy

∫ x

0

Ndu

(yu+N)2

=
1

GN (IN,n)

∫
IN,n

x(y +N)

xy +N
GN (dy)

=
x(yn +N)

xyn +N
(50)

for some yn ∈ IN,n where km is as in Proposition (6.1). Since

(51) lim
n→∞

yn = [a0, a−1, . . .]N = a,

the proof is completed. �

The stochastic property of (al)l∈Z under GN is given as follows.

Corollary 7.4. For any i ∈ N, we have

(52) GN (a1 = i| a0, a−1, . . .) = VN,i(a) GN -a.s.

where a = [a0, a−1, . . .]N and VN,i is as in (35).

Proof. Let IN,n be as in the proof of Theorem 7.3. We have

(53) GN (a1 = i | a0, a−1, . . .) = lim
n→∞

GN (a1 = i | IN,n).

Now

GN

((
N

i+ 1
,
N

i

]
× [0, 1)

∣∣∣∣ IN,n) =
GN

((
N
i+1 ,

N
i

]
× IN,n

)
GN (I × IN,n)
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=
1

GN (IN,n)

∫
IN,n

VN,i(y)GN (dy)

= VN,i(yn)(54)

for some yn ∈ IN,n. From (51), the proof is completed. �

Remark 7.5. The strict stationarity of (al)l∈Z, under GN implies that

(55) GN (al+1 = i | al, al−1, . . .) = VN,i(a) GN -a.s.

for any i ∈ N and l ∈ Z, where a = [al, al−1, . . .]N . The last equation empha-
sizes that (al)l∈Z is a chain of infinite order in the theory of dependence with
complete connections [6].

8. PERRON-FROBENIUS OPERATORS

Let (I,BI , GN , TN ) be as in Definition 2.1(ii). In this section, we derive
its Perron-Frobenius operator.

Let µ be a probability measure on (I,BI) such that µ
(
T−1N (A)

)
= 0

whenever µ(A) = 0 for A ∈ BI . For example, this condition is satisfied if TN is
µ-preserving, that is, µT−1N = µ. Let L1(I, µ) := {f : I → C :

∫
I |f |dµ < ∞}.

The Perron-Frobenius operator of (I,BI , µ,GN ) is defined as the bounded linear
operator U on the Banach space L1(I, µ) such that the following holds:

(56)

∫
A
Uf dµ =

∫
T−1
N (A)

f dµ for all A ∈ BI , f ∈ L1(I, µ).

For more details, see [1, 8] or Appendix A in [12].

Proposition 8.1. Let (I,BI , GN , TN ) be as in Definition 2.1(ii), and let
U denote its Perron-Frobenius operator. Then:

(i) The following equation holds:

(57) {Uf}(x) =
∑
i≥N

VN,i(x) f

(
N

x+ i

)
, f ∈ L1(I,GN ),

where VN,i is as in (35).

(ii) Let µ be a probability measure on (I,BI) such that µ is absolutely con-
tinuous with respect to the Lebesgue measure λ and let h := dµ/dλ a.e.
in I. Then the following holds:

(a) Let S denote the Perron-Frobenius operator of TN under µ. Then
the following holds a.e. in I:
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{Sf}(x) =
N

h(x)

∑
i≥N

h
(
N
x+i

)
(x+ i)2

f

(
N

x+ i

)
(58)

=
{Uf̂}(x)

(x+N)h(x)
(59)

for f ∈ L1(I, µ), where f̂(x) := (x+N)f(x)h(x), x ∈ I. In addition,
the nth power Sn of S is written as follows:

(60) {Snf}(x) =
{Unf̂}(x)

(x+N)h(x)

for any f ∈ L1(I, µ) and any n ≥ 1.

(b) Let K denote the Perron-Frobenius operator of TN under λ. Then
the following holds a.e. in I:

(61) {Kf}(x) =
∑
i≥N

N

(x+ i)2
f

(
N

x+ i

)
, f ∈ L1(I, λ).

In addition, the nth power Kn of K is written as follows:

(62) {Knf}(x) =
{Unf̂}(x)

x+N
, f ∈ L1(I, λ),

for any f ∈ L1(I, λ) and any n ≥ 1, where f̂(x) := (x + N)f(x),
x ∈ I.

(c) For any n ∈ N+ and A ∈ BI , we have

(63) µ
(
T−nN (A)

)
=

∫
A
{Unf}(x)dGN (x)

where f(x) := (log
(
N+1
N

)
)(x+N)h(x) for x ∈ I.

Proof. (i) Let TN,i denote the restriction of TN to the subinterval Ii :=(
N
i+1 ,

N
i

]
, i ≥ N , that is,

(64) TN,i(x) =
N

x
− 1, x ∈ Ii.

Let C(A) := (TN ) (A) and Ci(A) := (TN,i)
−1 (A) for A ∈ BI . Since C(A) =⋃

iCi(A) and Ci ∩ Cj is a null set when i 6= j, we have

(65)

∫
C(A)

f dGN =
∑
i≥N

∫
Ci(A)

f dGN , f ∈ L1(I,GN ), A ∈ BI .
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For any i ≥ N , by the change of variables x = (TN,i)
−1 (y) =

N

y + i
, we

successively obtain∫
Ci(A)

f(x)GN (dx) =

(
log

(
N + 1

N

))−1 ∫
Ci(A)

f(x)

N + x
dx

=

(
log

(
N + 1

N

))−1 ∫
A

f
(
N
y+i

)
N + N

y+i

N

(y + i)2
dy

=

∫
A
VN,i(y) f

(
N

y + i

)
GN (dy).(66)

Now, (57) follows from (65) and (66).
(ii)(a) From (64), for any f ∈ L1(I,GN ) and A ∈ BI , we have

(67)

∫
C(A)

f(x)µ(dx) =
∑
i≥N

∫
Ci(A)

f(x)µ(dx).

Then

(68)

∫
Ci(A)

f(x)µ(dx)=

∫
Ci(A)

f(x)h(x) dx=

∫
A
f

(
N

y + i

)
h

(
N

y + i

)
N

(y + i)2
dy.

From (67) and (68),

(69)

∫
C(A)

f(x)µ(dx) =

∫
A

∑
i≥N

f

(
N

x+ i

)
h

(
N

x+ i

)
N

(x+ i)2
dx.

Since dµ = hdx, (58) follows from (69). Now, since f̂(x) = (x + N)f(x)h(x),
from (58), we have

(70) {Uf̂}(x) = N(x+N)
∑
i≥N

h
(
N
x+i

)
(x+ i)2

f

(
N

x+ i

)
.

From (58) and (70), (59) follows immediately.
(ii)(b) The formula (61) is a consequence of (59) and follows immediately.
(ii)(c) We will use mathematical induction. For n = 0, the equation (63) holds
by definitions of f and h. Assume that (63) holds for some n ∈ N. Then

(71) µ
(
T
−(n+1)
N (A)

)
= µ

(
T−nN

(
T−1N (A)

))
=

∫
C(A)
{Unf}(x)GN (dx).

Since U = UTN and (56), we have

(72)

∫
C(A)
{Unf}(x)GN (dx) =

∫
A
{Un+1f}(x)GN (dx).
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Therefore,

(73) µ
(
T
−(n+1)
N (A)

)
=

∫
A
{Un+1f}(x)GN (dx)

which ends the proof. �

For a function f : I → C, define the variation varAf of f on a subset A
of I by

(74) varAf := sup

k−1∑
i=1

|f(ti+1)− f(ti)|

where the supremum being taken over t1 < · · · < tk, ti ∈ A, 1 ≤ i ≤ k, and
k ≥ 2 ( [8], p. 75). We write simply varf for varIf . Let BV (I) := {f : I →
C : var f <∞} and let L∞(I) denote the collection of all bounded measurable
functions f : I → C. It is known that BV (I) ⊂ L∞(I) ⊂ L1(I, µ). Let L(I)
denote the Banach space of all complex-valued Lipschitz continuous functions
on I with the following norm ‖ · ‖L:

(75) ‖f‖L := sup
x∈I
|f(x)|+ s(f),

with

(76) s(f) := sup
x 6=y

|f(x)− f(y)|
|x− y|

, f ∈ L(I).

In the following proposition we show that the operator U in (57) preser-
ves monotonicity and enjoys a contraction property for Lipschitz continuous
functions.

Proposition 8.2. Let U be as in (57).

(i) Let f ∈ L∞(I). Then the following holds:

(a) If f is non-decreasing (non-increasing), then Uf is non-increasing
(non-decreasing).

(b) If f is monotone, then

(77) var (Uf) ≤ 1

N + 1
· varf.

(ii) For any f ∈ L(I), we have

(78) s(Uf) ≤ q · s(f),

where

(79) q := N

∑
i≥N

(
N

i3(i+ 1)
+
i+ 1−N
i(i+ 1)3

) .

Proof. (i)(a) To make a choice assume that f is non-decreasing. Let x < y,
x, y ∈ I. We have {Uf}(y)− {Uf}(x) = S1 + S2, where
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S1 =
∑
i≥N

VN,i(y)

(
f

(
N

y + i

)
− f

(
N

x+ i

))
,(80)

S2 =
∑
i≥m

(VN,i(y)− VN,i(x)) f

(
N

x+ i

)
.(81)

Clearly, S1 ≤ 0. Now, since
∑

i≥N VN,i(x) = 1 for any x ∈ I, we can write

(82) S2 = −
∑
i≥N

(
f

(
N

x+N

)
− f

(
N

x+ i

))
(VN,i(y)− VN,i(x)) .

As is easy to see, the functions VN,i are increasing for all i ≥ N . Also, using

that f
(

N
x+N

)
≥ f

(
N
x+i

)
, we have that S2 ≤ 0. Thus {Uf}(y)− {Uf}(x) ≤ 0

and the proof is complete.
(i)(b) Assume that f is non-decreasing. Then by (a) we have

(83) varUf={Uf}(0)−{Uf}(1)=
∑
i≥N

(
VN,i(0)f

(
N

i

)
−VN,i(1)f

(
N

1 + i

))
.

By calculus, we have

varUf =
∑
i≥N

(
N

i(i+ 1)
f

(
N

i

)
− N + 1

(i+ 1)(i+ 2)
f

(
N

i+ 1

))
=

1

N + 1
f(1)−

∑
i≥N

1

(i+ 1)(i+ 2)
f

(
N

i+ 1

)
≤ 1

N + 1
f(1)−

∑
i≥N

(
1

i+ 1
− 1

i+ 2

)
f(0)

=
1

N + 1
(f(1)− f(0)) =

1

N + 1
varf.

(ii) For x 6= y, x, y ∈ I, we have

{Uf}(y)− {Uf}(x)

y − x
=

∑
i≥N

VN,i(y)− VN,i(x)

y − x
f

(
N

x+ i

)

−
∑
i≥N

VN,i(y)
f
(
N
y+i

)
− f

(
N
x+i

)
N
x+i −

N
x+i

·
(

N

x+ i

)(
N

y + i

)
.(84)

Remark that

(85) VN,i(u) =
i+ 1−N
u+ i+ 1

+
N − i
u+ i

, i ≥ N,

and then ∑
i≥N

VN,i(y)− VN,i(x)

y − x
f

(
N

x+ i

)
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=
∑
i≥N

i+ 1−N
(y + i+ 1)(x+ i+ 1)

(
f

(
N

x+ i+ 1

)
− f

(
N

x+ i

))
.(86)

Assume that x > y. It then follows from (86) and (84) that∣∣∣∣{Uf}(y)− {Uf}(x)

y − x

∣∣∣∣ ≤ s(f)
∑
i≥N

(
N(i+ 1−N)

(y + i)(y + i+ 1)3
+
N · VN,i(y)

(y + i)2

)
≤ q · s(f)(87)

where q is as in (79). Since

(88) s(Uf) = sup
x,y∈I,x≥y

∣∣∣∣{Uf}(y)− {Uf}(x)

y − x

∣∣∣∣
then the proof is complete. �

Proof of Proposition 6.1. For (I,BI , GN , TN ) in Definition 2.1(ii), let U
denote its Perron-Frobenius operator. Let

(89) ρN (x) :=
kN

x+N
, x ∈ I,

where kN =
(
log
(
N+1
N

))−1
. From properties of the Perron-Frobenius operator,

it is sufficient to show that the function ρN defined in (89) satisfies UρN = ρN .

Since T−1N (x) =

{
N

x+ i
, i ≥ N, x ∈ I

}
, we have

{UρN}(x) =
d

dx

∫
T−1
N ([0,x])

ρN (t) dt =
∑

t∈T−1
N (x)

ρN (t)

|(TN )′(t)|

=
∑
i≥N

N

(x+ i)2
ρN

(
N

x+ i

)
.(90)

By definition of ρN , we see that

(91) {UρN}(x) =
∑
i≥N

1

(x+ i)(x+ i+ 1)
= ρN (x).

Hence the statement is proved. �
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[2] C. Brezinski, History of Continued Fractions and Padé Approximants. Springer Series
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deaux 14(2) (2002), 667–682.

[19] G.I. Sebe and D. Lascu, A Gauss-Kuzmin theorem and related questions for θ-expansions.
Journal of Function Spaces 2014 (2014), 12 pages.

[20] C.D. Van der Wekken, Lost periodicity in N-continued fraction expansions. Bachelor
thesis, Delft University of Technology, Delft, 2011, http://repository.tudelft.nl/view/ir/
uuid:67317fff-f3e3-44e4-8e59-51e70782705e/.

Received 7 October 2015 Mircea cel Batran Naval Academy,
1 Fulgerului, 900218 Constanta,

Romania
lascudan@gmail.com


	Lascu Dan_Constanta.pdf
	INTRODUCTION
	bold0mu mumu NNNNNN-CONTINUED FRACTION EXPANSIONS AS DYNAMICAL SYSTEM
	SOME ELEMENTARY PROPERTIES OF bold0mu mumu NNNNNN-CONTINUED FRACTIONS
	DIOPHANTINE APPROXIMATION
	BRODÉN-BOREL-LÉVY FORMULA AND ITS CONSEQUENCES
	THE INVARIANT MEASURE OF bold0mu mumu TNTNTNTNTNTN
	NATURAL EXTENSION AND EXTENDED RANDOM VARIABLES
	PERRON-FROBENIUS OPERATORS


