
INTERPLAY BETWEEN HOMOLOGICAL DIMENSIONS
OF A COMPLEX AND ITS RIGHT DERIVED SECTION

CYRUS JALALI

Communicated by Vasile Br̂ınzănescu

Let (R,m) be a commutative Noetherian local ring, a be a proper ideal of R
and M be an R-complex in D(R). We prove that if M ∈ Df

<(R) (respectively,
M ∈ Df

=(R)), then idRRΓa(M) = idRM (respectively, fdRRΓa(M) = fdRM).
Next, it is proved that the right derived section functor of a complex M ∈ D<(R)
(R is not necessarily local) can be computed via a genuine left-bounded complex
G ' M of Gorenstein injective modules. We show that if R has a dualizing
complex and M is an R-complex in Df

�(R), then GfdRRΓa(M) = GfdRM and
GidRRΓa(M) = GidRM . Also, we show that if M is a relative Cohen-Macaulay
R-module with respect to a (respectively, Cohen-Macaulay R-module of dimen-
sion n), then GfdRH

htMa
a (M) = GfdRM + n (respectively, GidRH

n
m(M) =

GidRM − n). The above results generalize some known results and provide
characterizations of Gorenstein rings.
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1. INTRODUCTION

Throughout this paper, R is a commutative Noetherian ring, a is a proper
ideal of R and M is an R-complex. The category of R-complexes is denoted
C(R), and we use subscripts <, = and � to denote genuine boundedness condi-
tions. So, C=(R) is the full subcategory of C(R) of bounded below complexes
(see [2, Definition 2.1.1]). Also, the derived category is denoted D(R), and
we use subscripts <, = and � to denote homological boundedness conditions
(see [2, Definition 4.1.15]). The symbol ' is the sign for isomorphism in D(R)
and quasiisomorphisms in C(R). We also use superscript f to signify that
the homology modules are degreewise finitely generated. An R-complex I is
semiinjective if the functor HomR(−, I) converts injective quasiisomorphisms
into surjective quasiisomorphisms. A semiinjective resolution of an R-complex
M is a semiinjective complex I and a quasiisomorphism M

'−→ I. For an
R-complex M the injective dimension idRM is defined as
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idRM = inf
{
` ∈ Z | ∃ semiinjective R−complex I such that

M'I in D(R) and Iv=0 for all v<−`

}
.

Several of the main results of this paper involve the hypothesis that R has a
dualizing complex. A complex D ∈ Df

�(R) is dualizing for R if it has finite
injective dimension and the canonical morphism χRM : R → RHomR(D,D) is
an isomorphism in D(R). If R has a dualizing complex D, we may consider the
functor −† = RHomR(−, D). The notion of Gorenstein injective module was
introduced by E.E. Enochs and O.M.G. Jenda in [6]. An R-module M is said
to be Gorenstein injective, if there exists a HomR(I,−) exact acyclic complex
E of injective R-modules such that M = Ker(E0 → E−1). The Gorenstein
injective dimension, GidRM , of M ∈ D<(R) is defined to be the infimum of
the set of integers n such that there exists a complex G ∈ C<(R) consisting
of Gorenstein injective modules satisfying M ' G and Gn = 0 for n < −`.
Also, an R-complex F is semiflat if the functor − ⊗R F preserves injective
quasiisomorphisms. For an R-complex M the flat dimension fdRM is defined
as

fdRM = inf
{
n ∈ Z | ∃ semiflat R−complex F such that

F'M in D(R) and Fv=0 for all v>n

}
.

An R-module M is said to be Gorenstein flat, if there exists an I ⊗R − exact
acyclic complex F of of flat R-modules such that M = Ker(F0 → F−1). The
Gorenstein flat dimension, GfdRM , of M ∈ D=(R) is defined to be the infimum
of the set of integers n such that there exists a complex F ∈ C=(R) consisting
of Gorenstein flat modules satisfying M ' F and Gn = 0 for n < `. Let M
be an R-complex in D(R). The right derived section functor of the complex
M is defined as RΓa(M) = Γa(E), where E is a semiinjective resolution of
M (see [8] and [16]). If x = x1, · · · , xr is a generating set for the ideal a
and Čx the corresponding Čech complex, then RΓa(M) ' M ⊗L

R Čx (see [15,
Theorem 1.1(iv)]).

It has been shown in [7, Theorem 6.5] that the right derived section
functor (with support in any ideal a) sends complexes of finite flat dimension
(respectively, finite injective dimension) to complexes of finite flat dimension
(respectively, finite injective dimension). In Section 2, we prove that if (R,m)

is a local ring and M ∈ Df
<(R), then idRRΓa(M) = idRM (see Theorem 2.2).

It shows that the following statements are equivalent:

(i) R is Gorenstein;

(ii) idRRΓa(R) = dim(R) for any ideal a of R;

(iii) idRRΓa(R) <∞ for some ideal a of R.

This provides a characterization of Gorenstein rings, which recovers [20,
Corollary 2.7]. Next, in 2.4, we prove that if (R,m) is a local ring and M is

an R-complex in Df
<(R) with ampRΓa(M) = 0, then idRH

−infRΓa(M)
a (M) =
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idRM + infRΓa(M). Notice that, this result is a generalization of [20, Theo-
rem 2.5]. Also, a flat version of 2.2 is demonstrated. Indeed, it is shown, in

Theorem 2.7, that if (R,m) is a local ring and M ∈ Df
=(R), then fdRRΓa(M) =

fdRM .
It has been proved in [4, Theorem 5.9] that if M ∈ D�(R), then

GfdRM <∞⇒ GfdRRΓa(M) <∞.

Moreover, if R has a dualizing complex, the above implication may be reversed
if a is in the Jacobson radical of R and M ∈ Df

�(R). We show that if (R,m) is

a local ring and M ∈ Df
�(R), then

GfdRM <∞⇒ GfdRRΓa(M) = GfdRM, and

R admits a dualizing complex ⇒ GfdRRΓa(M) = GfdRM.

Then, as a corollary, we prove that if M is a relative Cohen-Macaulay R-
module with respect to a, where is defined as in [20], and that n = grade(a,M),
then GfdRH

n
a (M) = GfdRM + n.

In Section 3, first we prove that if C is an Γa-acyclic R-complex in C<(R),
then RΓa(C) ' Γa(C) (see Theorem 3.5). It implies that the right derived
section functor of a complex M ∈ D<(R) can be computed via a genuine left-
bounded complex G 'M of Gorenstein injective modules.

Also, as a main result, we show that if (R,m) is a local ring admitting

a dualizing complex and M is an R-complex in Df
�(R), then GidRRΓa(M) =

GidRM (see Theorem 3.9). It shows that the following statements are equiva-
lent:

(i) R is Gorenstein;

(ii) GidRRΓa(R) = dim(R) for any ideal a of R;

(iii) GidRRΓa(R) <∞ for some ideal a of R.

This provides a characterization of Gorenstein rings, which improves [20,
Corollary 3.10] and [19, Theorem 2.6], that is, we may prove them without as-
suming that R is Cohen-Macaulay. Next, in Theorem 3.10, we prove a complex
version of 2.2, which improves [20, Theorem 3.8]. As a corollary, in 3.11, we
deduce that GidRH

n
m(M) = GidRM − n, wherever (R,m) is a local ring and

M is a Cohen-Macaulay R-module with dimRM = n.

2. RIGHT DERIVED SECTION FUNCTOR, INJECTIVE DIMENSION
AND (GORENSTEIN) FLAT DIMENSION

The following lemma, which is an immediate consequence of [10, Corol-
lary 3.4.4] and [10, Proposition 3.2.2], determines the i -th Bass number
µiRp

((RΓa(M))p) of (RΓa(M))p (see [2, Definition 6.1.18]).
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Lemma 2.1. Let (R,m, k) be a local ring, and let M be an R-complex in
D(R). Then µiR(RΓa(M)) = µiR(M) for all i ∈ Z. In particular, for every
p ∈ V(a) there is an equality µiRp

((RΓa(M))p) = µiRp
(Mp) for all i ∈ Z.

The following theorem, which is one of the main results of this section,
provides a comparison between the injective dimensions of a complex and its
right derived section functor.

Theorem 2.2. Let (R,m, k) be a local ring, and let M be an R-complex

in Df
<(R). Then idRRΓa(M) = idRM .

Proof. Let s := idRM < ∞. Then, in view of [2, Lemma 6.1.19] and
Lemma 2.1, µi+sRp

((RΓa(M))p) = 0 for all p ∈ Spec(R) and for all i > 0. The-

refore, it follows from [2, Lemma 6.1.19] that idRRΓa(M) ≤ s.
For the opposite inequality, let t := idRRΓa(M) <∞. Then, by [2, The-

orem 5.1.6], infRHomR(T,RΓa(M)) ≥ −t for all cyclic R-modules T . Hence,
in view of [10, Proposition 3.2.2], there are isomorphisms

H−t−i(RHomR(k,M)) ∼= H−t−i(RHomR(k,RΓa(M))) ∼= 0

for all i > 0. Therefore −infRHomR(k,M) ≤ t, and so idRM ≤ t by
[2, Theorem 6.1.13]. �

The following corollary, which recovers [20, Corollary 2.7], is an immediate
consequence of the previous Theorem.

Corollary 2.3. Let (R,m) be a local ring. Then the following statements
are equivalent:

(i) R is Gorenstein;

(ii) idRRΓa(R) = dim(R) for any ideal a of R;

(iii) idRRΓa(R) <∞ for some ideal a of R.

The following theorem, which is an immediate consequence of Theo-
rem 2.2, is a generalization of [20, Theorem 2.5].

Theorem 2.4. Let (R,m) be a local ring. Suppose that M is an R-

complex in Df
�(R) such that ampRΓa(M) = 0. Then

idRH
−infRΓa(M)
a (M) = idRM + infRΓa(M).

Proof. Let n := −infRΓa(M). Since RΓa(M) ' H−n(RΓa(M)), there is
an equality

idRRΓa(M) = idRΣnH−n(RΓa(M)) + n.

But ΣnRΓa(M) is equivalent to the module ΣnH−n(RΓa(M)) in the category
of R-modules. So, we may identify ΣnH−n(RΓa(M)) with Hn

a (M). Hence
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idRH
n
a (M) = idRRΓa(M) − n. The desired equality now follows from Theo-

rem 2.2. �

In the following we use the notion of a semifree resolution. A semifree
resolution of an R-complex M is a semifree complex F (see [2, Definition 3.1.1])

and a quasiisomorphism F
'−→M .

Lemma 2.5. Let (R,m, k) be a local ring, and let M be an R-complex in
D(R). Then

k ⊗L
R RΓa(M) ' k ⊗L

RM.

Proof. Let F be a semifree resolution of the residue field k, and let x =
x1, · · · , xr be a generating set for the ideal a and Čx be the Čech complex
with respect to x. But, as in the proof of [11, Lemma 2.4], there exists a
quasiisomorphism F ⊗R Čx ' F in C(R). The result now follows, since k ⊗L

R

Čx ' k. �

The following lemma, which is an immediate consequence of [10, Corol-

lary 3.4.4] and 2.5, determines the i -th Betti number β
Rp

i ((RΓa(M))p) of
(RΓa(M))p (see [2, Definition 6.1.14]).

Lemma 2.6. Let (R,m, k) be a local ring, and let M be an R-complex in
D(R). Then βRi (RΓa(M)) = βRi (M) for all i ∈ Z; In particular, for every

p ∈ V(a) there is an equality β
Rp

i ((RΓa(M))p) = β
Rp

i (Mp) for all i ∈ Z.

Theorem 2.7. Let (R,m, k) be a local ring, and let a be a proper ideal of

R. Suppose that M is an R-complex in Df
=(R). Then fdRRΓa(M) = fdRM .

Proof. Let s := fdRM < ∞. Then, in view of [2, Lemma 6.1.15] and

Lemma 2.6, β
Rp

i+s((RΓa(M))p) = 0 for all p ∈ Spec(R) and for all i > 0.
Therefore, it follows from [2, Lemma 6.1.15] that fdRRΓa(M) ≤ s.

For the opposite inequality, let t := fdRRΓa(M) < ∞. Then, by [2,
Theorem 5.1.9], supT ⊗L

R RΓa(M)) ≥ t for all cyclic R-modules T . Hence, in
view of Lemma 2.5, there are isomorphisms

Ht+i(k ⊗L
RM) ∼= Ht+i(k ⊗L

R RΓa(M)) ∼= 0

for all i > 0. Therefore supk ⊗L
R M ≤ t, and so fdRM ≤ t by [2, Theorem

5.2.13]. �

The following theorem, which is an immediate consequence of Theo-
rem 2.7, is a flat version of 2.4.

Theorem 2.8. Let (R,m) be a local ring. Suppose that M is an R-

complex in Df
�(R) such that ampRΓa(M) = 0. Then

fdRH
−infRΓa(M)
a (M) = fdRM − infRΓa(M).



202 Cyrus Jalali 6

Proof. Straightforward verification similar to the proof of Theo-
rem 2.4. �

In the rest of this section, we make a comparison between the Gorenstein
flat dimensions of a complex and its right derived section functor.

Proposition 2.9. Suppose that M is an R-complex in D�(R). Then

GfdRRΓa(M) ≤ GfdRM.

Proof. Notice that if GfdRM =∞, then there is nothing to prove. So, we
may assume that GfdRM < ∞. Hence, it follows from [4, Theorem 5.9] that
GfdRRΓa(M) <∞. Now, by [9, Theorem 8.8], there exists p ∈ V(a) such that

GfdRRΓa(M) = depthRp − depthRp
(RΓa(M))p.

But depthRp
(RΓa(M))p = depthRp

Mp. It follows, again by [9, Theorem 8.8],
that

GfdRRΓa(M) = depthRp − depthRp
Mp ≤ GfdRM

as desired. �

Proposition 2.10. Let (R,m, k) be a local ring, and let M be an R-

complex in Df
�(R) such that GfdRM <∞. Then

GfdRM ≤ GfdRRΓa(M).

Proof. By [4, Theorem 5.9], GfdRRΓa(M) < ∞. Hence, by [9, Theorem
8.7], there are equalities

sup(E(k)⊗L
R RΓa(M)) = depthR− depthRRΓa(M)

= depthR− depthRM = sup(E(k)⊗L
RM).

SinceM ∈ Df
�(R), sup(E(k)⊗L

RM) = GfdRM . The result now follows from the
fact that GfdRRΓa(M) ≥ sup(E(k)⊗L

R RΓa(M)) (see [4, Corollary 3.6]). �

The following theorem is a Gorenstein flat version of Theorem 2.7.

Theorem 2.11. Let (R,m) be a local ring, and let M be an R-complex in

Df
�(R).

(i) If GfdRM <∞, then GfdRRΓa(M) = GfdRM .

(ii) If R admits a dualizing complex, then GfdRRΓa(M) = GfdRM .

Proof. (i) A straightforward application of Proposition 2.9 and Proposi-
tion 2.10.

(ii) In view of part (i), we may assume that GfdRRΓa(M) < ∞. Hence,
by [4, Theorem 5.9], GfdRM < ∞. The desired equality now follows from
Proposition 2.9 and Proposition 2.10. �
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Corollary 2.12. Let (R,m) be a local ring. Suppose that M is re-
lative Cohen-Macaulay with respect to a and that n = grade(a,M). Then
GfdRH

n
a (M) = GfdRM + n.

Proof. Notice that (R̂, m̂) is a local ring admitting a dualizing complex
and M ⊗R R̂ is a relative Cohen-Macaulay R̂-module with respect to aR̂ and
that grade(aR̂,M ⊗R R̂) = n. Hence, in view of [3, Theorem 4.27], we may
assume that R is complete; and so it has a dualizing complex. The result
therefore follows from Theorem 2.11. �

3. RIGHT DERIVED SECTION FUNCTOR
AND GORENSTEIN INJECTIVE DIMENSION

In this section, the category of R-modules is denoted C(R). Recall from [1,
Exercise 4.1.2] that the local cohomology modules of R-module M with respect
to a can be calculated by an Γa-acyclic resolution of M . First, we prove the
complex version of it.

Definition 3.1. (see [17, 5.7.9]) Let F : C(R) → C(R) be a left exact
functor, and assume that M is an R-complex in C<(R). If 0 → M → C∗,0 →
C∗,1 → · · · → C∗,q → is a Cartan-Eilenberg injective resolution of M , where is
defined as in [13, §10.5], define Ri(FM) to be Hi(Tot(FC)).

Lemma 3.2. Let M and Ḿ be two R-complexes in C<(R), and let ζ :
M → Ḿ be a morphism of R-complexes. Suppose that 0 → M → C∗,0 →
C∗,1 → · · · → C∗,q → and 0→ Ḿ → Ć∗,0 → Ć∗,1 → · · · → Ć∗,q → are Cartan-
Eilenberg injective resolutions of M and Ḿ , respectively. Then there exists a
sequence {ζ∗,q}q∈N0 of morphisms ζ∗,q : C∗,q → Ć∗,q of R-complexes over ζ.

Proof. A straightforward application of [12, Theorem 19]. �

Lemma 3.3. Let F : C(R)→ C(R) be a left exact functor, and let M and
Ḿ be two R-complexes. Then

(i) Any quasiisomorphism ζ : M → Ḿ induces isomorphism

Ri(FM) ∼= Ri(FḾ)

for all i ∈ Z; and

(ii) If M is F-acyclic R-complex in C<(R), that is, Mi is F-acyclic for all
i ∈ Z, then

Ri(FM) = Hi(FM)

for all i ∈ Z.
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Proof. Straightforward verification similar to the proof of [17, Corol-
lary 5.7.7]. �

The following theorem, which is one of the main results of this section,
enables us to prove some interesting results.

Theorem 3.4. Let F : C(R) → C(R) be a left exact functor, and let M
be an F-acyclic R-complex in C<(R). Assume that I is F-acyclic and F(I)
is injective for every injective R-module I. Then F(M) ' F(E), for every
semiinjective resolution E ∈ C<(R) of M .

Proof. Let E be a semiinjective resolution of M with Ev = 0 for v >
supM , and let ζ : M

'−→ E be an quasiisomorphism. By [13, Theorem 10.45],
there exist Cartan-Eilenberg injective resolutions 0 → M → C∗,0 → C∗,1 →
· · · → C∗,q → and 0 → E → Ć∗,0 → Ć∗,1 → · · · → Ć∗,q →. Hence, in view of
Lemma 3.2, there is a sequence {ζ∗,q}q∈N0 of morphisms of R-complexes such
that the diagram

0 −−−−→ E −−−−→ Ć∗,0 −−−−→ Ć∗,1 −−−−→ · · · −−−−→ Ć∗,q −−−−→xζ xζ∗,0 xζ∗,1 xζ∗,q
0 −−−−→ M −−−−→ C∗,0 −−−−→ C∗,1 −−−−→ · · · −−−−→ C∗,q −−−−→

commutes in C(R). By Lemma 3.3(ii), Rp(F(M)) = Hp(F(M)) for all p ∈ Z,
so that the natural morphism F(M) → Tot(F(C)) is a quasiisomorphism. Si-
milarly, Rp(F(E)) = Hp(F(E)) for all p ∈ Z, so that the natural morphism
F(E) → Tot(F(Ć)) is a quasiisomorphism. Thus, by [2, Proposition 3.3.5(a)],
there exists a quasiisomorphism Tot(F(Ć))→ F(E), since F(E) is injective.

But, by Lemma 3.3(i), there are isomorphisms Rp(F(M)) ∼= Rp(F(E)) for
all p ∈ Z. Hence the morphism ζ∗ : Tot(F(C)) −→ Tot(F(Ć)) is a quasiiso-
morphism, where

ζn =
∑
p+q=n

F(ζp,q) : Tot(F(C))n → Tot(F(Ć))n

for all n ∈ Z. Therefore, there are quasiisomorphisms

F(M)
'−→ Tot(F(C))

'−→ Tot(F(Ć))
'−→ F(E).

Now F(M) ' F(E) as desired. �

The next theorem, which offers an application of the previous theorem,
is a complex version of [1, Exercise 4.1.2].

Theorem 3.5. Let C be an Γa-acyclic R-complex in C<(R). Then RΓa(C) '
Γa(C).
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The next corollary shows that if M ∈ D<(R), then RΓa(M) can be
computed via a genuine left-bounded complex G ' M of Gorenstein injective
modules. Also, notice that [14, Theorem 3.4] is an immediate consequence of
this fact.

Corollary 3.6. Let M be an R-complex in D<(R), and let G ∈ C<(R)
be an R-complex of Gorenstein injective modules such that M ' G. Then
RΓa(M) ' Γa(G).

Proof. Since by [18, Lemma 1.1] every Gorenstein injective module is
Γa-acyclic, the result follows from Theorem 3.5. �

It has been proved in [14, Corollary 3.3] that if R admits a dualizing
complex and M ∈ D<(R), then GidRRΓa(M) ≤ GidRM . The following pro-
position together with [4, Theorem 5.9] recover this result.

Proposition 3.7. Suppose that M is an R-complex in D<(R) such that
GidRRΓa(M) <∞. Then

GidRRΓa(M) ≤ GidRM.

Proof. Notice that if GidRM = ∞, then there is nothing to prove. So,
we may assume that GidRM <∞. By [5, Theorem 2.2], there exists p ∈ V(a)
such that

GidRRΓa(M) = depthRp − widthRp(RΓa(M))p.

But widthRp(RΓa(M))p = widthRpMp. It follows, again by [5, Theorem 2.2],
that

GidRRΓa(M) = depthRp − widthRpMp ≤ GidRM
as desired. �

Proposition 3.8. Let (R,m) be a local ring, and let M be an R-complex

in Df
�(R) such that GidRM <∞. Then

GidRM ≤ GidRRΓa(M).

Proof. By [4, Proposition 6.3], there is an inequality

GidRRΓa(M) ≥ depthR− widthRRΓa(M).

But widthRRΓa(M) = widthRM . Thus, we have

GidRRΓa(M) ≥ depthR− widthRM

= depthR− inf M.

The result therefore follows from [5, Corollary 2.3]. �

The following theorem, which is a Gorenstein injective version of Theo-
rem 2.2, is one of the main results of this section.
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Theorem 3.9. Let (R,m) be a local ring admitting a dualizing complex,

and let M be an R-complex in Df
�(R). Then GidRRΓa(M) = GidRM .

Proof. A straightforward application of [4, Theorem 5.9], Proposition 3.7
and Proposition 3.8. �

The next theorem, which is a Gorenstein injective version of Theorem 2.4,
recovers [20, Theorem 3.8].

Theorem 3.10. Let (R,m) be a local ring admitting a dualizing complex.

Suppose that M is an R-complex in Df
�(R) such that ampRΓa(M) = 0. Then

GidRH
−infRΓa(M)
a (M) = GidRM + infRΓa(M).

Proof. Follows from Theorem 3.9 (similar to the proof of Theorem 2.4). �

The following corollary, which improves [20, Corollary 3.9], is a conse-
quence of the previous Theorem.

Corollary 3.11. Let (R,m) be a local ring, and let M be a Cohen-
Macaulay R-module with dimRM = n. Then the following statements hold.

(i) Gid
R̂
RΓ

aR̂
(M ⊗R R̂) = GidRM .

(ii) GidRH
n
m(M) = GidRM − n.

Proof. Notice that (R̂, m̂) is a local ring admitting a dualizing complex
and M ⊗R R̂ is a Cohen-Macaulay R̂-module of dimension n.

(i) A straightforward application of Theorem 3.9 and [3, Theorem 3.24].
(ii) There is an inequality

Gid
R̂
RΓm̂(M ⊗R R̂) = Gid

R̂
Hn

m̂(M ⊗R R̂) + n.

But, in view of [14, Lemma 3.6], Gid
R̂
Hn

m̂(M⊗R R̂) = GidRH
n
m(M). The result

now follows from part (i). �

The next corollary provides a characterization of Gorenstein rings, which
together with Corollary 2.3 show that [19, Theorem 2.6] and [20, Corollary
3.10] hold without assuming that R is Cohen-Macaulay.

Corollary 3.12. Let (R,m) be a local ring admitting a dualizing com-
plex. Then the following statements are equivalent:

(i) R is Gorenstein;

(ii) GidRRΓa(R) = dim(R) for any ideal a of R;

(iii) GidRRΓa(R) <∞ for some ideal a of R.

Proof. A straightforward application of Theorem 3.9 and [3, Proposi-
tion 3.11]. �
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