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A space of boundary values is constructed for minimal symmetric Sturm-Liouville
operator acting in L2

%(a, b) with defect index (1, 1) (in limit-circle case at a (b)
and limit-point case at b (a)). All maximal dissipative, maximal accumulative
and self-adjoint extensions of such a symmetric operator are described in terms of
boundary conditions at a (b). In each case, we construct a self-adjoint dilation of
the dissipative operator and its incoming and outgoing spectral representations,
which allows us to determine the scattering matrix. We establish a functional
model of the dissipative operator and construct its characteristic function in
terms of the Weyl-Titchmarsh function on the self-adjoint operator. We also
prove the completeness of the root functions of the dissipative Sturm-Liouville
operators.
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1. INTRODUCTION

The theory of extensions of symmetric operators is one of the basic di-
rections of operator theory. The first fundamental results in this theory were
obtained by von Neumann [21], although the apparent origins can be found in
the well-known works of Weyl (see [28]). Results obtained for the representa-
tion of linear relations turned out to be very useful to describe several classes
of extensions of symmetric operators. The first result of this type is due to
Rofe-Beketov [25]. Kochubei [16] and Bruk [7] introduced independently the
term ‘space of boundary values’ and described all maximal dissipative, maximal
accumulative, self-adjoint, etc. extensions of symmetric operators by means of
this term (see [12] and see also the survey article [11]). However, irrespective of
the general scheme, the problem of the description of the maximal dissipative
(accumulative), self-adjoint and other extensions of a given symmetric operator
in terms of the boundary conditions is considerably interesting, particularly in

MATH. REPORTS 19(69), 2 (2017), 225–243



226 Bilender P. Allahverdiev 2

the case of singular differential operators as usual boundary conditions are, in
general, meaningless at the singular ends of the considered interval.

We know [19, 22–24] that the theory of dilations with application of opera-
tor models provides an adequate approach to the spectral theory of dissipative
(contractive) operators. Characteristic function is one of the central parts of
this theory as it carries the complete information on the spectral properties
of the dissipative operator. Thus, the dissipative operator becomes the mo-
del in the incoming spectral representation of the dilation. The problem of
the completeness of the system of eigenvectors and associated vectors is solved
by means of the factorization of the characteristic function. The computa-
tion of the characteristic functions of dissipative operators is preceded by the
construction and investigation of a self-adjoint dilation and of the correspon-
ding scattering problem, in which the characteristic function is realized as the
scattering matrix. Efficiency of this approach for dissipative Schrödinger and
Sturm-Liouville operators has been demonstrated in [1–5, 22–24].

The present paper considers the minimal symmetric Sturm-Liouville ope-
rator acting in the space L2%(a, b) with defect index (1, 1) (in Weyl’s limit-circle
case at a (b) and limit-point case at b (a)). A space of boundary values is con-
structed and all maximal dissipative, maximal accumulative and self-adjoint
extensions are described by using the boundary conditions at a (b). For each
case, we define a self-adjoint dilation of the maximal dissipative operator and
its incoming and outgoing spectral representations so that we can determine
the scattering matrix with respect to the scheme of Lax and Phillips [17]. In-
coming spectral representation is used to construct a functional model of the
maximal dissipative operator and its characteristic function in terms of the
Weyl-Titchmarsh function of the self-adjoint operator. Finally, we prove the
completeness of the system of eigenfuntions and associated functions (or root
functions) of maximal dissipative Sturm-Liouville operators by utilizing the
results obtained in the theory of characteristic function.

2. MAXIMAL DISSIPATIVE, SELF-ADJOINT EXTENSIONS
OF SYMMETRIC OPERATORS AND SELF-ADJOINT DILATIONS

OF THE DISSIPATIVE OPERATORS

We consider Sturm-Liouville differential expression with two singular end
points a and b:
(2.1)

M(f): =
1

%(t)
[−(p(t)f(t)′)′ + q(t)f(t)] (t ∈ Ω = (a, b),−∞ ≤ a < b ≤ +∞),
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where p, q and % are real valued, Lebesgue measurable functions on Ω, and
1
p , q, % ∈ L

1
loc(Ω), % > 0 almost everywhere on Ω.

In order to pass from the differential expression to operators, we introduce
the Hilbert space L2%(Ω) consisting of all functions f such that

∫ b
a %(t) |f(t)|2 dt

< +∞ with the inner product (f, g) =
∫ b
a %(t)f(t)g(t)dt.

Let Dmax denote the linear set of all functions f ∈ L2%(Ω) such that f
and pf ′ are locally absolute continuous functions on Ω and M(f) ∈ L2%(Ω). We
define the maximal operator Mmax on Dmax as Mmaxf = M(f).

For any functions g, h ∈ Dmax, we have Green’s formula

(2.2) (Mmaxg, h)− (g,Mmaxh) = [g, h](b)− [g, h](a),

where

[g, h](t): = Wt(g, h): = g(t)(ph
′
)(t)− (pg′)(t)h(t), t ∈ Ω,

[g, h](a): = lim
t→a+

[g, h](t), [g, h](b): = lim
t→b−

[g, h](t).

In L2%(Ω), consider the dense linear set D′ which is composed of smooth,
compactly supported functions. Denote by M′ the restriction of the operator
Mmax to D′. It follows from (2.2) that M′ is symmetric. Consequently, it
admits closure denoted byMmin. The minimal operator Mmin is a symmetric
operator with defect index (0, 0), (1, 1) or (2, 2) andM∗min =Mmax (see [6, 8–
10, 13, 20, 26–29]). When the defect index is (0, 0),Mmin becomes self-adjoint,
i.e., M∗min =Mmin =Mmax.

We assume thatMmin has defect index (1, 1). Let the minimal (maximal)
operators generated by the expressionM on the intervals (a, c] and [c, b) (c ∈ Ω)
be denoted by M−min (M−max) and M+

min (M+
max) respectively, and let D∓min

(D∓max) be the domain of M∓min (M∓max). We know [20, 27, 29] that the defect
number defMmin of the operatorMmin is obtained by the formula defMmin =
defM+

min + defM−min − 2. Then, we have defM+
min + defM−min = 3. If we set

k+ = defM+
min, k− = defM−min, then we get 1 ≤ k± ≤ 2.

(a) Assume that M−min and M+
min have defect indices (1, 1) and (2, 2),

respectively (see [6, 8–10, 13, 20, 26–29]). Since the operator Mmin has defect
index (1, 1), we have [g, h](a) = 0 for all g, h ∈ Dmax and

(2.3) (Mmaxg, h)− (g,Mmaxh) = [g, h](b), ∀g, h ∈ Dmax.

The domain Dmin ofMmin consists of precisely those functions g ∈ Dmax

satisfying the condition

(2.4) [g, h](b) = 0, ∀h ∈ Dmax.

Let σ(t) and ω(t) be the solutions of the equation

(2.5) M(g) = 0 (t ∈ Ω+: = [c, b) , c ∈ Ω)
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with the initial conditions

(2.6) σ(c) = 1, (pσ′)(c) = 0, ω(c) = 0, (pω′)(c) = 1.

The Wronskian of two solutions of (2.5) does not depend on t, and they
are linearly independent if and only if their Wronskian is non-zero. Constancy
of the Wronskian together with conditions (2.6) imply that

(2.7) [σ, ω](t) = [σ, ω](c) = 1 (c < t ≤ b).

Thus, σ and ω form a fundamental system of solutions of (2.5). Since M+
min

has defect index (2, 2), σ, ω ∈ L2%(Ω+) and moreover σ, ω ∈ D+
max.

Lemma 2.1. For arbitrary functions g, h ∈ D+
max, we have the equality

(2.8) [g, h](t) = [g, σ](t)[h, ω](t)− [g, ω](t)[h, σ](t), c ≤ t ≤ b.

Proof. Since the functions σ and ω are real valued and [σ, ω](t) = 1
(c ≤ t ≤ b), we have

[g, σ](t)[h, ω](t)− [g, ω](t)[h, σ](t) =
(
gpσ′ − pg′σ

)
(t)(hpω′ − ph′ω)(t)

−
(
gpω′ − pg′ω

)
(t)(hpσ′ − ph′σ)(t) = (gpσ′hpω′ − gpσ′ph′ω − pg′σhpω′

+pg′σph
′
ω − gpω′hpσ′ + gpω′ph

′
σ + pg′ωhpσ′ − pg′ωph′σ)(t)

= (−gph′ + pg′h)(t)
(
pσ′ω − σpω′

)
(t) = [g, h](t),

which proves the lemma. �

Lemma 2.2. The domain Dmin of the operator Mmin consist of precisely
those functions g ∈ Dmax satisfying the following boundary conditions

(2.9) [g, σ](b) = [g, ω](b) = 0.

Proof. We know that the domain Dmin ofMmin coincides with the set of
all functions g ∈ Dmax satisfying the condition (2.4). Due to Lemma 2.1, (2.4)
is equivalent to

(2.10) [g, σ](b)[h, ω](b)− [g, ω](b)[h, σ](b) = 0.

Since [h, ω](b) and [h, σ](b) (g ∈ Dmax) can be taken arbitrarily, equality (2.10)
holds for all g ∈ Dmax if and only if the conditions (2.9) are fulfilled. The
lemma is proved. �

The concept of the space of boundary values of the operator plays an
important role in the theory of extensions. The triplet (H, G1, G2), where H is
a Hilbert space, G1 and G2 are linear mappings from D(S∗) into H, is called
(see [7, 12, p. 155, 16]) a space of boundary values of a closed symmetric
operator S acting in a Hilbert space H with equal (finite or infinite) defect
index if
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(i) (S∗f, g)H − (f, S∗g)H = (G1f,G2g)H − (G2f,G1g)H, ∀f, g ∈ D(S∗),
and

(ii) for every y1, y2 ∈ H there exists a vector f ∈ D(S∗) such thatG1f = y1
and G2f = y2.

We consider the following two linear maps from Dmax into C

(2.11) G1g = [g, σ](b), G2g = [g, ω](b).

So, we can state the next result.

Theorem 2.3. The triplet (C, G1, G2) defined according to (2.11) is a
space of boundary values of the operator Mmin.

Proof. The first requirement of the definition of a space of boundary
values is fulfilled because of (2.3) and Lemma 2.1:

(G1g,G2h)C − (G2g,G1h)C = [g, σ](b)[h, ω](b)− [g, ω](b)[h, σ](b)

= [g, h](b) = (Mmaxg, h)− (g,Mmaxh) (∀g, h ∈ Dmax). �

Lemma 2.4. For any complex numbers δ0, δ1, ε0 and ε1 there is a function
u ∈ D+

max satisfying the boundary conditions

(2.12) u(c) = δ0, (pu′)(c) = δ1, [u, σ](b) = ε0, [u, ω](b) = ε1.

Proof. Let f be an arbitrary function in L2%(Ω+) satisfying

(2.13) (f, σ) = ε0 + δ1, (f, ω) = ε1 − δ0.

There exists such a function f , even among the linear combination of σ and ω.
In fact, if we set f = c1σ+c2ω, then conditions (2.13) give us a system of equa-
tions in the constants c1 and c2 whose determinant is the Gram determinant
of the linearly independent functions σ and ω and is therefore non-zero.

Let u(t) denote the solution of the equation M(u) = f(t) (c ≤ t < b)
satisfying the initial conditions u (c) = δ0, (pu′)(c) = δ1. We claim that u is
the desired function. First, we observe that u(t) can be expressed by

u(t) = δ0σ(t) + δ1ω(t) +

∫ t

c
{σ(t)ω(ξ)− σ(ξ)ω(t)} %(ξ)f(ξ)dξ.

As σ, ω ∈ L2%(Ω+), we have u ∈ L2%(Ω+) and moreover u ∈ D+
max.

Next, we apply Green’s formula to u and σ and obtain (f, σ) = (M(u), σ)
= [u, σ](b)−[u, σ](c) +(u,M(σ)). SinceM(σ) = 0, we have (u,M(σ)) = 0. Mo-
reover, conditions u(c) = δ0, (pu′)(c) = δ1 imply that [u, σ](c) = u(c)(pσ′)(c)−
(pu′)(c)σ(c) = −δ1. Therefore,

(2.14) (f, σ) = [u, σ](b) + δ1.

Then, we conclude from (2.13) and (2.14) that [u, σ](b) = ε0.
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For ω, we can similarly show that

(2.15) (f, ω) = (M (u) , ω) = [u, ω](b)− [u, ω](c) + (u,M(ω)) = [u, ω](b)− δ0.
Then from (2.13) and (2.15) we have [u, ω](b) = ε1. Lemma 2.4 is proved. �

The next lemma proves the second requirement of the definition of a space
of boundary values.

Lemma 2.5. For any complex numbers δ0, δ1 there is a function u ∈ Dmax

satisfying

(2.16) [u, σ](b) = δ0, [u, ω](b) = δ1.

Proof. The operator M+
min has defect index (2, 2). By Lemma 2.4, we

can find a function u+ ∈ D+
max satisfying the conditions

(2.17) u+(c) = 0, (pu′+)(c) = 0, [u+, σ](b) = δ0, [u+, ω](b) = δ1.

Now we let

u(t) =

{
0, a < t ≤ c,
u+(t), c ≤ t < b.

Then, u ∈ Dmax and [u, σ](b) = δ0, [u, ω](b) = δ1. The Lemma 2.5 and Theo-
rem 2.3 are verified. �

Recall that a linear operator T (with domain D(T )) acting on some Hil-
bert space H is called dissipative (accumulative) if =(Tf, f) ≥ 0 (=(Tf, f) ≤ 0)
for all f ∈ D(T ) and maximal dissipative (maximal accumulative) if it does not
have a proper dissipative (accumulative) extensions (see [12], p. 149).

Using Theorem 2.3 and [7, 12, Theorem 1.6, p. 156, 16] we can state the
following result.

Theorem 2.6. Every maximal dissipative (accumulative) extensions T +
η

of Mmin is determined by the equality T +
η u = Mmaxu of the functions u in

Dmax satisfying the boundary condition

(2.18) [u, σ](b)− η[u, ω](b) = 0,

where =η ≥ 0 or η = ∞ (=η ≤ 0 or η = ∞). Conversely, for an arbitrary
number η with =η ≥ 0 or η = ∞ (=η ≤ 0 or η = ∞) condition (2.18)
determines a maximal dissipative (accumulative) extension of Mmin. The self-
adjoint extension of Mmin are obtained precisely when η is a real number or
infinity. Here for η =∞ condition (2.18) should be replaced by [u, ω](b) = 0.

(b) Now, let M−min have defect index (2, 2) and M+
min have defect index

(1, 1) (see [6, 8-10, 13, 20, 26-29]). The operator Mmin has defect index (1, 1).
Then [u, v] (b) = 0 for all u, v ∈ Dmax and

(2.19) (Mmaxu, v)− (u,Mmaxv) = −[u, v](a), ∀u, v ∈ Dmax.
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Lemma 2.7. The domain Dmin of the operator Mmin consist of precisely
those functions u ∈ Dmax satisfying the following boundary conditions

(2.20) [u, σ](a) = [u, ω](a) = 0.

We consider the following linear maps from Dmax into C

(2.21) F1u = [u, ω](a), F2u = [u, σ](a).

Then, the next two theorems can be proved in the same way as in the case (a).

Theorem 2.8. The triplet (C, F1, F2) defined according to (2.21) is a
space of boundary values of the operator Mmin.

Theorem 2.9. Every maximal dissipative (accumulative) extension T −γ
of Mmin is determined by the equality T −γ u = Mmaxu on the functions u in
Dmax satisfying the boundary condition

(2.22) [u, ω](a)− γ[u, σ](a) = 0,

where =γ ≥ 0 or γ = ∞ (=γ ≤ 0 or γ = ∞). Conversely, for an arbitrary
number γ with =γ ≥ 0 or γ = ∞ (=γ ≤ 0 or γ = ∞) condition (2.22)
determines a maximal dissipative (accumulative) extension of Mmin. The self-
adjoint extension of Mmin are obtained precisely when γ is a real number or
infinity. Here for γ =∞ condition (2.22) should be replaced by [u, σ](a) = 0.

In this section, we shall study the maximal dissipative operators T −γ
(=γ > 0) and T +

η (=η > 0) generated by the differential expression M and
boundary conditions (2.18) and (2.22), respectively.

We add the ‘incoming’ and ‘outgoing’ channels L2(−∞, 0) and L2(0,∞)
to the space H:= L2% (Ω) and then form the main Hilbert space of the dilation
H:= L2(−∞, 0)⊕H⊕L2(0,∞) in which we consider the operator T−γ generated
by the expression

(2.23) T〈v−, y, v+〉 = 〈idv−
dξ

,M(y), i
dv+
dς
〉

on the set D(T−γ ) of vectors 〈v−, y, v+〉 satisfying the conditions: v− ∈ W1
2 (−∞,

0), v+ ∈ W1
2 (0,∞), y ∈ Dmax,

(2.24) [y, ω](a)− γ[y, σ](a) = δv−(0), [y, ω](a)− γ[y, σ](a) = δv+(0),

where δ2:= 2=γ, δ > 0 and W1
2 is the Sobolev space. Then we assert the

following theorem.

Theorem 2.10. The operator T−γ is self-adjoint in H and is a self-adjoint
dilation of the maximal dissipative operator T −γ .
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Proof. Suppose that Y, Z ∈ D(T−γ ), Y = 〈v−, y, v+〉 and Z = 〈ψ−, z, ψ+〉.
If we use integration by parts and (2.19), we get

(2.25)
(
T−γ Y, Z

)
H =

∫ 0

−∞
iv′−ψ̄−dξ + (Mmaxy, z)H +

∫ ∞
0

iv′+ψ̄+dξ

= iv− (0)ψ−(0)− iv+(0)ψ+(0)− [y, z](a) +
(
Y,T−γ Z

)
H .

Moreover, using the boundary conditions (2.24) for the components of the
vectors y, z and the relation

(2.26) [y, z](t) = [y, σ](t) [z, ω] (t)− [y, ω](t) [z, σ] (t) (a ≤ t ≤ c),

one can see by direct computation that iv−(0)ψ−(0)− iv+(0)ψ+(0)− [y, z](a)
= 0. Thus, T−γ is symmetric. In order to prove that T−γ is self-adjoint, we need
to show that (T−γ )∗ ⊆ T−γ .

Take Z = 〈ψ−, z, ψ+〉 ∈ D((T−γ )∗). Let (T−γ )∗Z = Z∗ = 〈ψ∗−, z∗, ψ∗+〉 ∈ H
so that

(2.27) (T−γ Y,Z)H = (Y,Z∗)H, ∀Y ∈ D(T−γ ).

Here we can choose the vectors with suitable components as Y ∈ D(T−γ ) to
show that ψ− ∈ W1

2 (−∞, 0), ψ+ ∈ W1
2 (0,∞), z ∈ Dmax and Z∗ = TZ, where

the expression T is given by (2.23). Hence, (2.27) can be written as (TY,Z)H =
(Y,TZ)H, ∀Y ∈ D(T−γ ). Therefore, the sum of the integral terms in the bilinear
form (TY, Z)H must be zero:

(2.28) iv−(0)ψ−(0)− iv+(0)ψ+(0)− [y, z](a) = 0

for all Y = 〈v−, y, v+〉 ∈ D(T−γ ). Further, solving the boundary conditions

(2.24) for [y, σ](a) and [y, ω](a) we find that [y, σ](a) = i
δ (v+(0)− v−(0)) ,

[y, ω](a) = δv−(0) + iγ
δ (v+(0)− v−(0)). Then, we use (2.26) and see that

(2.28) is equivalent to the equality iv−(0)ψ−(0) − iv+(0)ψ+(0) = −[y, z](a) =
i
δ (v+(0)− v−(0)) [z, ω](a) −[δv−(0) + iγ

δ (v+(0)− v−(0))][z, σ](a). Since the
values v±(0) may be any complex numbers, a comparison of the coefficients of
v±(0) on the left and on the right of the last equality shows that the vector Z =
〈ψ−, z, ψ+〉 satisfies the following boundary conditions [z, ω](a) − γ[z, σ](a) =
δψ−(0), [z, ω](a) − γ[z, σ](a) = δψ+(0). As a result, we obtain the inclusion
(T−γ )∗ ⊆ T−γ implying that T−γ = (T−γ )∗.

The self-adjoint operator T−γ generates in H a unitary group U−(s) :=
exp[iT−γ s] (s ∈ R:= (−∞,∞)). Let P : H → H and P1 : H → H be the
mappings acting according to the formulas P : 〈v−, x, v+〉 → x and P1 :
x → 〈0, x, 0〉. Let Z(s) = PU−(s)P1 (s ≥ 0). The family {Z(s)} (s ≥ 0)
of operators is a strongly continuous semi-group of completely non-unitary
contractions on H. Denote by A the generator of this semi-group: Ax =



9 Extensions, dilations and spectral analysis of singular Sturm-Liouville operators 233

lims→+0[(is)
−1(Z(s)x− x)]. The domain of A consists of all vectors for which

the above limit exists. The operator A is maximal dissipative and the opera-
tor T−γ is called the self-adjoint dilation of A [19, 22-23]. We shall show that
A = T −γ , and hence T−γ is a self-adjoint dilation of T −γ . For this purpose, we
first confirm the equality [19, 22, 23]

(2.29) P(T−γ − λI)−1P1x = (T −γ − λI)−1x, x ∈ H, =λ < 0.

If we set (T−γ −λI)−1P1x = Z = 〈ψ−, z, ψ+〉, then we have (T−γ −λI)Z = P1x,

and in turn Mmaxz − λz = x, ψ− (ξ) = ψ−(0)e−iλξ and ψ+ (ς) = ψ+(0)e−iλς .
Since Z ∈ D(T−γ ) and hence ψ− ∈ L2 (−∞, 0), it follows that ψ−(0) = 0.
Thus, z satisfies the boundary condition [z, ω](a) − γ[z, σ](a) = 0. Therefore,
z ∈ D(T −γ ) and in fact, z = (T −γ − λI)−1x since a point λ with =λ < 0 cannot
be an eigenvalue of a dissipative operator. We note that ψ+(0) is given by
ψ+(0) = δ−1 ([z, ω](a)− γ[z, σ](a)). Thus,

(T−γ − λI)−1P1x =
〈

0, ((T−γ − λI)−1x, δ−1([z, ω](a)− γ[z, σ](a))e−iλς
〉

for x ∈ H and =λ < 0. Applying the mapping P, we obtain (2.29).

Now, we can easily show that A = T −γ . Indeed, we have by (2.29) that

(T −γ − λI)−1 = P(T−γ − λI)−1P1 = −iP
∫ ∞
0

U−(s)e−iλsdsP1

= −i
∫ ∞
0
Z(s)e−iλsds = (A− λI)−1, =λ < 0,

from which T −γ = A follows directly. Hence, Theorem 2.10. is proved. �

To construct a self-adjoint dilation of the dissipative operator T +
η (=η >

0) in the space H we deal with the operator T+
η generated by (2.23) on the

set D(T+
η ) of vectors 〈v−, y, v+〉 satisfying the conditions: v− ∈ W1

2 (−∞, 0),
v+ ∈ W1

2 (0,∞), y ∈ Dmax, [y, σ](b)−η[y, ω](b) = βv−(0), [y, σ](b)−η[y, ω](b) =
βv+(0), β2:= 2=η, β > 0.

We may prove the following assertion analogously.

Theorem 2.11. The operator T+
η is self-adjoint in H and is a self-adjoint

dilation of the dissipative operator T +
η .

3. SCATTERING THEORY OF DILATIONS, FUNCTIONAL MODELS
AND COMPLETENESS OF THE SYSTEM OF ROOT FUNCTIONS

OF THE DISSIPATIVE OPERATORS

Let ϕ(t, λ) and ψ(t, λ) denote the solutions of the equation M(y) = λy
(t ∈ Ω) satisfying the conditions [ϕ, σ](a) = −1, [ϕ, ω](a) = 0, [ψ, σ](a) =
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0, [ψ, ω](a) = 1. The Weyl-Titchmarsh function m−∞(λ) of the self-adjoint
operator T −∞ generated by the boundary condition [y, ω](a) = 0 is uniquely
determined due to the condition ψ(t, λ) + m−∞(λ)ϕ(t, λ) ∈ L2%(Ω), =λ 6= 0.
In this case m−∞(λ) is in general not a meromorphic function on C, but is a

holomorphic function with =λ 6= 0, =λ=m−∞(λ) > 0 and m−∞(λ) = m−∞(λ̄)
(=λ 6= 0). In this section, we assume that the function m−∞(λ) is meromorphic
in C, which implies, equivalently, that any self-adjoint extension of the operator
Mmin has a purely discrete spectrum (see [6, 8, 9, 14, 15, 18, 20, 26, 27]).

An important property of the unitary group U−(s) = exp[iT−γ s] (U+(s) =
exp[iT+

η s]) (s ∈ Ω) makes it possible to apply to it the Lax-Phillips scheme
[17]. Namely, it has incoming and outgoing subspaces D−:= 〈L2 (−∞, 0) , 0, 0〉
and D+:= 〈0, 0,L2(0,∞)〉 possessing the following properties

(1) U±(s)D− ⊂ D−, s ≤ 0 and U±(s)D+ ⊂ D+, s ≥ 0;

(2) ∩s≤0U±(s)D− = ∩s≥0U±(s)D+ = {0};
(3) ∪s≥0U±(s)D− = ∪s≤0U±(s)D+ = H;

(4) D−⊥D+.

Property (4) is obvious. To prove property (1) for D+ (the proof for
D− is similar), we set R±λ := (T±γ − λI)−1, for all λ with =λ < 0 and for any
Y = 〈0, 0, v+〉 ∈ D+ we have

R±λ Y = 〈0, 0,−ie−iλξ
∫ ξ

0
e−iλsv+(s)ds〉

which implies that R±λ Y ∈ D+, therefore, if Z⊥D+, then

0 = (R±λ Y,Z)H = −i
∫ ∞
0

e−iλs(U±(s)Y,Z)Hdλ, =λ < 0.

Hence, we have (U±(s)Y,Z)H = 0 for all s ≥ 0 and in turn U±(s)D+ ⊂ D+ for
s ≥ 0. Property (1) is proved.

To prove property (2) for D+ (the proof for D− is similar), we use the
mappings P+ : H→ L2(0,∞) and P+

1 : L2(0,∞)→ D+ acting according to the
formulas P+ : 〈v−, u, v+〉 → v+ and P+

1 : v → 〈0, 0, v〉, respectively. The semi-
group of isometries V(s) = P+U−(s)P+

1 (s ≥ 0) is a one-sided shift in L2(0,∞)
and, in fact, the generator of the semi-group of the one-sided shift Y(s) in
L2(0,∞) is the differential operator i ddζ with boundary condition v(0) = 0. On
the other side, the generator B of the semi-group of isometries V(s) (s ≥ 0) is
the operator Bv = P+T−γ P+

1 Y = P+T−γ 〈0, 0, v〉 = P+〈0, 0, idvdζ 〉 = idvdζ , where

v ∈ W1
2 (0,∞) and v(0) = 0. We know that a semi-group is uniquely determined

by its generator, hence V(s) = Y(s), and

∩s≥0U−(s)D+ = 〈0, 0,∩s≥0Y(s)L2(0,∞)〉 = {0}

(the proof for U+(s) is similar) proving the property (2).
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The scattering matrix is defined in terms of the theory of spectral re-
presentations in the scheme of the Lax-Phillips scattering theory. Now, we
proceed to construct them. During this process, we also prove property (3) of
the incoming and outgoing subspaces.

We recall that the linear operator A (with domain D(A)) acting in the
Hilbert space H is called completely non-self-adjoint (or pure) if the invariant
subspace K ⊆ D(A) (K 6= {0}) of the operator A whose restriction to K is
self-adjoint, does not exist.

Lemma 3.1. The operator T −γ (T +
η ) is completely non-self-adjoint (pure).

Proof. Let H′ ⊂ H be a non-trivial subspace in which T −γ (the proof
for T +

η is similar) induces a self-adjoint operator T ′γ with domain D(T ′γ) =
H′ ∩ D(T −γ ). If Y ∈ D(T ′γ), then f ∈ D(T ′∗γ ), and [f, ω](a) − γ[f, σ](a) = 0,
[f, ω](a) − γ[f, σ](a) = 0. For the eigenfunctions y of the operator T −γ lying
in H′ that are eigenfunctions of T ′γ , we have [y, σ](a) = 0. From the boundary
condition [y, ω](a) − γ[y, σ](a) = 0, we obtain [y, ω](a) = 0, and y(t, λ) ≡ 0.
Since m−∞(λ) is a meromorphic function in C, the resolvent Rλ(T −γ ) of the
operator T −γ is a compact operator, and hence the spectrum of T ′γ is purely
discrete. If we use the theorem on expansion in eigenfunctions of the self-
adjoint operator T ′γ , we find H′ = {0}, i.e. the operator T −γ is pure. The
lemma is proved. �

We set
H±− = ∪s≥0U±(s)D−, H±+ = ∪s≤0U±(s)D+.

Lemma 3.2. H±− + H±+ = H.

Proof. Taking property (1) of the subspace D± into consideration, it
becomes easy to show that the subspace H′± = H 	

(
H±− + H±+

)
is invariant

relative to the group {U±(s)} and has the form H′± =
〈
0,H′±, 0

〉
, where H′±

is a subspace in H. Therefore, if the subspace H′± (and hence also H′±) were
non-trivial, then the unitary group {U±(s)}, restricted to this subspace, would
be a unitary part of the group {U±(s)}, and hence the restriction T −′γ (T +′

η )
of T −γ (T +

η ) to H′− (H′+) would be a self-adjoint operator in H′− (H′+). Purity
of the operator T −γ (T +

η ) leads to H′± = {0}, i.e. H′± = {0}. The lemma is
proved. �

Let us use the following notation θ(t, λ) = ψ(t, λ) +m−∞(λ)ϕ(t, λ),

(3.1) Θ−γ (λ) =
m−∞(λ)− γ
m−∞(λ)− γ

.

Let Υ−λ (t, ξ, ς) = 〈e−iλξ, (m−∞(λ) − γ)−1δθ(t, λ),Θ
−
γ (λ)e−iλς〉. We note

that the vectors Υ−λ (t, ξ, ς) for real λ do not belong to the space H. Howe-
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ver, Υ−λ (t, ξ) satisfy the equation TΥ = λΥ (λ ∈ R), and the corresponding
boundary conditions for the operator T−γ .

With the help of the vector Υ−λ (t, ξ), we define the transformation F− :

Y → Ỹ−(λ) by (F−Y )(λ):= Ỹ−(λ):= 1√
2π

(Y,Υ−λ )H on the vector Y = 〈v−, y, v+〉
in which v−, v+ and y are smooth, compactly supported functions.

Lemma 3.3. The transformation F− maps H−− isometrically onto L2(R).
For all vectors Y,Z ∈ H−− the Parseval equality and the inversion formula
hold:

(Y,Z)H = (Ỹ−, Z̃−)L2 =

∫ ∞
−∞

Ỹ−(λ)Z̃−(λ)dλ,

Y =
1√
2π

∫ ∞
−∞

Ỹ−(λ)Υ−λ dλ,

where Ỹ−(λ):= (F−Y )(λ) and Z̃−(λ):= (F−Z)(λ).

Proof. For Y,Z ∈ D−, Y = 〈v−, 0, 0〉, Z = 〈ψ−, 0, 0〉 we have

Ỹ−(λ): =
1√
2π

(Y,Υ−λ )H =
1√
2π

∫ 0

−∞
v−(ξ)eiλξdξ ∈ H2

−

and, in view of the usual Parseval equality for Fourier integrals,

(Y,Z)H =

∫ 0

−∞
v−(ξ)ψ−(ξ)dξ =

∫ ∞
−∞

Ỹ−(λ)Z̃−(λ)dλ = (F−Y,F−Z)L2 .

Here and below, let H2
± denote the Hardy classes in L2(R) consisting of the

functions analytically extendable to the upper and lower half-planes, respecti-
vely.

In order to extend the Parseval equality to the whole H−−, we consider in
H−− the dense set H′− of vectors obtained from the smooth, compactly supported
functions in D− as follows: Y ∈ H′− if Y = U−(s)Y0, Y0 = 〈v−, 0, 0〉, v− ∈
C∞0 (−∞, 0), where s = sY is a non-negative number depending on Y . In
this case, if Y,Z ∈ H′−, then we have U−−sY,U

−
−sZ ∈ D− for s > sY and

s > sZ and, moreover, the first components of these vectors lie in the space
C∞0 (−∞, 0). Therefore, being the operators U−(s) (s ∈ R) unitary, the equality
F−U−(s)Y = (U−(s)Y,U−λ )H = eiλs(Y,U−λ )H = eiλsF−Y leads us to

(3.2) (Y, Z)H = (U−s Y,U−−sZ)H = (F−U−−sY,F−U−−sZ)L2

= (e−iλsF−Y, e−iλsF−Z)L2 = (F−Y,F−Z)L2 .

By closure in (3.2), we have the Parseval equality for the whole space H−−. The
inversion formula follows from the Parseval equality if all integrals in it are
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understood as limits in the mean of integrals over finite intervals. Finally,

F−H−− = ∪s≥0F−U−(s)D− = ∪s≥0e−iλsH2
− = L2(R),

i.e. F− maps H−− onto the whole L2(R), which completes the proof. �

Let Υ+
λ (t, ξ, ς) = 〈Θ−γ (λ)e−iλξ, (m−∞(λ) − γ)−1δθ(t, λ), e−iλς〉. It is clear

that the vectors Υ+
λ (t, ξ, ς) do not lie in the space H for real values of λ.

Nevertheless, Υ+
λ (t, ξ) satisfies TΥ = λΥ (λ ∈ R), and the corresponding

boundary conditions for the operator T−γ . Using the vector Υ+
λ (t, ξ, ς), we can

define the transformation F+ : Y → Ỹ+(λ) as

(F+Y )(λ): = Ỹ+(λ): =
1√
2π

(Y,Υ+
λ )H,

on vectors Y = 〈v−, y, v+〉 in which v−, v+ and y are smooth, compactly suppor-
ted functions. The proof of the next result is analogous to that of Lemma 3.3.

Lemma 3.4. The transformation F+ maps H−+ isometrically onto L2(R)
and for all vectors Y,Z ∈ H−+, the Parseval equality and the inversion formula
hold:

(Y,Z)H = (Ỹ+, Z̃+)L2 =

∫ ∞
−∞

Ỹ+(λ)Z̃+(λ)dλ,

Y =
1√
2π

∫ ∞
−∞

Ỹ+(λ)Υ+
λ dλ,

where Ỹ+(λ):= (F+Y )(λ) and Z̃+(λ):= (F+Z)(λ).

According to (3.1), the function Θ−γ (λ) satisfies the equality
∣∣Θ−γ (λ)

∣∣ = 1

for λ ∈ R. Then, the explicit formula given for the vectors Υ+
λ and Υ−λ implies

that

(3.3) Υ−λ = Θ
−
γ (λ)Υ+

λ (λ ∈ R).

Hence, the equality H−− = H−+ holds true due to Lemmas 3.3 and 3.4. Combi-
ning this result by Lemma 3.2, we obtain H = H−− = H−+, and, thus property
(3) for U−(s) above has been established for the incoming and outgoing sub-
spaces. Thus, the transformation F− maps H isometrically onto L2(R) with
the subspace D− mapped onto H2

− and the operators U−(s) passing into the
operators of multiplication by eiλs. In other words, F− is the incoming spectral
representation for the group {U−(s)}. Similarly, F+ is the outgoing spectral
representation for {U−(s)}. It follows from (3.3) that the passage from the
F+-representation of a vector f ∈ H to its F−-representation is realized by
multiplication by the function Θ−γ (λ) : Ỹ−(λ) = Θ−γ (λ)Ỹ+(λ). It is given in [17]
that the scattering matrix (function) of the group {U−(s)} with respect to the
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subspaces D− and D+ is the coefficient by which the F−-representation of a vec-
tor Y ∈ H must be multiplied to obtain the corresponding F+-representation:

Ỹ+(λ) = Θ
−
γ (λ)Ỹ−(λ). Hence, we have proved the following theorem.

Theorem 3.5. The function Θ
−
γ (λ) is the scattering function (matrix) of

the unitary group {U−(s)} (of the self-adjoint operator T−γ ).

Let Θ(λ) be an arbitrary inner function on the upper half-plane [19]. If
we set N = H2

+	ΘH2
+, then N 6= {0} becomes a subspace of the Hilbert space

H2
+. Let us now consider the semi-group of the operators Y(s) (s ≥ 0) acting

in N according to the formula Y(s)ϕ = P
[
eiλsϕ

]
, ϕ:= ϕ(λ) ∈ N , where P is

the orthogonal projection from H2
+ onto N . The generator of the semi-group

{Y(s)} is described by S : Sϕ = lims→+0[(is)
−1(Y(s)ϕ−ϕ)], being a dissipative

operator acting in N with domain D(S) composed of all functions ϕ ∈ N for
which the above limit exists. The operator S is called a model dissipative
operator (This model dissipative operator associated with the names of Lax
and Phillips [17] is a special case of a more general model dissipative operator
constructed by Sz.-Nagy and Foiaş [19]). The basic assertion is that Θ(λ) is
the characteristic function of the operator S.

Let K = 〈0,H, 0〉 so that H = D−⊕K⊕D+. We can see from the explicit
form of the unitary transformation F− that under the mapping F−,

(3.4) H→ L2(R), Y → Ỹ−(λ) = (F−Y )(λ), D− → H2
−, D+ → Θ−γH2

+,

K→ H2
+ 	Θ−γH2

+, U−(s)Y → (F−U−(s)F−1− Ỹ−)(λ) = eiλsỸ−(λ).

The formulas (3.4) show that the operator T −γ is unitary equivalent to the
model dissipative operator with characteristic function Θ−γ (λ). Since the cha-
racteristic functions of unitary equivalent dissipative operators coincide with
[19, 22–24], we have proved the next result.

Theorem 3.6. The characteristic function of the maximal dissipative ope-
rator T −γ coincides with the function Θ−γ (λ) defined in (3.1).

We denote by φ(t, λ) and χ(t, λ) the solutions of the equation M(y) = λy
(t ∈ Ω) with conditions [φ, σ](b) = 0, [φ, ω](b) = −1, [χ, σ](b) = 1, [χ, ω](b) =
0. Through the condition χ(t, λ) + m+

∞(λ)φ(t, λ) ∈ L2%(Ω), =λ 6= 0, Weyl-
Titchmarsh function m+

∞(λ) of the self-adjoint operator T +
∞ generated by the

boundary condition [y, ω](b) = 0 is uniquely determined. Then, m+
∞(λ) is not

a meromorphic function on C in general, but it is a holomorphic function with

=λ 6= 0, =λ=m+
∞(λ) > 0 and m+

∞(λ) = m+
∞(λ̄) (=λ 6= 0). In this section, we

assume that the function m+
∞(λ) is meromorphic in C. Then this condition

becomes equivalent to the fact that any self-adjoint extension of the operator
Mmin has a purely discrete spectrum (see [6, 8, 9, 14, 15, 18, 20, 26, 27]).
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We adopt the following notation ϑ(t, λ) = χ(t, λ) +m+
∞(λ)φ(t, λ),

(3.5) Θ+
η (λ) =

m+
∞(λ)− η

m+
∞(λ)− η

.

Set Ψ−λ (t, ξ, ς) = 〈e−iλξ, (m+
∞(λ) + η)−1βϑ(t, λ),Θ

+
η (λ)e−iλς〉. Note that

the vector Ψ−λ (t, ξ, ς) does not belong to H for λ ∈ R. However, we can apply
the expression T to them. It is easy to see that Ψ−λ satisfy the equation TΨ =
λΨ (λ ∈ R) and boundary conditions (2.25).

Using Ψ−λ , we define the transformation Φ− : Y → Ỹ−(λ) by (Φ−Y )(λ):=

Ỹ−(λ):= 1√
2π

(Y,Ψ−λ )H on the vector Y = 〈v−, y, v+〉 in which v−, v+ and y are

smooth, compactly supported functions. The proof of the next result is similar
to that of Lemma 3.3.

Lemma 3.7. The transformation Φ− maps H+
− isometrically onto L2(R).

For all vectors Y,Z ∈ H+
− the Parseval equality and the inversion formula hold:

(Y,Z)H = (Ỹ−, Z̃−)L2 =

∫ ∞
−∞

Ỹ−(λ)Z̃−(λ)dλ,

Y =
1√
2π

∫ ∞
−∞

Ỹ−(λ)Ψ−λ dλ,

where Ỹ−(λ):= (Φ−Y )(λ) and Z̃−(λ):= (Φ−Z)(λ).

We set Ψ+
λ (t, ξ, ς) = 〈Θ+

η (λ)e−iλξ, (m+
∞(λ) − η)−1βϑ(t, λ), e−iλς〉. Alt-

hough the vector Ψ+
λ (t, ξ, ς) does not belong to H for λ ∈ R, the expression T

can be applied to it and we can see that Ψ+
λ satisfies the equation TΨ = λΨ

(λ ∈ R) and boundary conditions (2.25).
With the help of vector Ψ+

λ (t, ξ, ς), we define the transformation Φ+:Y →
Ỹ+(λ) on vectors Y = 〈v−, y, v+〉, in which v−, v+ and y are smooth, compactly
supported functions by setting

(Φ+Y )(λ): = Ỹ+(λ): =
1√
2π

(Y,Ψ+
λ )H.

Lemma 3.8. The transformation Φ+ maps H+
+ isometrically onto L2(R),

and for all vectors Y,Z ∈ H+
+, the Parseval equality and the inversion formula

hold:

(Y,Z)H = (Ỹ+, Z̃+)L2 =

∫ ∞
−∞

Ỹ−(λ)Z̃−(λ)dλ,

Y =
1√
2π

∫ ∞
−∞

Ỹ+(λ)Ψ+
λ dλ,

where Ỹ+(λ):= (Φ+Y )(λ) and Z̃+(λ):= (Φ+Z)(λ).
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According to (3.5), the function Θ+
η (λ) satisfies

∣∣Θ+
η (λ)

∣∣ = 1 for λ ∈ R.

Therefore, it is seen from the explicit formula for the vectors Ψ+
λ and Ψ−λ that

(3.6) Ψ−λ = Θ
+
η (λ)Ψ+

λ , λ ∈ R.

Therefore, Lemma 3.7 and 3.8 imply that H+
− = H+

+. Together with Lemma 3.2,
this shows that H = H+

− = H+
+. From the formula (3.6) it follows that passage

from the Φ−-representation of an vector Y ∈ H to its Φ+-representation is

accomplished as follows: Ỹ+(λ) = Θ
+
η (λ)Ỹ−(λ). According to [17], we have

now reached the following conclusion.

Theorem 3.9. The function Θ
+
η (λ) is the scattering function (matrix) of

the unitary group {U+(s)} (of the self-adjoint operator T+
η ).

From the explicit form of unitary transformation Φ−, we have

(3.7) H→ L2(R), Y → Ỹ−(λ) = (Φ−Y )(λ), D− → H2
−, D+ → Θ+

η H2
+,

K→ H2
+ 	Θ+

η H2
+, Ψ+(s)Y → (Φ−Ψ+(s)Φ−1− Ỹ−)(λ) = eiλsỸ−(λ).

Formulas (3.7) show that the operator T +
η is unitarily equivalent to the model

dissipative operator with characteristic function Θ+
η (λ). We have thus proved

the following assertion.

Theorem 3.10. The characteristic function of the maximal dissipative
operator T +

η coincides with the function Θ+
η (λ) defined by (3.5).

Let B denote the linear operator in the Hilbert space H with the domain
D(B). The complex number λ0 is called an eigenvalue of the operator B if
there exists a non-zero vector y0 ∈ D(B) such that By0 = λ0y0. Such vector
y0 is called the eigenvector of the operator B corresponding to the eigenvalue
λ0. The vectors y1, y2, ..., yk are called the associated vectors of the eigenvector
y0 if they belong to D(B) and Byj = λ0yj + yj−1, j = 1, 2, ..., k. The vector
y ∈ D(B), y 6= 0 is called a root vector of the operator B corresponding to the
eigenvalue λ0, if all powers of B are defined on this vector and (B−λ0I)ny = 0
for some integer n. The set of all root vectors of B corresponding to the same
eigenvalue λ0 with the vector y = 0 forms a linear set Nλ0 and is called the
root lineal. The dimension of the lineal Nλ0 is called the algebraic multiplicity
of the eigenvalue λ0. The root lineal Nλ0 coincides with the linear span of all
eigenvectors and associated vectors of B corresponding to the eigenvalue λ0.
Consequently, the completeness of the system of all eigenvectors and associated
vectors of B is equivalent to the completeness of the system of all root vectors
of this operator.

We know that the characteristic function of a dissipative operator T −γ
(T +
η ) carries full information about the spectral properties of this operator [19,
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22–24]. For example, the absence of a singular factor s(λ) of the characteris-
tic function Θ−γ (λ) in the factorization Θ−γ (λ) = s(λ)B(λ) (where B(λ) is a
Blaschke product) guarantees the completeness of the system of eigenfunctions
and associated functions (or root functions) of the dissipative Sturm-Liouville
operator T −γ .

Theorem 3.11. Let m−∞(λ) be a meromorphic function in C. Then for all
values of γ with =γ > 0, except possibly for a single value γ = γ0, the charac-
teristic function Θ−γ (λ) of the maximal dissipative operator T −γ is a Blaschke
product and the spectrum of T −γ is purely discrete and belongs to the open upper
half plane. The operator T −γ (γ 6= γ0) has an infinite number of isolated eigen-
values with finite multiplicity and limit points at infinity, and the system of all
eigenfunctions and associated functions (or all root functions) of this operator
is complete in the space L2%(Ω).

Proof. It is clear from (3.1) and (3.5) that Θ−γ (λ) is an inner function in
the upper half-plane and, moreover, it is meromorphic in the whole λ-plane.
Therefore, it can be factored as follows Θ−γ (λ) = eiλdBγ(λ), d:= d(γ) > 0,
where Bγ(λ) is a Blaschke product. Further, the last equality results in

(3.8)
∣∣Θ−γ (λ)

∣∣ ≤ e−d(γ)=λ, =λ ≥ 0.

If we express m−∞(λ) in terms of Θ−γ (λ), we find from (3.1) and (3.5) that

(3.9) m−∞(λ) =
γΘ−γ (λ)− γ
Θ−γ (λ)− 1

.

If d(γ) > 0 for a given value γ (=γ > 0), then (3.8) shows that
lims→+∞Θ−γ (is) = 0. Moreover, (3.9) gives us that lims→+∞m

−
∞(is) = γ.

Since m−∞(λ) is independent of γ, d(γ) can be non-zero at not more than a
single point γ = γ0 (and, further, γ0 = lims→+∞m

±
γ (is)). The theorem is

proved. �

The proof of the next result is similar to that of Theorem 3.11.

Theorem 3.12. Let m+
∞(λ) be a meromorphic function in C. Then for all

values of η with =η > 0, except possibly for a single value η = η0, the charac-
teristic function Θ+

η (λ) of the maximal dissipative operator T +
η is a Blaschke

product and the spectrum of T +
η is purely discrete and belongs to the open upper

half plane. The operator T +
η (η 6= η0) has an infinite number of isolated eigen-

values with finite multiplicity and limit points at infinity, and the system of all
eigenfunctions and associated functions (or all root functions) of this operator
is complete in the space L2%(Ω).
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