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Let p ≡ 1(mod 4) be a prime number, let γ =
P+
√
p

Q
be a quadratic irrational, let

Iγ = [Q,P +
√
p] be a quadratic ideal and let Fγ = (Q, 2P,−Q) be an indefinite

quadratic form of discriminant ∆ = 4p, where P and Q are positive integers
depending on p. In this work, we first determined the cycle of Iγ and then proved
that the right and left neighbors of Fγ can be obtained from the cycle of Iγ . Later
we determined the continued fraction expansion of γ, and then we showed that
the continued fraction expansion of

√
p, the set of proper automorphisms of Fγ ,

the fundamental solution of the Pell equation x2 − py2 = ±1 and the set of all
positive integer solutions of the equation x2 − py2 = ±p can be obtained from
the continued fraction expansion of γ.
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1. INTRODUCTION

A real binary quadratic form (or just a form) F is a polynomial in
two variables x and y of the type

F = F (x, y) = ax2 + bxy + cy2

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discri-
minant of F is defined by the formula b2 − 4ac and is denoted by ∆ = ∆(F ).
F is an integral form if and only if a, b, c ∈ Z and is indefinite if and only
if ∆(F ) > 0. An indefinite definite form F = (a, b, c) of discriminant ∆ is said
to be reduced if |

√
∆− 2|a|| < b <

√
∆.

Gauss defined the group action of GL(2,Z) which is the multiplicative

group of 2× 2 matrices g =

[
r s
t u

]
such that r, s, t, u ∈ Z with det(g) = ±1

on the set of forms as

(1.1) gF (x, y) = F (rx+ ty, sx+ uy)
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for g =

[
r s
t u

]
∈GL(2,Z). If there exists a g ∈GL(2,Z) such that gF = G,

then F and G are called equivalent. If det(g) = 1, then F and G are called
properly equivalent and if det(g) = −1, then F and G are called impro-
perly equivalent. An element g ∈GL(2,Z) is called an automorphism of
F if gF = F . If det g = 1, then g is called a proper automorphism and
if det g = −1, then g is called an improper automorphism. Let Aut(F )+

denote the set of proper automorphisms and let Aut(F )− denote the set of
improper automorphisms of F .

The right neighbor R(F ) of an integral indefinite form F = (a, b, c) of
discriminant ∆ is the form (A,B,C) determined by four conditions:

A = c, b+B ≡ 0 (mod 2A),
√

∆− 2|A| < B <
√

∆ and B2 − 4AC = ∆.

It is clear that

(1.2) R(F ) =

[
0 −1
1 −δ

]
(a, b, c),

where

(1.3) δ =
b+B

2c
.

The left neighbor L(F ) of F is defined as

(1.4) L(F ) =

[
0 1
1 0

]
R(c, b, a).

So F is properly equivalent to its right and left neighbor.
Let ρ(F ) denote the normalization of (c,−b, a). Let F = F0 = (a0, b0, c0)

and let ri = sign(ci)
⌊

bi
2|ci|

⌋
for |ci| ≥

√
∆ or ri = sign(ci)

⌊
bi+
√

∆
2|ci|

⌋
for |ci| <√

∆ with i ≥ 0. Then the reduction of F is ρi+1(F ) = (ci,−bi + 2ciri, cir
2
i −

biri+ai). Then the proper cycle of F is the sequence (ρi(G)) for i ∈ Z, where
G is a reduced form which is properly equivalent to F and the cycle of F is
the sequence ((τρ)i(G)) for i ∈ Z, where G = (A,B,C) is a reduced form with
A > 0 which is equivalent to F for τ(F ) = (−a, b,−c). The cycle of a reduced

integral form F is computed as follows: Let F0 = F , si =
⌊
bi+
√

∆
2|ci|

⌋
and let

Fi+1 =
(
|ci|, −bi + 2si|ci|, −ai − bisi − cis2

i

)
.

Then the cycle of F is F0 ∼ F1 ∼ F2 ∼ · · · ∼ Fl−1 of length l. If l is odd, then
the proper cycle of F is F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ · · · ∼ τ(Fl−2) ∼ Fl−1 ∼
τ(F0) ∼ F1 ∼ τ(F2) ∼ · · · ∼ Fl−2 ∼ τ(Fl−1) of length 2l and if l is even, then
the proper cycle of F is F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ · · · ∼ Fl−2 ∼ τ(Fl−1) of
length l (for further details see [2–4]).
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Mollin considered the arithmetic of ideals in his book [6]. Let D 6= 1 be
a square–free integer and let ∆ = 4D

r2 , where r = 2 if D ≡ 1(mod 4) or r = 1
otherwise. Then ∆ is called a fundamental discriminant with fundamental
radicand D. If we set K = Q(

√
D), then K is called a real quadratic number

field of discriminant ∆. Thus, there is one–to–one correspondence between
quadratic fields and square–free rational integers D 6= 1. A complex number is
an algebraic integer if it is the root of a monic polynomial with coefficients
in Z. The set of all algebraic integers in the complex field C is a ring which
we denote by A. Therefore A∩K = O∆ is the ring of integers of the quadratic
field K of discriminant ∆.

A real number γ is called a quadratic irrational associated with the

radicand D, if γ can be written as γ = P+
√
D

Q , where P,Q,D ∈ Z, D > 0, Q 6= 0

and P 2 ≡ D(mod Q). We denote the continued fraction expansion of γ
by γ = [m0; m1,m2, · · · , γi], where (for i ≥ 0 and γ = γ0, P0 = P,Q0 = Q) we

recursively define γi = Pi+
√
D

Qi
,

(1.5) mi =

⌊
Pi +

√
D

Qi

⌋
, Pi+1 = miQi − Pi and Qi+1 =

D − P 2
i+1

Qi
.

An infinite simple continued fraction γ is called periodic if γ=[m0;m1,m2, · · ·],
where mn = mn+l for all n ≥ k with k, l ∈ N. In this case we use the notation
[m0;m1,m2, · · · ,mk−1;mk,mk+1, · · · ,ml+k−1]. An infinite simple continued
fraction γ is called purely periodic if γ = [m0;m1, · · · ,ml−1] with period
length l. If γ is a quadratic irrational, then Iγ = [Q,P +

√
D] is a quadratic

ideal and its cycle is Iγ0 ∼ Iγ1 ∼ · · · ∼ Iγl−1
of length l.

In [8], Mollin considered the Jocabi symbols, ambiguous ideals and con-
tinued fractions. In [9], Mollin and Cheng derived some results on palindromy
and ambiguous ideals. In [10], we considered the proper cycles of a reduced
form F and its right neighbors. We proved that the proper cycle of a reduced
form F can be given by its consecutive right neighbors, namely,

Lemma 1.1 ([10, Theorem 2.1]). Let F0 ∼ F1 ∼ · · · ∼ Fl−1 be the cycle of
a reduced form F of length l, and let Ri(F0) be the consecutive right neighbors
of F = F0 for i ≥ 0. Then

(1) If l is odd, then the proper cycle of F is F0 ∼ R1(F0) ∼ · · · ∼ R2l−2(F0) ∼
R2l−1(F0) of length 2l.

(2) If l is even, then the proper cycle of F is F0 ∼ R1(F0) ∼ · · · ∼ Rl−2(F0) ∼
Rl−1(F0) of length l.

Later in [11], the present author and collaborators considered the same
problem for the left neighbors and proved that
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Lemma 1.2 (11, Theorem 4). Let F0 ∼ F1 ∼ · · · ∼ Fl−1 be the cycle of a
reduced form F of length l, and let Li(F0) be the consecutive left neighbors of
F = F0 for i ≥ 0. Then

(1) If l is odd, then the proper cycle of F is F0 ∼ L2l−1(F0) ∼ · · · ∼ L2(F0) ∼
L1(F0) of length 2l.

(2) If l is even, then the proper cycle of F is F0 ∼ Ll−1(F0) ∼ · · · ∼ L2(F0) ∼
L1(F0) of length l.

Now let p be a prime number such that p ≡ 1(mod 4). Let γ =
P+
√
p

Q
be a quadratic irrational, let Iγ = [Q,P +

√
p] be a quadratic ideal and let

Fγ = (Q, 2P,−Q) be an indefinite quadratic form of discriminant ∆ = 4p for
some positive integers P and Q depending on p. In the present paper, we
demonstrate

(1) how to use the cycle of Iγ to determine the left and right neighbors of
Fγ .

(2) how to use the continued fraction expansion of γ to determine

• the continued fraction expansion of
√
p,

• the set of proper automorphisms of Fγ ,

• the fundamental solution of the Pell equation x2 − py2 = ±1,

• the set of all positive integer solutions of the equation x2−py2 = ±p.
Recall that the equation

(1.6) x2 − dy2 = ±n

is called a norm–form equation since N(x + y
√
d) = x2 − dy2 is called the

norm of x + y
√
d, where d is any positive non–square integer and n is any

fixed integer. When n = 1, (1.6) is known as the Pell equation after John
Pell (1611–1685), who actually had little to do with its solution. The Pell
equation x2 − dy2 = ±1 has infinitely many integer solutions. (In particular,
x2 − dy2 = −1 has infinitely many solutions when the length of the continued
fraction expansion of

√
d is odd). The first non–trivial positive integer solutions

(x1, y1) is called the fundamental solution from which all integer solutions
can be derived. Namely, if (x1, y1) is the fundamental solution of x2−dy2 = 1,
then the other solutions are (xn, yn), where xn + yn

√
d = (x1 + y1

√
d)n for

n ≥ 1 and if (x1, y1) is the fundamental solution of x2 − dy2 = −1, then the
other solutions are (x2n+1, y2n+1), where x2n+1 + y2n+1

√
d = (x1 + y1

√
d)2n+1

for n ≥ 0 (see [1, 5, 7]).

Let α = [q0; q1, · · · , ql] for l ∈ N be a finite continued fraction expansion.
Define two sequences A−2 = 0, A−1 = 1, Ak = qkAk−1 + Ak−2 and B−2 =
1, B−1 = 0, Bk = qk Bk−1 + Bk−2 for a nonnegative integer k. Then Ck =
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Ak
Bk

is the kth convergent of α for any nonnegative integer k ≤ l. Then the
fundamental solution is given below.

Lemma 1.3 ([7, Corollary 5.7]). If D > 0 is not a perfect square and√
D has continued fraction expansion of period length l, then the fundamental

solution of x2 − Dy2 = 1 is given by (x1, y1) = (Al−1, Bl−1) if l is even or
(A2l−1, B2l−1) if l is odd. If l is odd, then the fundamental solution of x2 −
Dy2 = −1 is given by (x1, y1) = (Al−1, Bl−1).

2. MAIN RESULTS

Let p be a prime number such that p ≡ 1(mod 4). Then it is known
that p can be written of the form p = a2 + b2, where a is odd, b is even and
a+ b ≡ 1(mod 4). Now we set

(2.1) P = b,Q = |a| and D = p.

Then

(2.2) γ =
P +

√
p

Q

is a quadratic irrational since P 2 ≡ p (mod Q), and so

(2.3) Iγ = [Q,P +
√
p]

is a quadratic ideal and

(2.4) Fγ(x, y) = Q(x+ γy)(x+ γy) = Qx2 + 2Pxy −Qy2

is an indefinite quadratic form of discriminant ∆ = 4p. Here we note that for
some values of p, we have Q = 1; but for some values of p, we have Q 6= 1.
(For instance, for p = 13, we have P = 2, Q = 3, but for p = 17, we have
P = 4, Q = 1). Therefore, we will consider all results in two cases: Q 6= 1 or
Q = 1.

Theorem 2.1. Let Iγ be the ideal in (2.3).

(1) If Q 6= 1, then the cycle of Iγ is

Iγ0 = [Q0, P0 +
√
p] ∼ Iγ1 = [Q1, P1 +

√
p] ∼ Iγ2 = [Q2, P2 +

√
p] ∼ · · · ∼

Iγ l−3
2

= [Q l−3
2
, P l−3

2
+
√
p] ∼ Iγ l−1

2

= [Q l−1
2
, P l−1

2
+
√
p] ∼

Iγ l+1
2

= [Q l−3
2
, P l−1

2
+
√
p] ∼ Iγ l+3

2

= [Q l−5
2
, P l−3

2
+
√
p] ∼ · · · ∼

Iγl−2
= [Q1, P2 +

√
p] ∼ Iγl−1

= [Q0, P1 +
√
p]

of length l.

(2) If Q = 1, then the cycle of Iγ is Iγ0 = [1, P0 +
√
p] of length 1.
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Proof. (1) Let Q 6= 1. Then from (1.5), we deduce the values in Table 1.

TABLE 1

Cycle of Iγ

i 0 1 · · · l−3
2

l−1
2

l+1
2

l+3
2

· · · l − 2 l − 1

Pi P0 P1 · · · P l−3
2

P l−1
2

P l−1
2

P l−3
2

· · · P2 P1

Qi Q0 Q1 · · · Q l−3
2

Q l−1
2

Q l−3
2

Q l−5
2

· · · Q1 Q0

mi m0 m1 · · · m l−3
2

m l−1
2

m l−3
2

m l−5
2

· · · m1 m0

So the the cycle of Iγ is

Iγ0 = [Q0, P0 +
√
p] ∼ Iγ1 = [Q1, P1 +

√
p] ∼ Iγ2 = [Q2, P2 +

√
p] ∼ · · · ∼

Iγ l−3
2

= [Q l−3
2
, P l−3

2
+
√
p] ∼ Iγ l−1

2

= [Q l−1
2
, P l−1

2
+
√
p] ∼

Iγ l+1
2

= [Q l−3
2
, P l−1

2
+
√
p] ∼ Iγ l+3

2

= [Q l−5
2
, P l−3

2
+
√
p] ∼ · · · ∼

Iγl−2
= [Q1, P2 +

√
p] ∼ Iγl−1

= [Q0, P1 +
√
p]

of length l.

(2) Let Q = 1. Then from (1.5), we get m0 = 2P and hence P1 = P = P0

and Q1 = 1 = Q0. So the cycle of Iγ is Iγ0 = [1, P0 +
√
p] of length 1. �

Note that in Lemma 1.1, we proved that the proper cycle of a reduced
form F can be given by its consecutive right neighbors and in Lemma 1.2,
we showed that the proper cycle of a reduced form F can be given by its
consecutive left neighbors. Now by virtue of Theorem 2.1, we show that the
right and left neighbors of Fγ can be obtained from the cycle of Iγ as follows.

Theorem 2.2. Let Iγ = Iγ0 ∼ Iγ1 ∼ · · · ∼ Iγl−1
be the cycle of Iγ of

length l.

(1) If Q 6= 1, then the right neighbors of Fγ in (2.4) are

R1(Fγ), R2(Fγ), · · · , Rl−1(Fγ), Rl(Fγ), Rl+1(Fγ), · · · , R2l−1(Fγ),

where

Ri(Fγ) = ((−1)i+2Qi−1, 2Pi, (−1)i+1Qi) for 1 ≤ i ≤ l − 1

Rl(Fγ) = (−Q0, 2P0, Q0)

Rl+i(Fγ) = ((−1)i+1Qi−1, 2Pi, (−1)i+2Qi) for 1 ≤ i ≤ l − 1

and the left neighbors of Fγ are

L1(Fγ), L2(Fγ), · · · , Ll−1(Fγ), Ll(Fγ), Ll+1(Fγ), · · · , L2l−1(Fγ),
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where

Li(Fγ) = ((−1)i+2Qi, 2Pi, (−1)i+1Qi−1) for 1 ≤ i ≤ l − 1

Ll(Fγ) = (−Q0, 2P0, Q0)

Ll+i(Fγ) = ((−1)i+1Qi, 2Pi, (−1)i+2Qi−1) for 1 ≤ i ≤ l − 1.

(2) If Q = 1, then Fγ has one right and one left neighbor and they are same,
that is R1(Fγ) = L1(Fγ) = (−1, 2P, 1).

Proof. (1) Let Q 6= 1 and let Fγ = Fγ0 = (Q0, 2P0,−Q0). Then for the
first right neighbor R1(Fγ) = (A,B,C), we have A = −Q0. Also B + 2P0 ≡
0(mod Q0) is satisfied for B = 2P1 in the range

√
4(P 2

0 +Q2
0) − 2Q0 < B <√

4(P 2
0 +Q2

0) and hence C = Q1, that is, R1(Fγ) = (−Q0, 2P1, Q1). Similarly,
we get

R2(Fγ) = (Q1, 2P2,−Q2), R3(Fγ) = (−Q2, 2P3, Q3), · · · ,
Rl−1(Fγ) = (Ql−2, 2Pl−1,−Ql−1), Rl(Fγ) = (−Q0, 2P0, Q0),

Rl+1(Fγ) = (Q0, 2P1,−Q1), · · · , R2l−1(Fγ) = (−Ql−2, 2Pl−1, Ql−1),

R2l(Fγ) = (Q0, 2P0,−Q0) = Fγ .

Applying (1.4), the first left neighbor of Fγ is

L1(Fγ) =

[
0 1
1 0

]
R(−Q0, 2P0, Q0) = (−Q1, 2P1, Q0).

Similarly, we find that

L2(Fγ) = (Q2, 2P2,−Q1), · · · , Ll−2(Fγ) = (−Ql−2, 2Pl−2, Ql−3),

Ll−1(Fγ) = (Ql−1, 2Pl−1,−Ql−2), Ll(Fγ) = (−Q0, 2P0, Q0),

Ll+1(Fγ) = (Q1, 2P1,−Q0), · · · , L2l−1(Fγ) = (−Ql−1, 2Pl−1, Ql−2),

L2l(Fγ) = (Q0, 2P0,−Q0) = Fγ

as we wanted.
(2) Let Q = 1. Then R1(Fγ) = (−1, 2P, 1), R2(Fγ) = (1, 2P,−1) =

Fγ , L
1(Fγ) = (−1, 2P, 1), L2(Fγ) = (1, 2P,−1) = Fγ . So Fγ has one right and

one left neighbor and they are same, namely, R1(Fγ) = L1(Fγ) = (−1, 2P, 1). �

Example 2.3. Let p = 13. Then the cycle of Iγ = [3, 2 +
√

13] is Iγ0 =
[3, 2+

√
13] ∼ Iγ1 = [4, 1 +

√
13] ∼ Iγ2 = [1, 3 +

√
13] ∼ Iγ3 = [4, 3 +

√
13] ∼

Iγ4 = [3, 1 +
√

13] of length 5. So the right neighbors of Fγ = (3, 4,−3) are

R1(Fγ) = (−3, 2, 4), R2(Fγ) = (4, 6,−1), R3(Fγ) = (−1, 6, 4),

R4(Fγ) = (4, 2,−3), R5(Fγ) = (−3, 4, 3), R6(Fγ) = (3, 2,−4),

R7(Fγ) = (−4, 6, 1), R8(Fγ) = (1, 6,−4), R9(Fγ) = (−4, 2, 3)
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and the left neighbors of Fγ are

L1(Fγ) = (−4, 2, 3), L2(Fγ) = (1, 6,−4), L3(Fγ) = (−4, 6, 1),

L4(Fγ) = (3, 2,−4), L5(Fγ) = (−3, 4, 3), L6(Fγ) = (4, 2,−3),

L7(Fγ) = (−1, 6, 4), L8(Fγ) = (4, 6,−1), L9(Fγ) = (−3, 2, 4).

Here, we note that R5(Fγ) = L5(Fγ) = (−3, 4, 3).

From Theorem 2.2, we can give the following result.

Corollary 2.4. If Q 6= 1, then we have

(1) Ri(Fγ) = τ(Ri−l(Fγ)) and Li(Fγ) = τ(Li−l(Fγ)) for l ≤ i ≤ 2l − 1.

(2) Ri(Fγ) = L2l−i(Fγ) for 1 ≤ i ≤ 2l − 1 and so the lth right and left
neighbors of Fγ are the same, that is, Rl(Fγ) = Ll(Fγ) = (−Q0, 2P0, Q0).

For the second part of this work, we can give the following results.

Theorem 2.5. Let γ be the quadratic irrational in (2.2).

(1) If Q 6= 1, then the continued fraction expansion of γ is

[m0,m1,m2, · · · ,m l−3
2
,m l−1

2
,m l−3

2
, · · · ,m2,m1,m0]

of length l and the continued fraction expansion of
√
p is[m l−1

2

2
;m l−3

2
,m l−5

2
, · · · ,m1,m0,m0,m1, · · · ,m l−3

2
,m l−1

2

]
of length l.

(2) If Q = 1, then the continued fraction expansion of γ is [2P ] of length 1
and the continued fraction expansion of

√
p is [P ; 2P ] of length 1.

Proof. (1) Let Q 6= 1. Then from Table 1, we easily seen that the con-
tinued fraction expansion of γ is [m0,m1, · · · ,m l−3

2
,m l−1

2
,m l−3

2
, · · · ,m1,m0].

Notice that
⌊√

p
⌋

=
m l−1

2
2 . So we get

√
p =

m l−1
2

2
+

(
√
p−

m l−1
2

2

)
=
m l−1

2

2
+

1

√
p+

ml−1
2

2

p−
(
ml−1

2
2

)2

=
m l−1

2

2
+

1

m l−3
2

+

√
p+

ml−1
2

2
−m l−3

2

p−(ml−1
2

2

)2


p−
(
ml−1

2
2

)2

= · · ·
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=
m l−1

2

2
+

1

m l−3
2

+

√
p+

ml−1
2

2
−m l−3

2

p−(ml−1
2

2

)2


p−
(
ml−1

2
2

)2

=
m l−1

2

2
+

1

m l−3
2

+ 1
ml−5

2 + 1

· · ·

+m l−1
2

+

(
√
p−

m l−1
2

2

)
.

Hence
√
p=

[
m l−1

2
2 ;m l−3

2
,m l−5

2
, · · · ,m1,m0,m0,m1, · · · ,m l−3

2
,m l−1

2

]
of length l.

(2) Let Q = 1. Then m0 = 2P, P1 = P = P0 and Q1 = 1 = Q0, we get
γ = [2P ]. Also since p = P 2 + 1, we get

√
p = P + (

√
p− P ) = P +

1
√
p+P

p−P 2

= P +
1

2P + (
√
p− P )

,

that is,
√
p =

[
P ; 2P

]
of length 1 as we claimed. �

Remark 2.6. We note in (2.1) that, we take P = b and Q = |a|. If we take
P = |a| and Q = b, then we cannot deduce the continued fraction expansion
of
√
p from the continued fraction expansion of γ. Indeed, for p = 73, we have

γ =

{
[5, 1, 1, 16, 1, 1, 5] ifP = 8, Q = 3
[1, 2, 3, 1, 7, 1, 3, 2, 1] if P = 3, Q = 8.

Note that
√

73 = [8; 1, 1, 5, 5, 1, 1, 16]. Similarly for p = 137, we have

γ =

{
[1, 2, 2, 1, 22, 1, 2, 2, 1] if P = 4, Q = 11
[5, 1, 2, 11, 2, 1, 5] if P = 11, Q = 4.

But
√

137 = [11; 1, 2, 2, 1, 1, 2, 2, 1, 22]. So that is why we take P = b and
Q = |a|.

We can deduce the set of proper automorphisms of Fγ in (2.4) by using
the continued fraction expansion of γ. For the matrix defined in (1.2), we set

T (δ) =

[
0 −1
1 −δ

]−1

=

[
−δ 1
−1 0

]
and define gF,n = T (δ0)T (δ1) · · ·T (δn−1), where δ is defined in (1.3). Then we
can give the following theorem.
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Theorem 2.7. Let the continued fraction expansion of γ be as in Theo-
rem 2.5.

(1) If Q 6= 1, then the set of proper automorphisms of Fγ is

Aut+(Fγ) = {±(gFγ ,2l)
t : t ∈ Z},

where

gFγ ,2l =

2l−1∏
i=0

T (δi) and δi =

{
(−1)i+1mi for 0 ≤ i ≤ l − 1
(−1)i−lmi−l for l ≤ i ≤ 2l − 1.

(2) If Q = 1, then the set of proper automorphisms of Fγ is

Aut+(Fγ) = {±(gFγ ,2)t : t ∈ Z},

where

gFγ ,2 =

[
−4P 2 − 1 2P

2P −1

]
.

Proof. (1) Let Q 6= 1. We proved in Theorem 2.2 that Ri(Fγ) =
((−1)i+2Qi−1, 2Pi, (−1)i+1Qi), R

l+i(Fγ) = ((−1)i+1Qi−1, 2Pi, (−1)i+2Qi) for
1 ≤ i ≤ l − 1 and Rl(Fγ) = (−Q0, 2P0, Q0), δi = (−1)i+1si for 0 ≤ i ≤ l − 1
and δi = (−1)i−lsi−l for l ≤ i ≤ 2l − 1. For the form Fi = (Qi, 2Pi,−Qi) of
discriminant ∆ = 4p, we have

si =

⌊
bi +
√

∆

2|ci|

⌋
=

⌊
2Pi +

√
4p

2| −Qi|

⌋
=

⌊
Pi +

√
p

Qi

⌋
= mi.

So δi = (−1)i+1mi for 0 ≤ i ≤ l − 1 and δi = (−1)i−lmi−l for l ≤ i ≤ 2l − 1.
Thus gF,2l = T (δ0)T (δ1) · · ·T (δ2l−1) by [4, Theorem 9.4] since R2l(Fγ) = Fγ .
Therefore, the set of proper automorphisms of Fγ is Aut+(Fγ) = {±(gFγ ,2l)

t :
t ∈ Z}.

(2) Let Q = 1. Since R2(Fγ) = Fγ for Fγ = (1, 2P,−1), we get

gF,2 = T (δ0)T (δ1) =

[
−4P 2 − 1 2P

2P −1

]
and hence Aut+(Fγ) = {±(gFγ ,2)t : t ∈ Z}. �

Example 2.8. 1) Let p = 13. Then γ = 2+
√

13
3 = [1, 1, 6, 1, 1]. So

gFγ ,10 =
9∏
i=0

T (δi) =

[
−1009 540

540 −289

]
.

Hence Aut+(Fγ) = {±(gFγ ,10)t : t ∈ Z} for Fγ = (3, 4,−3).
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2) Let p = 73. Then γ = 8+
√

73
3 = [5, 1, 1, 16, 1, 1, 5]. So

gFγ ,14 =

13∏
i=0

T (δi) =

[
−4417249 801000

801000 −145249

]
.

Hence Aut+(Fγ) = {±(gFγ ,14)t : t ∈ Z} for Fγ = (3, 16,−3).

3) Let p = 17. Then γ = 4 +
√

17 = [8]. So

gF,2 = T (δ0)T (δ1) =

[
−65 8

8 −1

]
.

Hence Aut+(Fγ) = {±(gFγ ,2)t : t ∈ Z} for Fγ = (1, 8,−1).

From Theorems 2.1 and 2.5, we can give the following result.

Corollary 2.9. If Q 6= 1, then in the cycle of Iγ, we have Qi = Ql−1−i
for 0 ≤ i ≤ l − 1 and Pi = Pl−i for 1 ≤ i ≤ l − 1, and in the continued faction
expansion of γ, we have mi = ml−1−i for 0 ≤ i ≤ l − 1.

Now we can consider the Pell equations. Recall that the fundamental
solution of the Pell equation

x2 − py2 = ±1

is very important to find all other integer solutions. In the following theorem,
we prove that the fundamental solution of the Pell equation can be obtained
from the continued fraction expansion of γ.

Theorem 2.10. Let the continued fraction expansion of γ be as in Theo-
rem 2.5.

(1) If Q 6= 1, then the fundamental solution of x2−py2 = 1 is (A2l−1, B2l−1),
where

A2l−1 +B2l−1
√
p =

2l−1∏
i=0

γi

and the fundamental solution of x2 − py2 = −1 is (Al−1, Bl−1), where

Al−1 +Bl−1
√
p =

l−1∏
i=0

γi.

(2) If Q = 1, then the fundamental solution of x2 − py2 = 1 is (x1, y1) =
(2P 2 +1, 2P ) and the fundamental solution of x2−py2 = −1 is (x1, y1) =
(P, 1).
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Proof. First we note that N(γi) =
P 2
i −p
Q2
i

=
−Q2

i

Q2
i

= −1 for γi =
Pi+
√
p

Qi
.

Therefore

N(

2l−1∏
i=0

γi) = N(γ0)N(γ1) · · ·N(γ2l−1) = (−1)2l = 1.

(1) Let Q 6= 1. Then from Theorem 2.5, the continued fraction expansion of√
p is [m l−1

2

2
;m l−3

2
, · · · ,m1,m0,m0,m1, · · · ,m l−3

2
,m l−1

2

]
.

Since l is odd, the fundamental solution of x2−py2 = 1 is (x1, y1) = (A2l−1, B2l−1)

by Lemma 1.3. On the other hand, it can be easily seen that
2l−1∏
i=0

γi =

A2l−1 +B2l−1
√
p. Similarly, it can be shown that

l−1∏
i=0

γi = Al−1 +Bl−1
√
p.

(2) Let Q = 1. Since
√
p =

[
P ; 2P

]
, we get A0 = P,A1 = 2P 2 +1, B0 = 1

and B1 = 2P . So the result is obvious. �

Example 2.11. 1) Let p = 53. Since
√

53 = [7; 3, 1, 1, 3, 14], we get A4 =
182, A9 = 66249, B4 = 25 and B9 = 9100. So the fundamental solution of
x2 − 53y2 = 1 is (x1, y1) = (66249, 9100) and the fundamental solution of
x2 − 53y2 = −1 is (x1, y1) = (182, 25). Note that

9∏
i=0

γi = 66249 + 9100
√

53 and

4∏
i=0

γi = 182 + 25
√

53

for γ = 2+
√

53
7 = [1, 3, 14, 3, 1].

2) Let p = 113. Since
√

113 = [10; 1, 1, 1, 2, 2, 1, 1, 1, 20], we get A8 =
776, A17 = 1204353, B8 = 73, B17 = 113296. So the fundamental solution of
x2− 113y2 = 1 is (x1, y1) = (1204353, 113296) and the fundamental solution of
x2 − 113y2 = −1 is (x1, y1) = (776, 73). Note that

17∏
i=0

γi = 1204353 + 113296
√

113 and
8∏
i=0

γi = 776 + 73
√

113

for γ = 8+
√

113
7 = [2, 1, 1, 1, 20, 1, 1, 1, 2].

3) Let p = 101. Then
√

101 = [10; 20] and hence A0 = 10, A1 = 201, B0 =
1, B1 = 20. Therefore the fundamental solution of x2− 101y2 = 1 is (x1, y1) =
(201, 20) and the fundamental solution of x2−101y2 = −1 is (x1, y1) = (10, 1).

Also
1∏
i=0

γi = 201 + 20
√

101 and
0∏
i=0

γi = 10 +
√

101 for γ = 10 +
√

101 = [20].
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For an integral quadratic form F , we set

Aut∗(F ) = {g ∈ GL(2,Z) : gF = −F with det(g) = −1}.

From above theorem, we can give the following result.

Theorem 2.12. Let Fγ be the form defined in (2.4) and let Al−1, Bl−1 be
as in Theorem 2.10.

(1) If Q 6= 1, then Aut∗(Fγ) = {±(g∗γ)2t+1 : t ∈ Z}, where

g∗γ =

[
Al−1 − PBl−1 QBl−1

QBl−1 Al−1 + PBl−1

]
.

(2) If Q = 1, then Aut∗(Fγ) = {±(g1∗
γ )2t+1 : t ∈ Z}, where

g1∗
γ =

[
0 1
1 2P

]
.

Proof. (1) Let Q 6= 1. First we note that

det(g∗γ) = (Al−1 − PBl−1)(Al−1 + PBl−1)− (QBl−1)2

= A2
l−1 − (P 2 +Q2)B2

l−1

= A2
l−1 − pB2

l−1

= −1

since (Al−1, Bl−1) is the fundamental solution of the Pell equation x2 − py2 =
−1. From (1.1), we get

g∗γFγ = Fγ((Al−1 − PBl−1)x+QBl−1y,QBl−1x+ (Al−1 + PBl−1)y)

= Q((Al−1 − PBl−1)x+QBl−1y)2 + 2P ((Al−1 − PBl−1)x+QBl−1y)

× (QBl−1x+ (Al−1 + PBl−1)y)−Q(QBl−1x+ (Al−1 + PBl−1)y)2

= x2
{
Q(Al−1 − PBl−1)2 + 2PQBl−1(Al−1 − PBl−1)−Q3B3

l−1

}
+ xy

{
2Q2Bl−1(Al−1 − PBl−1) + 2P (Al−1 − PBl−1)×

(Al−1 + PBl−1) + 2PQ2B2
l−1 − 2Q2Bl−1(Al−1 + PBl−1)

}
+ y2

{
Q3B2

l−1 + 2PQBl−1(Al−1 + PBl−1)−Q(Al−1 + PBl−1)2
}

= (A2
l−1 − pB2

l−1)(Qx2 + 2Pxy −Qy2)

= −Qx2 − 2Pxy +Qy2

= −Fγ(x, y).

So g∗γ ∈ Aut∗(Fγ). It can be proved by induction on t that ±(g∗γ)2t+1 ∈
Aut∗(Fγ) for t ∈ Z. So Aut∗(Fγ) = {±(g∗γ)2t+1 : t ∈ Z}.

Statement (2) can be proved similarly. �
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Remark 2.13. (1) In the above theorem, we note that odd powers of g∗γ
are the elements of Aut∗(Fγ), that is, Aut∗(Fγ) = {±(g∗γ)2t+1 : t ∈ Z}. In fact,
even powers of g∗γ are the proper automorphisms of Fγ .

(2) There is a connection between gFγ ,2l and g∗γ and also gFγ ,2 and g1∗
γ

obtained in Theorems 2.7 and 2.12 which is given below.

Theorem 2.14. For the matrices gFγ ,2l, g
∗
γ and gFγ ,2, g

1∗
γ , we have

−(g∗γ)−2 = gFγ ,2l and − (g1∗
γ )−2 = gFγ ,2.

Proof. For g∗γ , we easily have

−(g∗γ)−2 =

[
−A2

l−1 − pB2
l−1 − 2PAl−1Bl−1 2QAl−1Bl−1

2QAl−1Bl−1 −A2
l−1 − pB2

l−1 + 2PAl−1Bl−1

]
.

On the other hand, it can be proved by induction on l that

gFγ ,2l =

[
−A2

l−1 − pB2
l−1 − 2PAl−1Bl−1 2QAl−1Bl−1

2QAl−1Bl−1 −A2
l−1 − pB2

l−1 + 2PAl−1Bl−1

]
.

So −(g∗γ)−2 = gFγ ,2l. Similarly for g1∗
γ , we have

−(g1∗
γ )−2 =

[
−4P 2 − 1 2P

2P −1

]
= gFγ ,2

as we wanted. �

Example 2.15. Let p = 13. Then

gFγ ,10 =

[
−1009 540

540 −289

]
and g∗γ =

[
8 15
15 28

]
.

Here −(g∗γ)−2 = gFγ ,10. Let p = 73. Then

gFγ ,14 =

[
−4417249 801000

801000 −145249

]
and g∗γ =

[
68 375
375 2068

]
.

Again −(g∗γ)−2 = gFγ ,14.

Finally, we can consider the equation

x2 − py2 = ±p.

Before considering all integer solutions we need some notations: Let ∆ be
a non–square discriminant. Then the ∆−order O∆ is defined for non–square

discriminants ∆ to be the ring O∆ = {x + yρ∆ : x, y ∈ Z}, where ρ∆ =
√

∆
4

if ∆ ≡ 0(mod 4) or ρ∆ = 1+
√

∆
2 if ∆ ≡ 1(mod 4). So O∆ is a subring of

Q(
√

∆) ={x+ y
√

∆ : x, y ∈ Q}. The unit group O∗∆ is defined for non–square
discriminants ∆ to be the group of units of the ring O∆.



15 Indefinite quadratic forms and Pell equations involving quadratic ideals 277

The module MF of an integral form F is MF = {xa + y b+
√

∆
2 : x, y ∈

Z} ⊂ Q(
√

∆). So we get (u+ vρ∆)(xa+ y b+
√

∆
2 ) = x′a+ y′ b+

√
∆

2 , where

(2.5) [x′ y′] =


[x y]

[
u− b

2v av

−cv u+ b
2v

]
if ∆ ≡ 0(mod 4)

[x y]

[
u+ 1−b

2 v av

−cv u+ 1+b
2 v

]
if ∆ ≡ 1(mod 4).

Therefore, there is a bijection

Ψ : Ω = {(x, y) : F (x, y) = m} → {γ ∈MF : N(γ) = am}

for solving the equation F (x, y) = m. The action of O∗∆,1 = {α ∈ O∗∆ : N(α) =
1} on the set Ω is the most interesting when ∆ is a positive non–square since
O∗∆,1 is infinite. So the orbit of each solution will then be infinite and hence
the set Ω is either empty or infinite. Since O∗∆,1 can be explicitly determined,
Ω is satisfactorily described by the representation of such a list, called a set
of representatives of the orbits. Let ε∆ be the smallest unit of O∆ that
is greater than 1 and let τ∆ = ε∆ if N(ε∆) = 1; or ε2

∆ if N(ε∆) = −1.
Then every O∗∆,1 orbit of integral solutions of F (x, y) = m contains a solution

(x, y) ∈ Z2 such that 0 ≤ y ≤ U , where U =
∣∣amτ∆

∆

∣∣ 1
2 (1 − 1

τ∆
) if am > 0 or

U =
∣∣amτ∆

∆

∣∣ 1
2 (1 + 1

τ∆
) if am < 0. So for finding a set of representatives of the

O∗∆,1 orbits of F (x, y) = m, we must determine for which values of y, ∆y2+4am

is a perfect square in the range 0 ≤ y ≤ U since ∆y2 + 4am = (2ax+ by)2.

We note that we can determine A2l−1 and B2l−1 in Theorem 2.10 from
the continued fraction expansion of γ. Thus we can give the following theorem.

Theorem 2.16. For the Pell equation x2 − py2 = ±p, we have

(1) If Q 6= 1, then the set of all positive integer solutions of x2 − py2 = p is
Ω = {(xn, yn)}, where

[xn yn] = [
√
p(U2 + 1) − U ]Mn

for n ≥ 1, and the set of all positive integer solutions of x2 − py2 = −p
is Ω = {(xn, yn)}, where

[xn yn] = [0 1]Mn

for n ≥ 1 with M =

[
A2l−1 B2l−1

pB2l−1 A2l−1

]
.

(2) If Q = 1, then the set of all positive integer solutions of x2 − py2 = p is
Ω = {(xn, yn)}, where

[xn yn] = [p − P ]Mn

for n ≥ 1, and the set of all positive integer solutions of x2 − py2 = −p
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is Ω = {(xn, yn)}, where

[xn yn] = [0 1]Mn

for n ≥ 1 with M =

[
2P 2 + 1 2P

2P 3 + 2P 2P 2 + 1

]
.

Proof. (1) Let Q 6= 1. Then we proved in Theorem 2.10 that the funda-
mental solution x2 − py2 = ±1 can be obtained from the continued fraction
expansion of γ, that is, we can determine the integers A2l−1 and B2l−1 depen-
ding on γ. For the equation x2 − py2 = p, we have τ∆ = A2l−1 + B2l−1

√
p

and ∆y2 + 4am = 4p(y2 + 1) is a square only for y = U in the range

0 ≤ y ≤ U , where U = 1
2
A2l−1−1+B2l−1

√
p√

A2l−1+B2l−1
√
p
. So x = ±

√
p(U2 + 1) and hence

{[±
√
p(U2 + 1) U ]} is a set of representatives and thus [

√
p(U2 + 1) −U ]Mn

generates the solutions (xn, yn) for n ≥ 1, where M is defined as above. So the
set of all positive integer solutions of x2 − py2 = p is Ω = {(xn, yn)}, where
[xn yn] = [

√
p(U2 + 1) − U ]Mn for n ≥ 1. For the equation x2 − py2 = −p,

we see that {[0 1]} is a set of representatives and [0 1]Mn generates the
solutions (xn, yn) for n ≥ 1. Thus the set of all positive integer solutions of
x2 − py2 = −p is Ω = {(xn, yn)}, where [xn yn] = [0 1]Mn for n ≥ 1.

(2) Let Q = 1. Then for the equation x2 − py2 = p, we have τ∆ =
2P 2 + 1 + 2P

√
p and in the range 0 ≤ y ≤ P , ∆y2 + 4am is a square only

for y = P . Hence we get x = ±p. So {[±p P ]} is a set of representatives
and [p − P ]Mn generates the solutions (xn, yn) for n ≥ 1, where M is defined
as above. For the equation x2 − py2 = −p, we see that {[0 1]} is a set of
representatives and [0 1]Mn generates the solutions (xn, yn) for n ≥ 1. This
completes the proof. �

Example 2.17. 1) Let p = 73. Then A13 = 2281249, B13 = 267000 and
hence U = 1068. In the range 0 ≤ y ≤ 1068, 292(y2 + 1) is square only for
y = 1068 and hence x = ±9125. So {[±9125 1068]} is a set of representatives.
Therefore, the set of all positive integer solutions of x2 − 73y2 = 73 is Ω =
{(xn, yn)}, where

[xn yn] = [9125 − 1068]

[
2281249 267000
19491000 2281249

]n
for n ≥ 1. For the equation x2 − 73y2 = −73, 292(y2 − 1) is square only for
y = 1 in the range 0 ≤ y ≤ 1068 and hence x = 0. So {[0 1]} is a set of
representatives. So the set of all positive integer solutions of x2 − 73y2 = −73
is Ω = {(xn, yn)}, where

[xn yn] = [0 1]

[
2281249 267000
19491000 2281249

]n
for n ≥ 1.
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2) Let p = 37. Then in the range 0 ≤ y ≤ 6, 148(y2 +1) is square only for
y = 6 and hence x = ±37. So {[±37 6]} is a set of representatives. Therefore,
the set of all positive integer solutions of x2 − 37y2 = 37 is Ω = {(xn, yn)},
where

[xn yn] = [37 − 6]

[
73 12
444 73

]n
for n ≥ 1. For the equation x2 − 37y2 = −37, 148(y2 − 1) is square only
for y = 1 in the range 0 ≤ y ≤ 6 and hence x = 0. So {[0 1]} is a set of
representatives. Thus Ω = {(xn, yn)}, where

[xn yn] = [0 1]

[
73 12
444 73

]n
for n ≥ 1.
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