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This paper deals with the following weighted subelliptic p-Laplace equation
p—2

Lyu = divx ((A(J:)Xu(x),Xu(x))TA(x)Xu(x)) = g(),

where the system X = (X1, ..., X,n) satisfies Hormander’s condition, u € W'?(Q,
w), 1 < p < @, A(x) is a bounded measurable and m X m symmetric matrix
satisfying

A rw(@)PIE < (A(x)E, €) < Mw(z)*/PIE, for € € R™,

with w = w(z) being an A, function. We first establish a maximum principle
for weak solutions to the equation L,u = g with the weighted Sobolev inequality
and the extension of Moser iteration technique to the weight case. Next, the
local boundedness and the Harnack inequality for nonnegative weak solutions to
Lyu = g are proved. As an application, the Hoélder continuity for nonnegative
weak solutions is given. Unlike in many papers, we do not impose any restriction
in advance for measures of metric balls.
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1. INTRODUCTION

In this paper, we consider the following weighted subelliptic p-Laplace
equation

(1.1)  Lyu:= divx ((A(x)xu(x),Xu(x)>¥A(x)Xu(x)) = g(x),

where X = (Xq,..., X,n), Xk(k = 1,...,m) are smooth vector fields satisfying

m
Hormander’s condition. Let X be the adjoint of Xy, divxv = — > Xjvg, v=
k=1
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(V1.0 Um), 1 < p < Q. We suppose that the coefficient matrix A = (a;;(z)) is
a bounded measurable and m x m symetric matrix satisfying

(1.2) A tw(@)?P)E? < aiity < Mw¥P(x)|€) z e Q, £ eR™,

where A\ > 1 is a constant, Q@ C RY is a bounded connected domain and w is
a Muckenhoupt weight with respect to the Carnot-Carathéodory metric.

Since Hormander’s fundamental work [16], subelliptic equations construc-
ted by vector fields have received a strong impulse and today’s literature on
the subject is quite numerous (see Bony [1], Fefferman and Phong [10], Na-
gel, Stein and Wainger [22], etc.). It is generally known that Harnack ine-
qualities are an important tool for regularity research (such as Holder con-
tinuity and continuity) of elliptic equations, see Gilbarg and Trudinger [14],
Ladyzhenskaya [17], Chen and Wu [5], etc. As well Harnack inequalities of
weak solutions to subelliptic equations have received much concern. Capogna,
Danielli and Garofalo in [4] showed the Harnack inequality for quasilinear subel-
liptic equations, also refer to [18]. Lu in [20] proved the Harnack inequality for
second order weighted subelliptic homogeneous equations

(1.3) Lu:=— Y X; (ay (z) Xju) =0,
i,j=1

where A = (a;;(x)) satisfies
cTrw(@)lg] < (A8,€) < cw(@)lgl’, € €R™.

where (-, -) denotes the inner product in R™ and w € As. Recently, the Harnack
inequality of the homogeneous subelliptic p-Laplace equations (p > 2) with two
weights was given by Ferrari [11] and the Holder continuity for the subelliptic
p-Laplace equations with one weight based on [11] was proved by Cruz-Uribe,
Moen and Naibo [6]. Related papers see [7,21] for Harnack inequalities and
[8,9,26] for Holder continuities.

In this paper, we first prove the maximum principle for weak solutions
to (1.1) by virtue of the weighted Sobolev inequality in [20] and the extension
of Moser iteration technique to the weight case. Next the local boundedness
and Harnack inequality for the nonnegative weak solutions to (1.1) are derived.
The method we used here is inspired by Serrin [24], Capogna, Danielli, and
Garofalo [4] and the weighted John-Nirenberg inequality is useful. Finally, we
establish the Holder continuity for weak solutions to (1.1) provided that the
right hand term satisfies a condition related to the weighted Morrey space.

The Sobolev inequality for Hormander vector fields without weight is well
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known [13,19]:

1 i 1 5
(14 <|B\/ M de) < O’“(ww/ X 'pdﬂ’f) ’

where f € C§°(B),1 < p < Q, the exponent q € [p, Qp/(Q — p)]. Since (1.1) is
weighted, we actually need the weighted Sobolev inequality which reads [20]

9 (g f o) 5y [ )

where ¢ € [p,@Qp/(Q — 1) + J,), 6, > 0 is a constant depending on p. The
difference of ¢ in (1.4) and (1.5) leads to disparity of results and proofs between
equations without weight and with weight.

For any g(z) € [WHP(Q,w)]™!, the dual space of the weighted Sobolev
space WHP(Q, w), we say that u € WHP(Q,w) is a weak solution to (1.1) if

(1.6) /Q<A(x)Xu,Xu)p52<A(:I:)Xu,X<p(x)>de‘:/g(az)gp(w)dm

Q

for any ¢ € Wol’p(Q, w).
Now we are ready to summarize the main results in this paper.

THEOREM 1.1 (Maximum principle). Let u € WYP(B,,w) be a weak solu-

tion to (1.1) and g/w € LY(B,,w) (¢ > Q), then there exists a positive constant
C depending only on X\, p,Q,) and w, such that

(1.7) suput <supu’ + Crp%lw(B )" T
Br OB,

L9(Brw)

THEOREM 1.2 (Harnack inequality). Let u € Wl’p(Q, w) be a nonnegative
weak solution to (1.1) and g/w € LI(,w)(q > Q), then there exist positive
constants C' and Ry, such that for any 0 < R < Ry, Br = B(x, R), Byr C Q,
we have

(1.8) supu < C’(lnfu + K(R)),
Br
and
4
1.9 K(R) = ( RPQ/1y(Byp) || L .
(1.9) (R) ( wBar) 2]

Specially, if g =0, then

supu < Clnfu
Br

As an application of Theorem 1.2, we have
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THEOREM 1.3 (Hélder continuity). Let u € W1P(Q,w) be a weak solution
to (1.1), sup|u| = M < oco. Assume g/w € L#PR=1=1(Q w), 0 < a <
Q

min {1, q(gicfl)} , then u 1s locally Holder continuous in €2, that is for any ' CC

Q, it follows

|u(z) — u(y)|
(1.10) xsyue%, A(z.y)" <C.

Note that (1.1) becomes (1.3) when p = 2. Moreover, if w = 1, then L, is
the usual subelliptic p-Laplacian and so the same conclusions for corresponding
equations can directly be obtained. Since deeper understandings for the mea-
sure of metric ball Bg induced from vector fields appeared (see Bramanti [2]),
it reminds one that any restriction on the measure of metric ball should be
cautious. In this paper there is no restriction in advance for the measures of
metric balls.

The article is organized as follows: Section 2 collects some facts for
Hormander’s vector fields, A, weights, weighted Sobolev spaces and their pro-
perties. The proof of Theorem 1.1 is given in Section 3 by using the weighted
Sobolev inequality and the extension of Moser iteration technique. In Section
4, we prove the local boundedness for nonnegative weak solutions to L,u = g.
Section 5 is devoted to the proof of Theorem 1.2 by virtue of the weighted
John-Nirenberg inequality and the conclusion in Section 4. The proof of The-
orem 1.3 is in Section 6.

2. PRELIMINARIES

Let X1,..., X;n (m < N) be a system of C* vector fields satisfying Hor-
mander’s condition on a neighborhood of €, i.e., there is a positive integer s
such that all commutators of X7, ..., X,,, up to order s span the tangent space
of RY at every point of Q (see [16,22,23]).

Definition 2.1 (Carnot-Carathéodory distance). An absolutely continu-
ous curve v : [0,7] — € is called sub-unit with respect to the system X =
(X1, ..., X;n), if whenever 4/(t) exists one has that for all £ € RV,

m
<A(1),67 <Y< X;(4(1)), 67, ae. t €0,T].
j=1
The length of « is defined by Ig () = T. Given z,y € €2, we denote by ®(z,y)
the collection of all sub-unit curves connecting = to y. For any z,y € 2, the
Carnot-Carathéodory distance generated by X is defined by

d(z,y) = nf{ls(7) : v € B(z,y)}-
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We will denote by
Br(zo) = B(zo,R) = {x € Q: d(z0,z) < R}

the metric ball centered at xg of radius R and write simply Br whenever xg is
not stressed. The following doubling property holds true (see [22]): there exist
constants cp, Rp > 0 such that for any g € Q, 0 < 2R < Rp, B(zo,2R) C Q,

|B(xo,2R)| < cp [B(wo, R)|
It easily implies that for any R < Rp and t € (0, 1),
|Bir| = ¢p't? |Bg

where ) = logocp > N is called the local homogeneous dimension of 2 with
respect to X1, ..., X

Next we describe A, weights depending on the Carnot-Carathéodory dis-
tance here.

Definition 2.2 ([11,20]). Let w be a nonnegative integrable function on 2
and 1 < p < oo, we say w is an A, weight, denoted by w € A,, if

1 1 2\
wlay =sup <|B<x,r>| B(o) W)dx) (|B<a:,r>r B(or) w“’””’“)
= (Cy < 00,
where Cy, is called the A, constant of w.
Functions in A, enjoy
(2.1) w(B(z,2r)) < Cw(B(z,r)), v€Q, r>0,

which implies that any w € A, defines a measure in RN,
The weighted LP space is the set

LP(Q,w) :{u:Q—>R:/ lulPwdr < 400}
Q

1/p
lullsiawy = ( [ fupwds)

One evidently has the weighted interpolation inequality (its proof is similar to
one without weight, see Gilbarg and Trudinger [14])

with the norm

(2.2) 1Pl s @,y < €lPllr(o,m) + €7 Il Log0,0):



318 Leyun Wu and Pengcheng Niu 6

where 1 < p < s < r, u; = <l — l) (l — %)_1, and the weighted Holder
inequality

(2.3) /Q\f(ﬂf)g(fﬁ)lw(%)dm < e @191l Lae.w)»

where p > 1,q > 1,%—1—%:1.
The weighted Sobolev spaces is

WhP(Q,w) = {u € LP(Qw) : Xju € LP(Quw),j=1,..,m},
with the norm
el = 1l o + 1Kl -

In addition, we denote by T/VO1 P(Q,w) the closure of smoothly and compactly
supported functions in W1P(Q, w) with respect to the norm el e ©,u)-
We recall the following weighted Sobolev inequalities.

LEMMA 2.3 ([20], Theorem B). (1) Let w € Ap,p > 1 and E CC ,
then there exist constants ro > 0 and C > 0, such that for any metric ball
B = B(z,r) CQ, x € E, and any f € W'P(B,w), the following inequality
holds

(2.4) (ij) / \f—fB\dex)‘l’ sm(w(lB) / !Xf!pwd:ry,

provided 0 <r <19, @ >2, p< g <p(Q/Q—1)+86,), 6, >0 only depends
on p and Cy, where ro and C depend only on C,, E, 0 and 6,, fp means

iy Jp fwda;
(2) Let f € WyP(B,w), then

(2.5) <w(1B)/B\frlwdx)é §0r<w(lB)/B|Xf|pwdm);.

It is known from (2.5) that that if 1 <p < Q and p < ¢ < p(Q/(Q — 1)
+6,) , then W, ?(B,, w) embeds in LI(B,,w).
Now we introduce weighted Morrey spaces.

Definition 2.4. For 1 < p < oo, ¥ > 0, we say that u is in a weighted
Morrey space LPY(Q, w), if u € LP(Q,w) and

9 P
r
Ul o) = SUD / u(y)|Pw(y)dy | < +oo,
Fllzraam = o (wmmB(x,r)) anien ") )
0<r<dp
where dy = diam(Q).
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3. PROOF OF THEOREM 1.1

We will investigate two cases ¢ = 0 and g # 0 , and use (2.5), (2.2) and
the Moser iteration technique with weight.

Proof of Theorem 1.1. If g = 0 , then u is a weak solution to Lyu = 0,
and u* is also. Denoting

l=suput,
0By

and picking ¢ = (u™ — k)T € Wol’p(Br,w) (for £ > 1) as a test function to
Lyu =0, we get from (1.2) and (2.5) that

—2
0 — / (AXu", Xut)'T <Axu+,X(u+ _ k)+> dz
> )\_5/ ‘X(uJr — k)+’pwd:n
B

> )\_IQJCT_”/ ((u+ - k:)+>pwdx,
B

which implies u™ < k a.e. in B,. By the arbitrariness of k,

sup ut < supu™,
B 0B,

o (1.7) is true.
If g # 0, we prove (1.7) with two steps.
Step 1. We first prove that if u € W1P(B,, w) satisfies

(3.1) / (AXu, Xu) 7 (AXu, X) do < / g dz

T B’I‘

for any ¢ € I/VO1 P(By,w) and v < 0 on B, then there exists a positive constant
C such that
(3.2)

_1 P e
sgpw < Cw(By)" 7 <HU+HLP(BT,UI) o Tw(B,) T Hg/w”” (B w)) '

In fact, define

L[ Pk z € [k, M];
(3.3) H(z)—{ BMP=Y(z— M)+ MP — kP, z € [M, +00),

where 8 > 1 and k£ > 0 is to be chosen later, and denote

- ft (H'(s))Pds, te€ [k, +00);
Gt = { (I (R)(t — k). t € (—o0, k),

h(z) = ut(z) + k,
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h(zx)
o(z) = G(h(x)) = /k (H’(S))pds.

Then G'(h) = (H'(h))? > 0, ¢ > 0. Using u < 0 on 9B,, it follows that
h(z) = k and ¢(x) = 0 on dB,, and then ¢ € Wol’p(Br,w). Taking ¢(z) into
(3.1) and using (1.2), we have

3.4 A5 IXhPG (hywds < / (AXu, Xu)"% (AXu, @' (W)X ) da

i T

- / (AXu, Xu)'ZT (AXu, X (G(h))) dz

T

< / 9 G(h)dz.

Noting
" . /8(5 - 1>35727 S [k,M];
H(z) = { 0, 2 € [M,+00),

we know that H”(z) > 0 and so H'(z) is increasing, thus
(3.5) G(h) < (h—k)(H'(h))" < hG'(h).
Taking (3.5) into (3.4) and using h(z) > k , it follows

1
A2 | Xh|PG (h)wdx < / lg| hG'(h) dz < w1 ) lg] ’hH’(h)’pdx,
B, By

therefore
(3.6)

1
/B |XH(h)|pwdx:/B | Xh[PG'(h )wdm<)\2kp 1/ \g| [RH' (h)[Pda.

In terms of u < 0 on 0B, and H(k) = 0, we get H(h) € Wol’p(Br,w). Using
(2.5), (3.6) and (2.3) shows

(/T H(h”_lwdx)Ql = Crpw(Br)_é/B | X H(h)|Pwda

= 1/BT ]thH/ )‘pdx
1

1
1 1 q : ,
< ONS——rPw(B,) é(/ lg/w] wda:)q(/ \hH’(h)\pqwdx)q,
kP B B

where ¢’ = ;. Taking in (3.3)

_p
(3.7) k=rrrw(B,)" D ||9/w”Lq (Brw)
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then

1 _ 1
I L S [ O] s

where C' = C(\, p, Q,w, ). Letting M — oo in (3.3) and substituting H(h) =
hP — kP and H'(h) = fRP~! into (3.8), we obtain

B _ 1B i
(3.9) Hh —k HLQ by S CBU(B T

Noting k < h(x), it yields from (3.9) that

< Cpuw(B,)7 w4 ||h]|?,, " w)+w(BT)?1q—i (/B

LBrd' (B w)
that is L L1
HhHLB%(BT,w) < (CB)BU}(BT)B pa pQ ”h’HLﬁpq’(Bmw)'
Letting p = % > 1, the inequality above becomes
111
(3.10) |7l goar (Brw) S (Cﬁ)ﬁw( )B(pq pQ)”hHLBPq/(BT,w)'

Now setting 8 = p/ (j =0,1,...) in (3.10) leads to

- —j(Ll_ 1
HhHquxujJrl(Bhw)S(C,uj)“ "w(B,)" (e PQ)HhHmeq/(Bmw)v

and iterating these inequalities gives

m .. m
1l ot (5, ) < H G5 1 o (5,
( s ) ( ’ )
J= 0 Jj=0
_Z pI _Z ju=a fﬁ 1 (e —5g)
= (=0 = w(BT)]:O rg p HhHLPq/(Bm’LU).
Letting m — oo, we have

£ S S G
(311) ”h”Loo(Br,w) S C]=0 MJ:O ’IU(BT-)JZO HhHqu,(BT,w)

o(L -1
< CUMT’U)(Br) (pq pQ)”hHqu/(Bmw)a

where 0 = 1/(1 — 1), 7= p/(p—1)2. Using (2.2) with s = pg’, p = p and
r = 00,
1-1/¢
1l o,y < Nl oy + € B o
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and substituting it into (3.11), we have

o(L L o
”hHLOO(BT,w) < CUMTw(Br) (pq pQ) (EHhHLOO(BT,w) _|_51 q HhHLp(Bhw)> N

1 -4 -
Take € = (¢ = 1) 7 [|h]| 12 7.0y 1] £ (7.0 then
”h”L"o(Br,w)

(A7)
< C7pTw(B,) v 9 | (¢ = 1)

I

1
Py

1
+(d -1 > Hh||Loo Byaw) 1M 2o (5, 0) -

and by 0¢/(j; — 55) =~}

1
12/l oo (B, ) < Cw(Br) 7 1Al Lo (5, w)»

1
Py

where C' = C?9 ((q — 1)«
(3.7), it follows

-\ 7
+ (¢ — 1)(1’q> . Noting h(z) = u™(z) +k and

suput < s]131puJr +k= HhHLw(BT,w)

IN

1
Cw(B;) thHLP(BT,w)

Cw(Br)_% (H“ﬂ’m(&,w) T k) ’

This completes the proof of (3.2).
Step 2. We are ready to prove (1.7). Letting

IN

l=supu’, L =suput.
0By By

We only need to consider the case [ < oo, because the conclusion for | = oo
holds obviously. Let us distinguish the two subcases { = 0 and [ # 0 for | < oo.
If I =0, then u™ = 0 on 0B,. Take

=(L+k—u")P —(L+E)P,
then o < k'"P, ¢ =0 on dB,, ¢ € Wol’p(Br,w) from ut € Wol’p(Br,w),
Xo={p-1)(L+k—u")PXu".
Plugging ¢ into (3.1) and noting (1.2),

+p
(3.12) (p—m—é/ mwdxg/ (AXu, Xu)"Z (AXu, Xo)dz
B, —u r

< [ lolldlas < [ e
By B, (L+k—ut) W
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Setting v = log 72— | it yields Xv = 5" and by (3.12) and (3.7),

L+k—

/ | Xv[Pwdz < Ck'Pw(B )1_7

r

Li(By,w)
< Cr Pw(By).
Using (2.5) we obtain

(3.13) / [v|Pwde < Cw(B,).

Taking 1) = W as a test function in (1.6), n € Wol’p(BT,w), n C

sup pu™, and noting
X
X1 = d

(L+k—ut)P?

nXu"
L+k—uh)

+(—1)

it follows

<A(m)Xu+, Xu+>¥ <A(:U)XU+7 X1 1 > dz
B, (L+k—ut)?

%1/T<A@ﬁXu+rXu+y32<A@ﬁXu+(_1))XT+>d

(L+k—ut)?
n
= X d$
/B,«g( )(L+k—u+)p_1

Since the second term in the left-hand side is non-negative, we have

% T (% €T x " x.
[, a@xe, x0'F (@) xe Xnde < [ o) gl d

Thanks to v € WYP(B,,w), v = 0 on B, and (3.2),

_1 »_ 1
s;pv < Cw(By) ?([[v]lpop, w) + TP Tw(Br)? T L Hg/wHLq (B, ))

then by (3.7) and (3.13),

(3.14) supv < Cw(B,) 7 (w(B,)? +w(B,)r) < C.
Using v = log 7= L+k — into (3.14), we have
L <k(e® 1),
which means
(3.15)  suput < (€ — Vi Tw(B,) D |gfwlE (Byw)

If 1 # 0, then v —1 is also a weak solution to Lyu = g and satisfies

sup (u — )™ = 0. Applying (3.15) to u — [, it yields (1.7).
0B,
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4. LOCAL BOUNDEDNESS

In this section, we use the Moser iteration technique with weight to prove
the local boundedness for weak solutions to (1.1). A known result is necessary.

LEMMA 4.1 ([24], Lemma 2). Let o be a positive exponent and 0 < a; < 0o
and 0 < B; < a,1=1,..., N. Suppose that z is positive satisfying

N
2% < Zaizﬁi.
i=1
Then
N
z < CZ (i),
i=1

where v; = (a — B;)~1, C depends only N, and B;.

LEMMA 4.2. Suppose that u € W1P(Q,w) is a weak solution to (1.1) and
g/w € LYQ,w) (q > Q). Then there exist C > 0 and Ry > 0 such that for
any 0 < R < Ry, Byr C Q, Bgr = B(z, R), we have

1 1/p
4.1 sup lu| < C < / upwda:> +K(R) |,
(4.1) BR\ | ( w(Bar) BQRl | (R)
where K(R) is stated in (1.9).

Proof. For x € §, choose Ry > 0 sufficiently small such that Bsp =
B(z,4R) C Q for any 0 < R < Ry. So inequalities in Lemma 2.3 hold for Byp.
Set 4 = |u| + K, K = K(R), then Xu = X |u|.

For [ > K and ¢y > 1, define

i a, K <
42) Flw) = { Qo — (go — I, @

and

~ IA

a<l,
>k
G(u) = signu - (F(ﬂ)F/(fL)pfl _ qop*1K5> ,—00 < u < 00,

where [ satisfies pgo = p+ 8 — 1. Clearly, 8 > 1, F' is continuously differential
and G is piecewisely smooth. It is easy to calculate F”/ > 0 and

FF/p—l —_ QOp_lﬂ'Ba K S U S l,
(qol=1)P~1 (ol — (qo — DI®), @ > 1.

Set v = F(u), then for K <u <,

FF/p—l — qg—lﬂﬁ-i-p—lﬂl—p < qg—lKl—p,Up’
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FFPt > o' K7,

and for u > [,
FFP™L = (gol® 1P~ (gol®a — (go — 1)1%)P (gol®'u — (go — 1)1%)"*
< WP (golto—yP11e0(-p)
< @K,

FEP—1 > (qolq(rl)pfl (quqoill — (qo — 1)lq0) — (qolqu)pfllqo > qg_leB.
Then

(4.3) G| = ’FFIPA - qg_lKﬁ‘ < FFP~1 < qg_lKlfpvp_

Let us consider two cases |u| # [ — K and |u| =l — K, respectively. For
lu| # 1 — K, define

p =n"G(u),
where 1) € C5°(Bag),0 < n < 1, then ¢ € Wy? (9, w) and
X =pP 'G(u)Xn 4+ nPG' (u) Xu
with G'(u) > F'(u)P. Taking ¢ into (1.6), we obtain from (1.2) and (4.3) that
(4.4)
0= /Q (A(z)Xu, Xu) "2 (A()Xu, Xu) PG (u)da

+/ (A(x)Xu,Xu>p§2<A(x)Xu,X77)p77p1G(u)d:r—/g(x)an(u)dx
Q Q

> A3 / P ()P | Xu[Pwdz — pA? / P E (T X X wda
Bar

Bar

— qg_lKlp/ g’ nPoPwda
By 'W
> A2 InXv[Pwdz — pA2 / X v Xn|wde — ¢ K1TP
Bag Bar
g P
/ = (nv)Pwdz.
Bog ' W

For the case |u| =l — K, it follows Xu = X@ = 0 and X¢ = pn?~1G(u) X1 for
© = nPG(u), therefore (4.4) also holds.
Applying (2.3), (2.5) and (1.9) into (4.4), we have

wn g f
Bagr
Kl P g’

2‘ (nv)Pwdz

p(¢—Q)/q an”pQ/q

nv
L4(Bzg,w) ” HLp (Barw) LQ-1(Bygr,w)
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- Q/q
Pl lpg p(g—Q)/q ( @_l)p
C K H ‘Lq BQR’U} H77 ||Lp (Bag,w) QRW(BQR) pQ p
X (o) 5905
Q) Q 0
< o InolSisry (I ol R,y + X nlESE, ) -

Using (2.3) and (4.5) into (4.4),

1X V0 By ) SC(/B InX [P~ o Xn| wdz + qg—lKlp/B
2R

-1
< ClnXoltn o 10X oy

o+ Caf ™ el (I Xllbes o+ leXuldle ).

g’( » )
=1 (nv)’wdx
2R w

Noting gg > 1, 0 < @ < p and using Lemma 4.1, we have

(4.6) 19Xl oy

q(p—1)
< CHUXWHLP Bm y T ng(qu) HTIUHLP(BQR,w)
p—1 Q Q
+Cqu ||77UH P(Bag,w) H X77||Lp (Bar,w)
q(p—1)

< CllvXnll po(Bypa) + €62 10] Loy
p—1

v Cay? (||77’U”LP(B2R7w)+HUXT]HLP(BQva))

p 1 q(p—1) pfl

< C(l +4q" HUXnHLP (Bapaw) T C(ag Y+ %" )HTIUHLP(BQR,QU)

<O ® C oXn Loy ) + 1791 o (8 0))-

From (2.5) and (4.6), it gets
(4.7)

<CR< L / X () [Pod >’1’
v wax
- w(B2r) JB,, !
_1
< CRw(Bgr) » (|1vX0 1o (Bypw) + HTZXUHLp (Bapw))

_1
< CRw(B) "+ (\vXnan(Bm gl (10X 13y +an||Lp(BM>>>

P 1
< Cg3 @ Rw(Bar) " * (X0l 1oy + 170 )
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where kg = Q . Now select n € C§°(Bpr) in (4.7) such that n = 1 in B, and

[ Xn| < ¢ C)R 1<a<b<2 then

L . L c 1
kop or 9—Q For ™ P < ) </ D )p
v Pwdx <C w(B R +1 vPwdx
</B > % w(Br) (b—a)R Bon

Letting [ — oo in (4.2), we get v = @% and so

1

(4.8) < / akopqowdx> roree
BELR
1 1

PR a3/ 1 \wo 0
< Cw gV w(BR) < ) (/ upqowdx> .
b —a Byr

Taking qo = ki, 0; = pkiy, b=1+2"" a=1+2"0tD §=0,1,..., then (4.8)
becomes

(/

1
O;+1

ﬂei“wdx)

Vi1 R

. 1

» poi( 11 kgl o

SCkO (kl) k w(BR) 0 (kop P) <b1a> 0 (L u91wdx> 7
ViR

and by iterating m times,

[y Skt a4 szkgz
(4.9) ( / ﬂe”lwdx) <ci=’ (kg )“J
B’Y'erlR
o

1 Tt . —i
E 200 >0 (iH+Dk
w(BR)( ) 2 s (/ upwd$> |
Bar
Since > ko', Y ikg and Y (i 4 1)k " are all convergent, and (Hp - %)Zko_’
i=0 i=0 i=0 =0
= —%, we obtain by letting m — oo in (4.9) that
1 1/p
(4.10) sup u < C(/ upwdx> ,
Br ’U)(BQR) Bagr

where @ = |u| + K. Thus (4.1) is proved.
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LEMMA 4.3. Let u € WYP(Q,w) be a weak solution to (1.1) and g/w €
L1(Q,w) (¢ > Q), then there exist C > 0 and Ry > 0 such that for any
0< R< Ry and a > 0, we have

1 1/
4.11 sup u < C(/ ﬂo‘wdaj> ,
( ) BR w(BQR) BQR
where Br = B(z, R), Byr C .

Proof. Since (4.11) is just (4.10) for a = p, the remaining is to prove
(4.11) for o # p. We denote qq = kb, 0; = pkl, ko = % in (4.8), instead b, a
with @ + (b — @)™, a+ (b— a)™*?, and iterate m times to obtain

1 m ) m
i Y TG o Ty o) Bk
(/ ﬂ91+1wdx> < ngo 0 (ng>zO w(BR)< 3 p)lzo
B

Xm+1R
m . 1
— > (i+1)kg* »
-(b—a) =0 ’ </ ﬁpwdx> .
Byr

0 .
Letting m — oo and noting Y (i + 1)k;* = Q?, it has
i=0

1 1/p
4.12 supu < C(b—a -Q? ( / upwd$> .
(4.12) Sup (b—a) w(Bor) I,

Without loss of generality we assume 0 < o < p (the case o > p can be treated
by Hélder’s inequality) and denote

J(s) = w(Bg)a ! ( /B . apwdx> < /B y fao‘wdm>_z.

Taking a =1, b=4/3 in (4.12) and applying (2.1), it yields
(4.13)

1 a/p
supu® < C / wPwdz
Bgr w(B4R/3) Burys
SC(l/ ﬁo‘wdm) w(BR)%(g_l) / wPwdz
w(BR) Bog Byrys3
i ) 9(5)
= —- w*wdz | J| =] .
<w(BR) Bog 3

We claim that there exists C' > 0 independent of R, such that

(4.14) 1(3)=<c

i

S|

SR

~1
</ a%d:;)
Bar

bS]

3
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In fact, it is enough to prove (4.14) under the assumption J (%) > 1. For
1+ < s1 < sz <1, we have by using (4.12) (a = 2s1, b= 2s5 ) and (2.1) that

_p
J(s1) < w(Bg)a~" sup @~ / u“wdx </ uo‘wdx> i
Basir Basir Bar

p—a

(Bt —5 L[ e
wW(BR)e urwdx
(53— 51)9° P~ \ w(Bas,R) Bsyn

. / u®“wdx </ u%udx) )
Bas R Bar
p—a
o R 1-
< CQ2( — )UJ(BR)(%_DPT / wPwdx (/ uo‘wdx>
(s2 — s1) P Basyr By

p—a

— (C(SQ — 51)7Q2p<](52)> L
Therefore
(4.15) log J(s1) <

ya
[eY

a (log C — @*plog(sa — s1) + log J(s2)) .

Let 51 = s (0 > 1) in (4.15) and integrate on the interval [(%)1/9, 1:|With

respect to %2, then

(4.16)

1 [t d —a [! d —a [! d
/ log J (p) §C+pa/ log J(p) L < ¢+ =2 [ log 7 (p)L,
0Jz P p )3 P P J3 P

where we have used p = s9,.J (2) > 1, and the fact that log J(p) is increasing
and

1
d
/ , log(sg — sl)ﬁ > 0.
(1) z

Choosing 6 € (1, = -2}, we conclude J (2) < C from (4.16).
Now (4.11) 1s deduced by (4.13).

5. PROOF OF THEOREM 1.2

In this section, we will use the results in Section 4 to prove the Harnack
inequality.

Proof of Theorem 1.2. Without loss of generality, we assume u > 0 a.e.
in  and denote 4 = u+ K, K = K(R). The proof is divided into three steps.
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Step 1. Let us confirm that there exist positive constants py and C' such

that
C( 1 / - ) _a
— u wax PO,
w(B2r) /B,y

IN

CRI G /)

In fact, take v = log 4, then Xv = Xu/a.
Choose ¢ = nPu!™P as a test function in (1.6), where n € C5°(Bag) such
that 0 <7 <1in Byr,n=1in Bpg, and | Xn| < %, then

(5.2)
0 —/ <A(:15)Xu,Xu>p%2 (A(z) X u, Xn) pnPLal ~Pda
Q

+ /Q <A($)XU3XU>172;2 (A(z) Xu, Xu) (1 —p)nPuPdr — /Qg(ﬂi)npﬂl_pdx

< pAZ / | XulP~Y [ X pP et Pwds — (p— 1)A2 / nPuP| X u|Pwdx
2R

Baor

/ InXv[P~! [ Xn|wdz — (p— 1)A~2 / InXv|Pwdx
Bar Baogr

+K1p/ g
Bop 'W

To the last term in the right hand side of (5.2), we apply (2.3), (2.5) and (1.9)
to get

‘ nPwdzx.

(5.3)
K1P/ g’npwdav
Bop ' W
< Kl_”H J ‘ B IIHIIPQ/Q D Il
< Ok pH g ’ . HUH]z(qu?R/fu) <2R’U)(BQR)%7%) X7 H’;ff/gm w)
< C |l Xl -

Putting (5.3) into (5.2) and using (2.3), it follows

/ InXv[Pwdz
Byr

1
<c / X Xl wda-+C Il 2/0 | Xy|rSs
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p—1

1
p
<o [ wxerwar)” ([ ponpude )+ G2 100, .0
Bar Bar

and from Lemma 4.1,

(54)  0X0] o3y ) < CUXNM Loy + C Il 2P o X0, -
Using (2.4) and (5.4), we obtain
v — UBRHLp(BR,w) < CRHXUHLp(BR,w)
Q
C =Q (C\ ¢ Q
<R ( ulBa)? + CulBan)' (7)) qw(Bm)m)

"d\*—‘

< C(1 + diam(Q) 9=/ (BR) 7,
where vp,, = m fBR vwdz. Hence

1
w(BRr)

By (5.5) and the weighted John-Nirenberg inequality (Buckley [3], Theorem
2.2), there exist positive constants py and My such that

b
w(Bag)

(5.5) / v — vp,[Pwdr < C.
Br

/ exp (po |v — vB,,|) wdz < M.
Bagr

Since
1
w(B2r)
1
w(Bag)
then

1 / o 1 / 3
_— u Powde - uPowdx
w(B2r) JB,p w(B2r) JB,p

1

1
= — exp(—pov)wdz - / exp(pov)wdz
]y, P s [ exntonn)
1 1

= ex v — PV wdx -
w(BQR) /B2R P(po DPo BQR) w(BgR)

/ exp (po |v — vB,,|) wdz > / exp (pov — PovB,,) wdz,
Bar Bar

w(Bag)

/ exp (po [v — vB,,|) wdz > / exp (PovB,, — Pov) wdz,
Bar Bagr

’w(BQR)

/ exp(povB,, — Pov)wdz
Baogr

1 / 2
< | —=— exp(po |v — vp ])wdx) < Mj,
(w(BQR) Bar o ’

and this completes the proof of (5.1).
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Step 2. We deduce that there exists a positive constant C' such that

1

1 " po
5.6 infu>C / upowda:> )
(5:6) Br (w(B2R) Bon

In fact, denote ¢ = Pa” and h = a®, where n € C°(Bag), 0<n <1, 3 < —1
and g = 5+p L < 0. Taking ¢ into (1 6) yields

(5.7)
0 :/ <A(x)Xu,Xu>¥ (A(z)Xu, Xn) ppPLalda
Q

—I-/Q<A(x)Xu,Xu>p2<A(:C)Xu,Xu) BrPuPldx —/Qg(:n)npﬂﬁdx

< pAf / | Xu[P~! [ Xn| P @ wds 4+ BATE / P’ XuPwdz
Bar B

2R

9 ‘ npaﬁﬂﬂ— Lodz

+K1‘p/
Byp ' W

=Ml [ X X ede + 53 Flal 7 [ XhPuds
Bagr

Bar
+ K'P /
Bar

Noting (2.3), (2.5) and (1.9), we have

(5.8) Kp /B 2

‘ (nh)Pwdz.

’ nh)Pwdz,

< Kt pH g‘ p(a—Q)/q pQ/q
B L oty L S
1-p|| 9 p(a—Q)/q Q—1_1>pQ/q
S CK Hw‘ La(Bapw) HT’ HLp(B2R w) <2Rw(B2R) pQ p
Q Q
(IR oy + DX )

<l (InXnlels, ) + IR ).

By (5.7), (5.8), (2.3) and Lemma 4.1,
(5.9) ||77XhHLp (Bap,w) < ’/8‘ H77XhHLp (Bagr,w)

< Claq [nXhP~! IthlwderClmlpKl_p/ ‘g‘ (nh)Pwdz
Bar Baor
< Cla| ||?7XhHLp (Baoraw) 1PX N Lo (B, g 0)

+ Clarl? Ikl (InXRIpZlE, o+ IAXnlflE Y,
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< Clarl 1BX0 1 (g + C laa| Il 202 B X F

+ Clar” D |Inhl Lo, )
< Clar 10X 1o 3,0y + C it (1] o) HIAX ] 1)
+ Clar” | 1o )
< C (Il + 11”2 (k3 X o 509 -
Applying(5.9) and (2.5), then

(5.10)
11
[Pl Lror (Byp ) < CRw(B2R)k0p pHX(nh)HLP(BgR,w)

< CRw(B3R) *o? kop P (||77XhHLp (Bag,w) + Hth’LP(BzR,w))
11
< CRw(Bag)%or 7 (c <|q1| . |q1,q/(q—cz>)
. (thHLp(Bm,w)_‘_||hX77HLP(BQR,w)) + HthHLP(BzR,w)>
_ 11
<C (1 +lq1| + || Q)) Rw(Bag)*or » (thHL”(Bm,w)+||hX77HLp(BQR,w))
a/(¢—Q) =i
< C(l + |Q1|) RU}(BQR) kop P (HnhHLP(B2R’w)+||hX77HLp(B2R’w)> ,

where ¢ > Q, ko = Q/(Q — 1). Taking h = u? (g1 < 0) and n € C3°(Bpgr) in
(5.10) with n =1 in Byg, |X77| < C) 1 <a<b<2) it follows

1
(5.11) ( / ukopqlwdx) orn
BaR
a1 (L_l)i _1 i
aw(Byp)\kor p)a(b—a) @ (/ u’”“wdm) .
Byr

Denoting ¢1 = —%"ké, 0; = —poké, b=vx; =14+2"% anda = Xitl = 1+2_(i+1),
(t=0,1,...) in (5.11) and iterating m times, we have

(1

> woko (1 + pok:é)
P

1
0;
/ @?wdz
By,r

LNS]

> 0 (1+ |

1

0 041
w “trwdx

Xi+1 R
4P p—i
q—Q pg O

w(BzR)<11’ kép) pk012 (+1)55 k_z
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_p o m ) —%Lk_i 1 LTt P 5 (4 Y e
>0 & H<1+p0k6) T (Bag) PO E T g 0 5T
p

Now (5.6) is proved by letting m — oo .
Step 3. From Lemma 4.3, there exists a positive constant C' such that

1

1 Py
5.12) supu < C’( / upowda:) .
( Br w(B2r) JB,,
Combining (4.16), (5.6) and (5.12), we conclude
1
_ 1 _ Po
supu < supu < C'< / upowdzn)
Br Br w(B2Rr) JB,y

< C (1/ upowd$> %
w(B2R) Bogr

§CinfU:C<infu+K>.
Br

Br

This proves Theorem 1.2.

6. PROOF OF THEOREM 1.3

The proof of Theorem 1.3 is based on Theorem 1.2 and the following
lemma.

_ LEMMA 6.1 ([25]). If w is a non-decreasing and non-negative function in
[0, R], such that for 0 < 01,00 <1, 0<63<1, H>0,

w(01R) < Ow(R) + HR%, 0 < R < Ry,
then there exist 0 < 0y < 03 and C > 0 such that

R

w(R) < C(RO)GO (w(Ro) + HR83) ,

where 0y only depends on 01, 02 and 05.
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Proof of Theorem 1.3. We have (1.8) and (1.9) from Theorem 1.2. Picking
0< a<min{1,q(§7&)},thena€ 0,1), %—a(p—l) > 0 and

1
K(R)=R" (RPQ/Q—a(p—l)w(BQR -1 ) -1
L9(Bar,w)

‘
) w

w Il La:pPR—aa(p—1) (Q w) ’
Combing (1.8) and (6.1), it yields

_1
(6.1) < R || 2]

(6.2) supu < C <1nfu + R“ o ) .
Br La:pR—aq(p—1)(Q w)
Denoting M (R) = sup u(x), m(R) = inf wu(x)andvi(z) =u(x)—m(R) >
Br(zo) Br(zo)

0, we get from (6.2) that

sup Ul($)§C< inf U()+RO‘

p—1
9
BR/4(CCO) BR/4('IO) La-pQ-ca(p= 1)(Q7w)>

where we have assumed C > 1. Similarity, setting vo(z) = M(R) — u(x) > 0,
then by (6.2),

)

sup v2(x) < C | inf wy(x) —f—Ra‘
Bpya(zo) Brya(wo)

La:pQ—aq(p=1)(Q, w))

therefore

(6.3) M(R/4) —m(R) < C <m(R/4) — m(R) + R®

p—1
w Il La,pQ—aa(p—1)(Q w) ’

(6.4) M(R) —m(R/4) < C (M (R) = M(R/4) + R* ||~ ZQLQ aalr-1)(0, w>>

Using (6.3) and (6.4), we have

M(R/4)—m(R/4) < 24__ 1 (M(R) — m(R))+CQC ‘

It shows by Lemma 6.1 that
(6.5) M(R) —m(R) < CR*.

Assume By, (o) C © (r < Rp) and denote 7’ = d(z,y) for any x,y € By(x).
Since Bs,(x) C By, (z9) C , it follows by (6.5) that

lu(z) —u(y)] < sup u— inf u < Cr'®,

B,/ (x) B, (x)

Lqu aq(p=1)(Q, w)
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Moreover,

[u(z) — u(y)|
d(z,y)" =¢

By virtue of finite covering theorem we get (1.10) for any Q' CcC Q.
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