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This paper deals with the following weighted subelliptic p-Laplace equation

Lpu := divX
(
〈A(x)Xu(x), Xu(x)〉

p−2
2 A(x)Xu(x)

)
= g(x),

where the systemX = (X1, ..., Xm) satisfies Hörmander’s condition, u ∈W 1,p(Ω,
w), 1 < p < Q, A(x) is a bounded measurable and m × m symmetric matrix
satisfying

λ−1w(x)2/p|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ λw(x)2/p|ξ|2, for ξ ∈ Rm,

with w = w(x) being an Ap function. We first establish a maximum principle
for weak solutions to the equation Lpu = g with the weighted Sobolev inequality
and the extension of Moser iteration technique to the weight case. Next, the
local boundedness and the Harnack inequality for nonnegative weak solutions to
Lpu = g are proved. As an application, the Hölder continuity for nonnegative
weak solutions is given. Unlike in many papers, we do not impose any restriction
in advance for measures of metric balls.
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nack inequality, Hölder continuity, Ap weight.

1. INTRODUCTION

In this paper, we consider the following weighted subelliptic p-Laplace
equation

(1.1) Lpu := divX

(
〈A(x)Xu(x), Xu(x)〉

p−2
2 A(x)Xu(x)

)
= g(x),

where X = (X1, ..., Xm) , Xk(k = 1, ...,m) are smooth vector fields satisfying

Hörmander’s condition. Let X∗k be the adjoint of Xk, divXv = −
m∑
k=1

X∗kvk, v =
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(v1, ..., vm), 1 < p < Q. We suppose that the coefficient matrix A = (aij(x)) is
a bounded measurable and m×m symetric matrix satisfying

(1.2) λ−1w(x)2/p|ξ|2 ≤ aijξiξj ≤ λw2/p(x)|ξ|2, x ∈ Ω , ξ ∈ Rm,

where λ ≥ 1 is a constant, Ω ⊂ RN is a bounded connected domain and w is
a Muckenhoupt weight with respect to the Carnot-Carathéodory metric.

Since Hörmander’s fundamental work [16], subelliptic equations construc-
ted by vector fields have received a strong impulse and today’s literature on
the subject is quite numerous (see Bony [1], Fefferman and Phong [10], Na-
gel, Stein and Wainger [22], etc.). It is generally known that Harnack ine-
qualities are an important tool for regularity research (such as Hölder con-
tinuity and continuity) of elliptic equations, see Gilbarg and Trudinger [14],
Ladyžhenskaya [17], Chen and Wu [5], etc. As well Harnack inequalities of
weak solutions to subelliptic equations have received much concern. Capogna,
Danielli and Garofalo in [4] showed the Harnack inequality for quasilinear subel-
liptic equations, also refer to [18]. Lu in [20] proved the Harnack inequality for
second order weighted subelliptic homogeneous equations

(1.3) Lu := −
m∑

i,j=1

X∗i (aij (x)Xju) = 0,

where A = (aij(x)) satisfies

c−1w(x)|ξ|2 ≤ 〈Aξ, ξ〉 ≤ cw(x)|ξ|2, ξ ∈ Rm.

where 〈·, ·〉 denotes the inner product in Rm and w ∈ A2. Recently, the Harnack
inequality of the homogeneous subelliptic p-Laplace equations (p ≥ 2) with two
weights was given by Ferrari [11] and the Hölder continuity for the subelliptic
p-Laplace equations with one weight based on [11] was proved by Cruz-Uribe,
Moen and Naibo [6]. Related papers see [7, 21] for Harnack inequalities and
[8, 9, 26] for Hölder continuities.

In this paper, we first prove the maximum principle for weak solutions
to (1.1) by virtue of the weighted Sobolev inequality in [20] and the extension
of Moser iteration technique to the weight case. Next the local boundedness
and Harnack inequality for the nonnegative weak solutions to (1.1) are derived.
The method we used here is inspired by Serrin [24], Capogna, Danielli, and
Garofalo [4] and the weighted John-Nirenberg inequality is useful. Finally, we
establish the Hölder continuity for weak solutions to (1.1) provided that the
right hand term satisfies a condition related to the weighted Morrey space.

The Sobolev inequality for Hörmander vector fields without weight is well
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known [13,19]:

(1.4)

(
1

|Br|

∫
Br

|f |qdx
) 1
q

≤ Cr
(

1

|Br|

∫
Br

|Xf |pdx
) 1
p

,

where f ∈ C∞0 (B̄), 1 < p < Q, the exponent q ∈ [p,Qp/(Q− p)]. Since (1.1) is
weighted, we actually need the weighted Sobolev inequality which reads [20]

(1.5)

(
1

w(Br)

∫
Br

|f |qwdx

) 1
q

≤ Cr
(

1

w(Br)

∫
Br

|Xf |pwdx

) 1
p

,

where q ∈ [p,Qp/(Q − 1) + δp), δp > 0 is a constant depending on p. The
difference of q in (1.4) and (1.5) leads to disparity of results and proofs between
equations without weight and with weight.

For any g(x) ∈ [W 1,p(Ω, w)]−1, the dual space of the weighted Sobolev
space W 1,p(Ω, w), we say that u ∈W 1,p(Ω, w) is a weak solution to (1.1) if

(1.6)

∫
Ω
〈A(x)Xu,Xu〉

p−2
2 〈A(x)Xu,Xϕ(x)〉 dx =

∫
Ω
g(x)ϕ(x)dx

for any ϕ ∈W 1,p
0 (Ω, w).

Now we are ready to summarize the main results in this paper.

Theorem 1.1 (Maximum principle). Let u ∈W 1,p(Br, w) be a weak solu-
tion to (1.1) and g/w ∈ Lq(Br, w) (q > Q), then there exists a positive constant
C depending only on λ, p,Q,Ω and w, such that

(1.7) sup
Br

u+ ≤ sup
∂Br

u+ + Cr
p
p−1w(Br)

− 1
q(p−1)

∥∥∥ g
w

∥∥∥ 1
p−1

Lq(Br,w)
.

Theorem 1.2 (Harnack inequality). Let u ∈W 1,p(Ω, w) be a nonnegative
weak solution to (1.1) and g/w ∈ Lq(Ω, w)(q > Q), then there exist positive
constants C and R0, such that for any 0 < R ≤ R0, BR = B(x,R), B4R ⊂ Ω,
we have

(1.8) sup
BR

u ≤ C(inf
BR

u+K(R)),

and

(1.9) K(R) =

(
RpQ/qw(B2R)

− 1
q

∥∥∥ g
w

∥∥∥
Lq(B2R,w)

) 1
p−1

.

Specially, if g = 0, then

sup
BR

u ≤ C inf
BR

u.

As an application of Theorem 1.2, we have
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Theorem 1.3 (Hölder continuity). Let u ∈W 1,p(Ω, w) be a weak solution
to (1.1), sup

Ω
|u| = M < ∞. Assume g/w ∈ Lq,pQ−αq(p−1)(Ω, w), 0 < α <

min
{

1, pQ
q(p−1)

}
, then u is locally Hölder continuous in Ω, that is for any Ω′ ⊂⊂

Ω, it follows

(1.10) sup
x,y∈Ω′

|u(x)− u(y)|
d(x, y)α

≤ C.

Note that (1.1) becomes (1.3) when p = 2. Moreover, if w = 1, then Lp is
the usual subelliptic p-Laplacian and so the same conclusions for corresponding
equations can directly be obtained. Since deeper understandings for the mea-
sure of metric ball BR induced from vector fields appeared (see Bramanti [2]),
it reminds one that any restriction on the measure of metric ball should be
cautious. In this paper there is no restriction in advance for the measures of
metric balls.

The article is organized as follows: Section 2 collects some facts for
Hörmander’s vector fields, Ap weights, weighted Sobolev spaces and their pro-
perties. The proof of Theorem 1.1 is given in Section 3 by using the weighted
Sobolev inequality and the extension of Moser iteration technique. In Section
4, we prove the local boundedness for nonnegative weak solutions to Lpu = g.
Section 5 is devoted to the proof of Theorem 1.2 by virtue of the weighted
John-Nirenberg inequality and the conclusion in Section 4. The proof of The-
orem 1.3 is in Section 6.

2. PRELIMINARIES

Let X1, ..., Xm (m ≤ N) be a system of C∞ vector fields satisfying Hör-
mander’s condition on a neighborhood of Ω̄, i.e., there is a positive integer s
such that all commutators of X1, ..., Xm up to order s span the tangent space
of RN at every point of Ω (see [16,22,23]).

Definition 2.1 (Carnot-Carathéodory distance). An absolutely continu-
ous curve γ : [0, T ] → Ω is called sub-unit with respect to the system X =
(X1, ..., Xm) , if whenever γ′(t) exists one has that for all ξ ∈ RN ,

< γ′(t), ξ>2 ≤
m∑
j=1

< Xj(γ(t)), ξ>2, a.e. t ∈ [0, T ].

The length of γ is defined by lS (γ) = T. Given x, y ∈ Ω, we denote by Φ(x, y)
the collection of all sub-unit curves connecting x to y. For any x, y ∈ Ω, the
Carnot-Carathéodory distance generated by X is defined by

d(x, y) = inf{lS(γ) : γ ∈ Φ(x, y)}.
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We will denote by

BR(x0) = B(x0, R) = {x ∈ Ω : d(x0, x) < R}

the metric ball centered at x0 of radius R and write simply BR whenever x0 is
not stressed. The following doubling property holds true (see [22]): there exist
constants cD, RD > 0 such that for any x0 ∈ Ω, 0 < 2R < RD, B(x0, 2R) ⊂ Ω,

|B(x0, 2R)| ≤ cD |B(x0, R)| ,

It easily implies that for any R ≤ RD and t ∈ (0, 1),

|BtR| ≥ c−1
D tQ |BR|

where Q = log2cD ≥ N is called the local homogeneous dimension of Ω with
respect to X1, ..., Xm.

Next we describe Ap weights depending on the Carnot-Carathéodory dis-
tance here.

Definition 2.2 ([11,20]). Let w be a nonnegative integrable function on Ω
and 1 < p <∞, we say w is an Ap weight, denoted by w ∈ Ap, if

[w]Ap := sup
r>0

(
1

|B(x, r)|

∫
B(x,r)

w(x)dx

)(
1

|B(x, r)|

∫
B(x,r)

w(x)
1

1−pdx

)p−1

= Cw <∞,

where Cw is called the Ap constant of w.

Functions in Ap enjoy

(2.1) w(B(x, 2r)) ≤ Cw(B(x, r)), x ∈ Ω, r > 0,

which implies that any w ∈ Ap defines a measure in RN .

The weighted Lp space is the set

Lp(Ω, w) = {u : Ω→ R :

∫
Ω
|u|pwdx < +∞}

with the norm

‖u‖Lp(Ω,w) =

(∫
Ω
|u|pwdx

)1/p

One evidently has the weighted interpolation inequality (its proof is similar to
one without weight, see Gilbarg and Trudinger [14])

(2.2) ‖h‖Ls(Ω,w) ≤ ε‖h‖Lr(Ω,w) + ε−µ1‖h‖Lp(Ω,w),
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where 1 < p ≤ s ≤ r, µ1 =
(

1
p −

1
s

) (
1
s −

1
r

)−1
, and the weighted Hölder

inequality

(2.3)

∫
Ω
|f(x)g(x)|w(x)dx ≤ ‖f‖Lp(Ω,w)‖g‖Lq(Ω,w),

where p > 1, q > 1, 1
p + 1

q = 1.

The weighted Sobolev spaces is

W 1,p(Ω, w) = {u ∈ Lp(Ω, w) : Xju ∈ Lp(Ω, w), j = 1, ...,m},

with the norm

‖u‖W 1,p(Ω,w) = ‖u‖Lp(Ω,w) + ‖Xu‖Lp(Ω,w).

In addition, we denote by W 1,p
0 (Ω, w) the closure of smoothly and compactly

supported functions in W 1,p(Ω, w) with respect to the norm ‖u‖W 1,p(Ω,w).

We recall the following weighted Sobolev inequalities.

Lemma 2.3 ([20], Theorem B). (1) Let w ∈ Ap, p > 1 and E ⊂⊂ Ω,
then there exist constants r0 > 0 and C > 0, such that for any metric ball
B = B(x, r) ⊂ Ω, x ∈ E, and any f ∈ W 1,p(B̄, w), the following inequality
holds

(2.4)

(
1

w(B)

∫
B
|f − fB|qwdx

) 1
q

≤ Cr
(

1

w(B)

∫
B
|Xf |pwdx

) 1
p

,

provided 0 < r < r0, Q ≥ 2, p ≤ q < p (Q/(Q− 1) + δp) , δp > 0 only depends
on p and Cw, where r0 and C depend only on Cw, E, Ω and δp, fB means

1
w(B)

∫
B fwdx;

(2) Let f ∈W 1,p
0 (B̄, w), then

(2.5)

(
1

w(B)

∫
B
|f |qwdx

) 1
q

≤ Cr
(

1

w(B)

∫
B
|Xf |pwdx

) 1
p

.

It is known from (2.5) that that if 1 < p < Q and p ≤ q < p (Q/(Q− 1)
+δp) , then W 1,p

0 (Br, w) embeds in Lq(Br, w).

Now we introduce weighted Morrey spaces.

Definition 2.4. For 1 ≤ p < ∞, ϑ > 0, we say that u is in a weighted
Morrey space Lp,ϑ(Ω, w), if u ∈ Lp(Ω, w) and

‖u‖Lp,ϑ(Ω,w) := sup
x∈Ω

0<r<d0

(
rϑ

w(Ω ∩B(x, r))

∫
Ω∩B(x,r)

|u(y)|pw(y)dy

) 1
p

< +∞,

where d0 = diam(Ω).
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3. PROOF OF THEOREM 1.1

We will investigate two cases g = 0 and g 6= 0 , and use (2.5), (2.2) and
the Moser iteration technique with weight.

Proof of Theorem 1.1. If g = 0 , then u is a weak solution to Lpu = 0,
and u+ is also. Denoting

l = sup
∂Br

u+,

and picking ϕ = (u+ − k)+ ∈ W 1,p
0 (Br, w) (for k > l) as a test function to

Lpu = 0, we get from (1.2) and (2.5) that

0 =

∫
Br

〈
AXu+, Xu+

〉 p−2
2

〈
AXu+, X(u+ − k)

+
〉

dx

≥ λ−
p
2

∫
Br

∣∣∣X(u+ − k)
+
∣∣∣pwdx

≥ λ−
p
2Cr−p

∫
Br

(
(u+ − k)

+
)p
wdx,

which implies u+ ≤ k a.e. in Br. By the arbitrariness of k,

sup
Br

u+ ≤ sup
∂Br

u+,

so (1.7) is true.
If g 6= 0, we prove (1.7) with two steps.
Step 1. We first prove that if u ∈W 1,p(Br, w) satisfies

(3.1)

∫
Br

〈AXu,Xu〉
p−2
2 〈AXu,Xϕ〉dx ≤

∫
Br

gϕdx

for any ϕ ∈W 1,p
0 (Br, w) and u ≤ 0 on ∂Br, then there exists a positive constant

C such that
(3.2)

sup
Br

u+ ≤ Cw(Br)
− 1
p

(∥∥u+
∥∥
Lp(Br,w)

+ r
p
p−1w(Br)

1
p
− 1
q(p−1) ‖g/w‖

1
p−1

Lq(Br,w)

)
.

In fact, define

(3.3) H(z) =

{
zβ − kβ, z ∈ [k,M ];
βMβ−1(z −M) +Mβ − kβ, z ∈ [M,+∞),

where β > 1 and k > 0 is to be chosen later, and denote

G(t) =

{ ∫ t
k (H ′(s))pds, t ∈ [k,+∞);

(H ′(k))p(t− k), t ∈ (−∞, k),

h(x) = u+(x) + k,
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ϕ(x) = G(h(x)) =

∫ h(x)

k

(
H ′(s)

)p
ds.

Then G′(h) = (H ′(h))p > 0, ϕ ≥ 0. Using u ≤ 0 on ∂Br, it follows that
h(x) = k and ϕ(x) = 0 on ∂Br, and then ϕ ∈ W 1,p

0 (Br, w). Taking ϕ(x) into
(3.1) and using (1.2), we have

λ−
p
2

∫
Br

|Xh|pG′(h)wdx ≤
∫
Br

〈AXu,Xu〉
p−2
2
〈
AXu,G′(h)Xh

〉
dx(3.4)

=

∫
Br

〈AXu,Xu〉
p−2
2 〈AXu,X (G(h))〉dx

≤
∫
Br

g G(h)dx.

Noting

H ′′(z) =

{
β(β − 1)zβ−2, z ∈ [k,M ];
0, z ∈ [M,+∞),

we know that H ′′(z) ≥ 0 and so H ′(z) is increasing, thus

(3.5) G(h) ≤ (h− k)
(
H ′(h)

)p ≤ hG′(h).

Taking (3.5) into (3.4) and using h(x) ≥ k , it follows

λ−
p
2

∫
Br

|Xh|pG′(h)wdx ≤
∫
Br

|g|hG′(h) dx ≤ 1

kp−1

∫
Br

|g|
∣∣hH ′(h)

∣∣pdx,
therefore
(3.6)∫

Br

|XH(h)|pwdx =

∫
Br

|Xh|pG′(h)wdx ≤ λ
p
2

1

kp−1

∫
Br

|g|
∣∣hH ′(h)

∣∣pdx.
In terms of u ≤ 0 on ∂Br and H(k) = 0, we get H(h) ∈ W 1,p

0 (Br, w). Using
(2.5), (3.6) and (2.3) shows(∫

Br

|H(h)|
Qp
Q−1wdx

)Q−1
Q

≤ Crpw(Br)
− 1
Q

∫
Br

|XH(h)|pwdx

≤ Crpw(Br)
− 1
Qλ

p
2

1

kp−1

∫
Br

|g|
∣∣hH ′(h)

∣∣pdx
≤ Cλ

p
2

1

kp−1
rpw(Br)

− 1
Q

(∫
Br

|g/w|
q

wdx

) 1
q
(∫

Br

∣∣hH ′(h)
∣∣pq′wdx

) 1
q′

,

where q′ = q
q−1 . Taking in (3.3)

(3.7) k = r
p
p−1w(Br)

− 1
q(p−1) ‖g/w‖

1
p−1

Lq(Br,w) ,
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then

(3.8) ‖H(h)‖
L
Qp
Q−1 (Br,w)

≤ Cw(Br)
1
pq
− 1
pQ
∥∥hH ′(h)

∥∥
Lpq′ (Br,w)

,

where C = C(λ, p,Q,w,Ω). Letting M →∞ in (3.3) and substituting H(h) =
hβ − kβ and H ′(h) = βhβ−1 into (3.8), we obtain

(3.9)
∥∥∥hβ − kβ∥∥∥

L
Qp
Q−1 (Br,w)

≤ Cβw(Br)
1
pq
− 1
pQ ‖h‖β

Lβpq′ (Br,w)
.

Noting k ≤ h(x), it yields from (3.9) that(∫
Br

h
β Qp
Q−1wdx

)Q−1
Qp

≤
(∫

Br

∣∣∣hβ − kβ∣∣∣ QpQ−1
wdx

)Q−1
Qp

+

(∫
Br

k
β Qp
Q−1wdx

)Q−1
Qp

≤ Cβw(Br)
1
pq
− 1
pQ ‖h‖β

Lβpq′ (Br,w)
+ w(Br)

1
pq
− 1
pQ

(∫
Br

kβpq
′
wdx

) 1
pq′

≤ Cβw(Br)
1
pq
− 1
pQ ‖h‖β

Lβpq′ (Br,w)
,

that is
‖h‖

L
β
Qp
Q−1 (Br,w)

≤ (Cβ)
1
βw(Br)

1
β

( 1
pq
− 1
pQ

)‖h‖Lβpq′ (Br,w).

Letting µ = Qp/(Q−1)
pq′ > 1, the inequality above becomes

(3.10) ‖h‖Lβpq′µ(Br,w) ≤ (Cβ)
1
βw(Br)

1
β

( 1
pq
− 1
pQ

)‖h‖Lβpq′ (Br,w).

Now setting β = µj (j = 0, 1, ...) in (3.10) leads to

‖h‖
Lpq′µj+1

(Br,w)
≤ (Cµj)µ

−j
w(Br)

µ−j( 1
pq
− 1
pQ

)‖h‖
Lµ

jpq′ (Br,w)
,

and iterating these inequalities gives

‖h‖
Lpq′µm+1 (Br,w)

≤
m∏
j=0

(Cµj)
µ−j

m∏
j=0

w(Br)
µ−j( 1

pq
− 1
pQ

)‖h‖Lpq′ (Br,w)

= C

m∑
j=0

µ−j

µ

m∑
j=0

jµ−j

w(Br)

m∑
j=0

µ−j( 1
pq
− 1
pQ

)

‖h‖Lpq′ (Br,w).

Letting m→∞, we have

(3.11) ‖h‖L∞(Br,w) ≤ C
∞∑
j=0

µ−j

µ

∞∑
j=0

jµ−j

w(Br)

∞∑
j=0

µ−j( 1
pq
− 1
pQ

)

‖h‖Lpq′ (Br,w)

≤ Cσµτw(Br)
σ( 1
pq
− 1
pQ

)‖h‖Lpq′ (Br,w),

where σ = 1/(1 − µ−1), τ = µ/(µ− 1)2. Using (2.2) with s = pq′, p = p and
r =∞,

‖h‖Lpq′ (Br,w) ≤ ε‖h‖L∞(Br,w) + ε1−1/q′‖h‖Lp(Br,w),
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and substituting it into (3.11), we have

‖h‖L∞(Br,w) ≤ C
σµτw(Br)

σ( 1
pq
− 1
pQ

)
(
ε‖h‖L∞(Br,w) + ε1−q′‖h‖Lp(Br,w)

)
,

Take ε = (q′ − 1)
1
q′ ‖h‖

− 1
q′

L∞(U,w) ‖h‖
1
q′

Lp(U,w), then

‖h‖L∞(Br,w)

≤ Cσµτw(Br)
σ( 1
pq
− 1
pQ

)
(

(q′ − 1)
1
q′ + (q′ − 1)

1−q′
q′

)
‖h‖

1− 1
q′

L∞(Br,w) ‖h‖
1
q′

Lp(Br,w) .

and by σq′( 1
pq −

1
pQ) = −1

p ,

‖h‖L∞(Br,w) ≤ Cw(Br)
− 1
p ‖h‖Lp(Br,w),

where C = Cσq
′
µτq

′
(

(q′ − 1)
1
q′ + (q′ − 1)

1−q′
q′

)q′
. Noting h(x) = u+(x)+k and

(3.7), it follows

sup
Br

u+ ≤ sup
Br

u+ + k = ‖h‖L∞(Br,w)

≤ Cw(Br)
− 1
p ‖h‖Lp(Br,w)

≤ Cw(Br)
− 1
p

(∥∥u+
∥∥
Lp(Br,w)

+ k
)
.

This completes the proof of (3.2).

Step 2. We are ready to prove (1.7). Letting

l = sup
∂Br

u+, L = sup
Br

u+.

We only need to consider the case l < ∞, because the conclusion for l = ∞
holds obviously. Let us distinguish the two subcases l = 0 and l 6= 0 for l <∞.

If l = 0, then u+ = 0 on ∂Br. Take

ϕ = (L+ k − u+)1−p − (L+ k)1−p,

then ϕ ≤ k1−p, ϕ = 0 on ∂Br, ϕ ∈W 1,p
0 (Br, w) from u+ ∈W 1,p

0 (Br, w),

Xϕ = (p− 1)(L+ k − u+)−pXu+.

Plugging ϕ into (3.1) and noting (1.2),

(3.12) (p−1)λ−
p
2

∫
Br

|Xu+|p

(L+ k − u+)p
wdx ≤

∫
Br

〈AXu,Xu〉
p−2
2 〈AXu,Xϕ〉 dx

≤
∫
Br

|g| |ϕ|dx ≤
∫
Br

g

(L+ k − u+)p−1 dx ≤ k1−p
∫
Br

|g|
w
wdx.
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Setting v = log L+k
L+k−u+ , it yields Xv = Xu+

L+k−u+ and by (3.12) and (3.7),∫
Br

|Xv|pwdx ≤ Ck1−pw(Br)
1− 1

q

∥∥∥ g
w

∥∥∥
Lq(Br,w)

≤ Cr−pw(Br).
Using (2.5) we obtain

(3.13)

∫
Br

|v|pwdx ≤ Cw(Br).

Taking ψ = η

(L+k−u+)p−1 as a test function in (1.6), η ∈ W 1,p
0 (Br, w), η ⊂

sup pu+, and noting

Xψ =
Xη

(L+ k − u+)p−1 + (p− 1)
ηXu+

(L+ k − u+)p
,

it follows∫
Br

〈
A(x)Xu+, Xu+

〉 p−2
2

〈
A(x)Xu+,

Xη

(L+ k − u+)p−1

〉
dx

+

∫
Br

〈
A(x)Xu+, Xu+

〉 p−2
2

〈
A(x)Xu+,

(p− 1)η

(L+ k − u+)p
Xu+

〉
dx

=

∫
Br

g(x)
η

(L+ k − u+)p−1 dx.

Since the second term in the left-hand side is non-negative, we have∫
Br

〈A(x)Xv, Xv〉
p−2
2 〈A(x)Xv, Xη〉dx ≤

∫
Br

|g(x)| η

kp−1
dx.

Thanks to v ∈W 1,p(Br, w), v = 0 on ∂Br and (3.2),

sup
Br

v ≤ Cw(Br)
− 1
p (‖v‖Lp(Br,w) + r

p
p−1w(Br)

1
p
− 1
q(p−1)

1

k
‖g/w‖

1
p−1

Lq(Br,w)),

then by (3.7) and (3.13),

sup
Br

v ≤ Cw(Br)
− 1
p (w(Br)

1
p + w(Br)

1
p ) ≤ C.(3.14)

Using v = log L+k
L+k−u+ into (3.14), we have

L ≤ k(eC − 1),

which means

sup
Br

u+ ≤ (eC − 1)r
p
p−1w(Br)

− 1
q(p−1) ‖g/w‖

1
p−1

Lq(Br,w) .(3.15)

If l 6= 0, then u − l is also a weak solution to Lpu = g and satisfies
sup
∂Br

(u− l)+ = 0. Applying (3.15) to u− l, it yields (1.7).
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4. LOCAL BOUNDEDNESS

In this section, we use the Moser iteration technique with weight to prove
the local boundedness for weak solutions to (1.1). A known result is necessary.

Lemma 4.1 ([24], Lemma 2). Let α be a positive exponent and 0 < αi <∞
and 0 ≤ βi < α, i = 1, ..., N. Suppose that z is positive satisfying

zα ≤
N∑
i=1

αiz
βi .

Then

z ≤ C
N∑
i=1

(αi)
γi ,

where γi = (α− βi)−1, C depends only N,α and βi.

Lemma 4.2. Suppose that u ∈W 1,p(Ω, w) is a weak solution to (1.1) and
g/w ∈ Lq(Ω, w) (q > Q). Then there exist C > 0 and R0 > 0 such that for
any 0 < R ≤ R0, B4R ⊂ Ω, BR = B(x,R), we have

sup
BR

|u| ≤ C

((
1

w(B2R)

∫
B2R

|u|pwdx

)1/p

+K(R)

)
,(4.1)

where K(R) is stated in (1.9).

Proof. For x ∈ Ω, choose R0 > 0 sufficiently small such that B4R =
B(x, 4R) ⊂ Ω for any 0 < R ≤ R0. So inequalities in Lemma 2.3 hold for B4R.
Set ū = |u|+K, K = K(R), then Xū = X |u|.

For l > K and q0 ≥ 1, define

F (ū) =

{
ūq0 , K ≤ ū ≤ l,
q0l

q0−1ū− (q0 − 1)lq0 , ū > l,
(4.2)

and

G(u) = signu ·
(
F (ū)F ′(ū)p−1 − q0

p−1Kβ
)
,−∞ < u <∞,

where β satisfies pq0 = p+ β − 1. Clearly, β ≥ 1, F is continuously differential
and G is piecewisely smooth. It is easy to calculate F ′′ ≥ 0 and

FF ′p−1 =

{
q0
p−1ūβ, K ≤ ū ≤ l,

(q0l
q−1)p−1

(
q0l

q−1ū− (q0 − 1)lq0
)
, ū > l.

Set v = F (ū), then for K ≤ ū ≤ l,

FF ′p−1 = qp−1
0 ūβ+p−1ū1−p ≤ qp−1

0 K1−pvp,
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FF ′p−1 ≥ qp−1
0 Kβ;

and for ū > l,

FF ′p−1 = (q0l
q0−1)p−1

(
q0l

q0−1ū− (q0 − 1)lq0
)p(

q0l
q0−1ū− (q0 − 1)lq0

)1−p
≤ vp(q0l

q0−1)p−1lq0(1−p)

≤ qp−1
0 K1−pvp,

FF ′p−1 ≥ (q0l
q0−1)p−1

(
q0l

q0−1l − (q0 − 1)lq0
)

= (q0l
q0−1)p−1lq0 ≥ qp−1

0 Kβ.

Then

|G| =
∣∣∣FF ′p−1 − qp−1

0 Kβ
∣∣∣ ≤ FF ′p−1 ≤ qp−1

0 K1−pvp.(4.3)

Let us consider two cases |u| 6= l −K and |u|=l −K, respectively. For
|u| 6= l −K, define

ϕ = ηpG(u),

where η ∈ C∞0 (B2R), 0 ≤ η ≤ 1, then ϕ ∈W 1,p
0 (Ω, w) and

Xϕ = pηp−1G(u)Xη + ηpG′(u)Xu

with G′(u) ≥ F ′(ū)p. Taking ϕ into (1.6), we obtain from (1.2) and (4.3) that

0 =

∫
Ω
〈A(x)Xu,Xu〉

p−2
2 〈A(x)Xu,Xu〉 ηpG′(u)dx

(4.4)

+

∫
Ω
〈A(x)Xu,Xu〉

p−2
2 〈A(x)Xu,Xη〉 pηp−1G(u)dx−

∫
Ω
g(x)ηpG(u)dx

≥ λ−
p
2

∫
B2R

ηp(F ′)
p|Xu|pwdx− pλ

p
2

∫
B2R

ηp−1F (F ′)
p−1|Xu|p−1 |Xη|wdx

− qp−1
0 K1−p

∫
B2R

∣∣∣ g
w

∣∣∣ ηpvpwdx

≥ λ−
p
2

∫
B2R

|ηXv|pwdx− pλ
p
2

∫
B2R

|ηXv|p−1 |vXη|wdx− qp−1
0 K1−p∫

B2R

∣∣∣ g
w

∣∣∣ (ηv)pwdx.

For the case |u|=l −K, it follows Xu = Xū = 0 and Xϕ = pηp−1G(u)Xη for
ϕ = ηpG(u), therefore (4.4) also holds.

Applying (2.3), (2.5) and (1.9) into (4.4), we have

qp−1
0 K1−p

∫
B2R

∣∣∣ g
w

∣∣∣ (ηv)pwdx(4.5)

≤ qp−1
0 K1−p

∥∥∥ g
w

∥∥∥
Lq(B2R,w)

‖ηv‖p(q−Q)/q
Lp(B2R,w) ‖ηv‖

pQ/q

L
pQ
Q−1 (B2R,w)
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≤ Cqp−1
0 K1−p

∥∥∥ g
w

∥∥∥
Lq(B2R,w)

‖ηv‖p(q−Q)/q
Lp(B2R,w)

(
2Rw(B2R)

Q−1
pQ
− 1
p

)pQ/q
‖X(ηv)‖pQ/qLp(B2R,w)

≤ Cqp−1
0 ‖ηv‖p(q−Q)/q

Lp(B2R,w)

(
‖ηXv‖pQ/qLp(B2R,w) + ‖vXη‖pQ/qLp(B2R,w)

)
.

Using (2.3) and (4.5) into (4.4),

‖ηXv‖pLp(B2R,w) ≤C
(∫

B2R

|ηXv|p−1 |vXη|wdx+ qp−1
0 K1−p

∫
B2R

∣∣∣ g
w

∣∣∣ (ηv)pwdx

)
≤ C ‖ηXv‖p−1

Lp(B2R,w) ‖vXη‖Lp(B2R,w)

+ Cqp−1
0 ‖ηv‖p(q−Q)/q

Lp(B2R,w)

(
‖ηXv‖pQ/qLp(B2R,w)+‖vXη‖pQ/qLp(B2R,w)

)
.

Noting q0 ≥ 1, 0 < p(q−Q)
q < p and using Lemma 4.1, we have

‖ηXv‖Lp(B2R,w)(4.6)

≤ C‖vXη‖Lp(B2R,w) + Cq
q(p−1)
p(q−Q)

0 ‖ηv‖Lp(B2R,w)

+ Cq
p−1
p

0 ‖ηv‖
q−Q
q

Lp(B2R,w) ‖vXη‖
Q
q

Lp(B2R,w)

≤ C‖vXη‖Lp(B2R,w) + Cq
q(p−1)
p(q−Q)

0 ‖ηv‖Lp(B2R,w)

+ Cq
p−1
p

0

(
‖ηv‖Lp(B2R,w)+‖vXη‖Lp(B2R,w)

)
≤ C(1 + q

p−1
p

0 )‖vXη‖Lp(B2R,w) + C(q
q(p−1)
p(q−Q)

0 + q
p−1
p

0 )‖ηv‖Lp(B2R,w)

≤ Cq
q

q−Q
0 (‖vXη‖Lp(B2R,w) + ‖ηv‖Lp(B2R,w)).

From (2.5) and (4.6), it gets

(
1

w(B2R)

∫
B2R

(ηv)k0pwdx

) 1
k0p

(4.7)

≤ CR
(

1

w(B2R)

∫
B2R

|X(ηv)|pwdx

) 1
p

≤ CRw(BR)
− 1
p (‖vXη‖Lp(B2R,w) + ‖ηXv‖Lp(B2R,w))

≤ CRw(BR)
− 1
p

(
‖vXη‖Lp(B2R,w) + Cq

q
q−Q
0 (‖vXη‖Lp(B2R,w) + ‖ηv‖Lp(B2R,w))

)
≤ Cq

q
q−Q
0 Rw(B2R)

− 1
p (‖vXη‖Lp(B2R,w)+‖ηv‖Lp(B2R,w)),
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where k0 = Q
Q−1 . Now select η ∈ C∞0 (BbR) in (4.7) such that η = 1 in BaR and

|Xη| ≤ C
(b−a)R , 1 ≤ a < b ≤ 2, then(∫

BaR

vk0pwdx

) 1
k0p

≤ Cq
q

q−Q
0 w(BR)

1
k0p
− 1
p

R

(
C

(b− a)R
+ 1

)(∫
BbR

vpwdx

) 1
p

≤ Cq
q

q−Q
0 w(BR)

1
k0p
− 1
p C + d(Ω)

(b− a)

(∫
BbR

vpwdx

) 1
p

≤ Cq
q

q−Q
0 w(BR)

1
k0p
− 1
p 1

b− a

(∫
BbR

vpwdx

) 1
p

.

Letting l→∞ in (4.2), we get v = ūq0 and so

(4.8)

(∫
BaR

ūk0pq0wdx

) 1
k0pq0

≤ C
1
q0 q

q
(q−Q)q0
0 w(BR)

1
q0

(
1
k0p
− 1
p

)(
1

b− a

) 1
q0

(∫
BbR

ūpq0wdx

) 1
pq0

.

Taking q0 = ki0, θi = pki0, b = 1 + 2−i, a = 1 + 2−(i+1), i = 0, 1, ..., then (4.8)
becomes(∫

Bγi+1R

ūθi+1wdx

) 1
θi+1

≤ Ck
−i
0
(
ki0
) q
q−Qk

−i
0 w(BR)

k−i0

(
1
k0p
− 1
p

)(
1

b− a

)k−i0

(∫
BγiR

ūθiwdx

) 1
θi

,

and by iterating m times,

(4.9)

(∫
Bγm+1R

ūθi+1wdx

) 1
θi+1

≤ C
m∑
i=0

k−i0

(
k

q
q−Q
0

) m∑
i=0

ik−i0

· w(BR)

(
1
k0p
− 1
p

) m∑
i=0

k−i0

2

m∑
i=0

(i+1)k−i0

(∫
B2R

ūpwdx

) 1
p

,

Since
∞∑
i=0

k−i0 ,
∞∑
i=0

ik−i0 and
∞∑
i=0

(i+ 1)k−i0 are all convergent, and
(

1
k0p
− 1

p

)∞∑
i=0
k−i0

= −1
p , we obtain by letting m→∞ in (4.9) that

sup
BR

ū ≤ C
(

1

w(B2R)

∫
B2R

ūpwdx

)1/p

,(4.10)

where ū = |u|+K. Thus (4.1) is proved.
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Lemma 4.3. Let u ∈ W 1,p(Ω, w) be a weak solution to (1.1) and g/w ∈
Lq(Ω, w) (q > Q), then there exist C > 0 and R0 > 0 such that for any
0 < R ≤ R0 and α > 0, we have

sup
BR

ū ≤ C
(

1

w(B2R)

∫
B2R

ūαwdx

)1/α

,(4.11)

where BR = B(x,R), B4R ⊂ Ω.

Proof. Since (4.11) is just (4.10) for α = p, the remaining is to prove
(4.11) for α 6= p. We denote q0 = ki0, θi = pki0, k0 = Q

Q−1 in (4.8), instead b, a

with a+ (b− a)i+1, a+ (b− a)i+2, and iterate m times to obtain(∫
Bχm+1R

ūθi+1wdx

) 1
θi+1

≤ C
m∑
i=0

k−i0

(
k

q
q−Q
0

) m∑
i=0

ik−i0

w(BR)

(
1
k0p
− 1
p

) m∑
i=0

k−i0

· (b− a)
−

m∑
i=0

(i+1)k−i0

(∫
BbR

ūpwdx

) 1
p

.

Letting m→∞ and noting
∞∑
i=0

(i+ 1)k−i0 = Q2, it has

sup
BaR

ū ≤ C(b− a)−Q
2

(
1

w(BbR)

∫
BbR

ūpwdx

)1/p

.(4.12)

Without loss of generality we assume 0 < α < p (the case α > p can be treated
by Hölder’s inequality) and denote

J(s) = w(BR)
p
α
−1

(∫
B2sR

ūpwdx

)(∫
B2R

ūαwdx

)− p
α

.

Taking a = 1, b = 4/3 in (4.12) and applying (2.1), it yields

sup
BR

ūα ≤ C

(
1

w(B4R/3)

∫
B4R/3

ūpwdx

)α/p(4.13)

≤ C
(

1

w(BR)

∫
B2R

ūαwdx

)
w(BR)

α
p

( p
α
−1)

(∫
B4R/3

ūpwdx

)α
p(∫

B2R

ūαwdx

)−1

=

(
C

w(BR)

∫
B2R

ūαwdx

)
J

(
2

3

)α
p

.

We claim that there exists C > 0 independent of R, such that

J

(
2

3

)
≤ C.(4.14)
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In fact, it is enough to prove (4.14) under the assumption J
(

2
3

)
> 1. For

1
2 < s1 < s2 ≤ 1, we have by using (4.12) (a = 2s1, b = 2s2 ) and (2.1) that

J(s1) ≤ w(BR)
p
α
−1 sup

B2s1R

ūp−α

(∫
B2s1R

ūαwdx

)(∫
B2R

ūαwdx

)− p
α

≤ w(BR)
p
α
−1 C

(s2 − s1)Q
2(p−α)

(
1

w(B2s2R)

∫
B2s2R

ūpwdx

) p−α
p

·

(∫
B2s1R

ūαwdx

)(∫
B2R

ūαwdx

)− p
α

≤ C

(s2 − s1)Q
2(p−α)

w(BR)
( p
α
−1) p−α

p

(∫
B2s2R

ūpwdx

)p−α
p (∫

B2R

ūαwdx

)1− p
α

=
(
C(s2 − s1)−Q

2pJ(s2)
) p−α

p
.

Therefore

log J(s1) ≤ p− α
p

(
logC −Q2p log(s2 − s1) + log J(s2)

)
.(4.15)

Let s1 = sθ2 (θ > 1) in (4.15) and integrate on the interval
[(

2
3

)1/θ
, 1
]
with

respect to ds2
s2

, then

1

θ

∫ 1

2
3

log J(ρ)
dρ

ρ
≤ C +

p− α
p

∫ 1

( 2
3)

1/θ
log J(ρ)

dρ

ρ
≤ C +

p− α
p

∫ 1

2
3

log J(ρ)
dρ

ρ
,

(4.16)

where we have used ρ = sθ2, J
(

2
3

)
> 1, and the fact that log J(ρ) is increasing

and

−
∫ 1

( 2
3)

1
θ

log(s2 − s1)
ds2

s2
> 0.

Choosing θ ∈ (1, p
p−α), we conclude J

(
2
3

)
≤ C from (4.16).

Now (4.11) is deduced by (4.13).

5. PROOF OF THEOREM 1.2

In this section, we will use the results in Section 4 to prove the Harnack
inequality.

Proof of Theorem 1.2. Without loss of generality, we assume u > 0 a.e.
in Ω and denote ū = u+K, K = K(R). The proof is divided into three steps.
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Step 1. Let us confirm that there exist positive constants p0 and C such
that (

1

w(B2R)

∫
B2R

ūp0wdx

) 1
p0

≤ C

(
1

w(B2R )

∫
B2R

ū−p0wdx

)
− 1
p0 .(5.1)

In fact, take v = log ū, then Xv = Xu/ū.

Choose ϕ = ηpū1−p as a test function in (1.6), where η ∈ C∞0 (B2R) such
that 0 ≤ η ≤ 1 in B2R, η = 1 in BR, and |Xη| ≤ C

R , then

0 =

∫
Ω
〈A(x)Xu,Xu〉

p−2
2 〈A(x)Xu,Xη〉 pηp−1ū1−pdx

(5.2)

+

∫
Ω
〈A(x)Xu,Xu〉

p−2
2 〈A(x)Xu,Xu〉 (1− p)ηpū−pdx −

∫
Ω
g(x)ηpū1−pdx

≤ pλ
p
2

∫
B2R

|Xu|p−1 |Xη| ηp−1ū1−pwdx− (p− 1)λ−
p
2

∫
B2R

ηpū−p|Xu|pwdx

+

∫
B2R

∣∣∣ g
w

∣∣∣ ηpū1−pwdx

≤ pλ
p
2

∫
B2R

|ηXv|p−1 |Xη|wdx− (p− 1)λ−
p
2

∫
B2R

|ηXv|pwdx

+K1−p
∫
B2R

∣∣∣ g
w

∣∣∣ ηpwdx.

To the last term in the right hand side of (5.2), we apply (2.3), (2.5) and (1.9)
to get

K1−p
∫
B2R

∣∣∣ g
w

∣∣∣ ηpwdx

(5.3)

≤ K1−p
∥∥∥ g
w

∥∥∥
Lq(B2R,w)

‖η‖pQ/q
L
pQ
Q−1 (B2R,w)

‖η‖p(q−Q)/q
Lp(B2R,w)

≤ CK1−p
∥∥∥ g
w

∥∥∥
Lq(B2R,w)

‖η‖p(q−Q)/q
Lp(B2R,w)

(
2Rw(B2R)

Q−1
pQ
− 1
p

)pQ/q
‖Xη‖pQ/qLp(B2R,w)

≤ C ‖η‖p(q−Q)/q
Lp(B2R,w) ‖Xη‖

pQ/q
Lp(B2R,w) .

Putting (5.3) into (5.2) and using (2.3), it follows∫
B2R

|ηXv|pwdx

≤ C
∫
B2R

|ηXv|p−1 |Xη|wdx+C ‖η‖p(q−Q)/q
Lp(B2R,w) ‖Xη‖

pQ/q
Lp(B2R,w)
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≤ C
(∫

B2R

|ηXv|pwdx

)p−1
p
(∫

B2R

|Xη|pwdx

)1
p

+ C ‖η‖p(q−Q)/q
Lp(B2R,w) ‖Xη‖

pQ/q
Lp(B2R,w)

and from Lemma 4.1,

‖ηXv‖Lp(B2R,w) ≤ C‖Xη‖Lp(B2R,w) + C ‖η‖(q−Q)/p
Lp(B2R,w) ‖Xη‖

Q/q
Lp(B2R,w) .(5.4)

Using (2.4) and (5.4), we obtain

‖v − vBR‖Lp(BR,w) ≤ CR‖Xv‖Lp(BR,w)

≤ R

(
C

R
w(B2R)

1
p + Cw(B2R)

q−Q
pq

(
C

R

)Q
q

w(B2R)
Q
pq

)
≤ C(1 + diam(Ω)(q−Q)/q)w(BR)

1
p ,

where vBR = 1
w(BR)

∫
BR

vwdx. Hence

1

w(BR)

∫
BR

|v − vBR |
pwdx ≤ C.(5.5)

By (5.5) and the weighted John-Nirenberg inequality (Buckley [3], Theorem
2.2), there exist positive constants p0 and M0 such that

1

w(B2R)

∫
B2R

exp (p0 |v − vB2R
|)wdx ≤M0.

Since

1

w(B2R)

∫
B2R

exp (p0 |v − vB2R
|)wdx ≥ 1

w(B2R)

∫
B2R

exp (p0v − p0vB2R
)wdx,

1

w(B2R)

∫
B2R

exp (p0 |v − vB2R
|)wdx ≥ 1

w(B2R)

∫
B2R

exp (p0vB2R
− p0v)wdx,

then

1

w(B2R )

∫
B2R

ū−p0wdx · 1

w(B2R)

∫
B2R

ūp0wdx

=
1

w(B2R)

∫
B2R

exp(−p0v)wdx · 1

w(B2R)

∫
B2R

exp(p0v)wdx

=
1

w(B2R)

∫
B2R

exp(p0v − p0vB2R
)wdx · 1

w(B2R)

∫
B2R

exp(p0vB2R
− p0v)wdx

≤
(

1

w(B2R)

∫
B2R

exp(p0 |v − vB2R
|)wdx

)2

≤M2
0 ,

and this completes the proof of (5.1).
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Step 2. We deduce that there exists a positive constant C such that

inf
BR

ū ≥ C
(

1

w(B2R)

∫
B2R

ū−p0wdx

)− 1
p0

.(5.6)

In fact, denote ϕ = ηpūβ and h = ūq1 , where η ∈ C∞0 (B2R), 0 ≤ η ≤ 1, β ≤ −1
and q1 = β+p−1

p < 0. Taking ϕ into (1.6) yields

0 =

∫
Ω
〈A(x)Xu,Xu〉

p−2
2 〈A(x)Xu,Xη〉 pηp−1ūβdx

(5.7)

+

∫
Ω
〈A(x)Xu,Xu〉

p−2
2 〈A(x)Xu,Xu〉βηpūβ−1dx −

∫
Ω
g(x)ηpūβdx

≤ pλ
p
2

∫
B2R

|Xu|p−1 |Xη| ηp−1ūβwdx+ βλ−
p
2

∫
B2R

ηpūβ−1|Xu|pwdx

+K1−p
∫
B2R

∣∣∣ g
w

∣∣∣ ηpūβ+p−1wdx

= pλ
p
2 |q1|1−p

∫
B2R

|ηXh|p−1 |hXη|wdx+ βλ−
p
2 |q1|−p

∫
B2R

|ηXh|pwdx

+K1−p
∫
B2R

∣∣∣ g
w

∣∣∣ (ηh)pwdx.

Noting (2.3), (2.5) and (1.9), we have

K1−p
∫
B2R

∣∣∣ g
w

∣∣∣ (ηh)pwdx,(5.8)

≤ K1−p
∥∥∥ g
w

∥∥∥
Lq(B2R,w)

‖ηh‖p(q−Q)/q
Lp(B2R,w) ‖ηh‖

pQ/q

L
pQ
Q−1 (B2R,w)

≤ CK1−p
∥∥∥ g
w

∥∥∥
Lq(B2R,w)

‖ηh‖p(q−Q)/q
Lp(B2R,w)

(
2Rw(B2R)

Q−1
pQ
− 1
p

)pQ/q
·
(
‖ηXh‖pQ/qLp(B2R,w) + ‖hXη‖pQ/qLp(B2R,w)

)
≤ C ‖ηh‖p(q−Q)/q

Lp(B2R,w)

(
‖ηXh‖pQ/qLp(B2R,w) + ‖hXη‖pQ/qLp(B2R,w)

)
.

By (5.7), (5.8), (2.3) and Lemma 4.1,

‖ηXh‖pLp(B2R,w) ≤ |β| ‖ηXh‖
p
Lp(B2R,w)(5.9)

≤ C |q1|
∫
B2R

|ηXh|p−1 |hXη|wdx+ C|q1|pK1−p
∫
B2R

∣∣∣ g
w

∣∣∣ (ηh)pwdx

≤ C |q1| ‖ηXh‖p−1
Lp(B2R,w) ‖hXη‖Lp(B2R,w)

+ C|q1|p ‖ηh‖p(q−Q)/q
Lp(B2R,w)

(
‖ηXh‖pQ/qLp(B2R,w) + ‖hXη‖pQ/qLp(B2R,w)

)
,
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≤ C |q1| ‖hXη‖Lp(B2R,w) + C |q1| ‖ηh‖(q−Q)/q
Lp(B2R,w) ‖hXη‖

Q/q
Lp(B2R,w)

+ C|q1|q/(q−Q)‖ηh‖Lp(B2R,w)

≤ C |q1| ‖hXη‖Lp(B2R,w) + C |q1|
(
‖ηh‖Lp(B2R,w)+‖hXη‖Lp(B2R,w)

)
+ C|q1|q/(q−Q)‖ηh‖Lp(B2R,w)

≤ C
(
|q1|+ |q1|q/(q−Q)

)(
‖ηh‖Lp(B2R,w)+‖hXη‖Lp(B2R,w)

)
.

Applying(5.9) and (2.5), then

‖ηh‖Lk0p(B2R,w) ≤ CRw(B2R)
1
k0p
− 1
p ‖X(ηh)‖Lp(B2R,w)

(5.10)

≤ CRw(B2R)
1
k0p
− 1
p

(
‖ηXh‖Lp(B2R,w) + ‖hXη‖Lp(B2R,w)

)
≤ CRw(B2R)

1
k0p
− 1
p

(
C
(
|q1|+ |q1|q/(q−Q)

)
·
(
‖ηh‖Lp(B2R,w)+‖hXη‖Lp(B2R,w)

)
+ ‖hXη‖Lp(B2R,w)

)
≤ C

(
1 + |q1|+ |q1|q/(q−Q)

)
Rw(B2R)

1
k0p
− 1
p

(
‖ηh‖Lp(B2R,w)+‖hXη‖Lp(B2R,w)

)
≤ C(1 + |q1|)q/(q−Q)Rw(B2R)

1
k0p
− 1
p

(
‖ηh‖Lp(B2R,w)+‖hXη‖Lp(B2R,w)

)
,

where q > Q, k0 = Q/(Q − 1). Taking h = ūq1(q1 < 0) and η ∈ C∞0 (BbR) in
(5.10) with η = 1 in BaR, |Xη| ≤ C

(b−a)R , 1 ≤ a < b ≤ 2, it follows

(5.11)

(∫
BaR

ūk0pq1wdx

) 1
k0pq1

≥ C
1
q1 (1 + |q1|)

p
ε

1
q1w(B2R)

(
1
k0p
− 1
p

)
1
q1 (b− a)

− 1
q1

(∫
BbR

ūpq1wdx

) 1
pq1

.

Denoting q1 = −p0
p k

i
0, θi = −p0k

i
0, b = χi = 1+2−i, and a = χi+1 = 1+2−(i+1),

(i = 0, 1, ...) in (5.11) and iterating m times, we have(∫
Bχi+1R

ūθi+1wdx

) 1
θi+1

≥ C−
p
p0
k−i0

(
1 +

p0

p
ki0

)− q
q−Q

p
p0
k−i0

w(B2R)

(
1
p
− 1
k0p

)
p
p0
k−i0 2

−(i+1) p
p0
k−i0

(∫
BχiR

ūθiwdx

) 1
θi
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≥ C
− p
p0

m∑
i=0

k−i0
m∏
i=0

(
1 +

p0

p
ki0

)− q
q−Q

p
p0
k−i0

w(B2R)
1

p0Q

m∑
i=0

k−i0
2
− p
p0

m∑
i=0

(i+1)k−i0

(∫
B2R

ū−p0wdx

)− 1
p0

≥ C
− p
p0

m∑
i=0

k−i0

(
p0

p
k

)− q
q−Q

p
p0

m∑
i=0

ik−i0

w(B2R)
1

p0Q

m∑
i=0

k−i0
2
− p
p0

m∑
i=0

(i+1)k−i0

(∫
B2R

ū−p0wdx

)− 1
p0

.

Now (5.6) is proved by letting m→∞ .

Step 3. From Lemma 4.3, there exists a positive constant C such that

sup
BR

ū ≤ C
(

1

w(B2R)

∫
B2R

ūp0wdx

) 1
p0

.(5.12)

Combining (4.16), (5.6) and (5.12), we conclude

sup
BR

u ≤ sup
BR

ū ≤ C
(

1

w(B2R)

∫
B2R

ūp0wdx

) 1
p0

≤ C

(
1

w(B2R )

∫
B2R

ū−p0wdx

)
− 1
p0

≤ C inf
BR

ū = C

(
inf
BR

u+K

)
.

This proves Theorem 1.2.

6. PROOF OF THEOREM 1.3

The proof of Theorem 1.3 is based on Theorem 1.2 and the following
lemma.

Lemma 6.1 ([25]). If ω is a non-decreasing and non-negative function in
[0, R̃], such that for 0 < θ1, θ2 < 1, 0 < θ3 ≤ 1, H ≥ 0,

ω(θ1R) ≤ θ2ω(R) +HRθ3 , 0 < R ≤ R0,

then there exist 0 < θ0 ≤ θ3 and C > 0 such that

ω(R) ≤ C
(
R

R0

)θ0 (
ω(R0) +HRθ30

)
,

where θ0 only depends on θ1, θ2 and θ3.
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Proof of Theorem 1.3. We have (1.8) and (1.9) from Theorem 1.2. Picking

0 < α < min
{

1, pQ
q(p−1)

}
, then α ∈ (0, 1), pQ

q − α(p− 1) > 0 and

K(R) = Rα
(
RpQ/q−α(p−1)w(B2R)

− 1
q

∥∥∥ g
w

∥∥∥
Lq(B2R,w)

) 1
p−1

≤ Rα
∥∥∥ g
w

∥∥∥ 1
p−1

Lq,pQ−αq(p−1)(Ω,w)
.(6.1)

Combing (1.8) and (6.1), it yields

sup
BR

u ≤ C
(

inf
BR

u+Rα
∥∥∥ g
w

∥∥∥ 1
p−1

Lq,pQ−αq(p−1)(Ω,w)

)
.(6.2)

Denoting M(R) = sup
BR(x0)

u(x), m(R) = inf
BR(x0)

u(x) and v1(x) = u(x)−m(R) ≥

0, we get from (6.2) that

sup
BR/4(x0)

v1(x) ≤ C

(
inf

BR/4(x0)
v1(x) +Rα

∥∥∥ g
w

∥∥∥ 1
p−1

Lq,pQ−αq(p−1)(Ω,w)

)
,

where we have assumed C > 1. Similarity, setting v2(x) = M(R) − u(x) ≥ 0,
then by (6.2),

sup
BR/4(x0)

v2(x) ≤ C

(
inf

BR/4(x0)
v2(x) +Rα

∥∥∥ g
w

∥∥∥ 1
p−1

Lq,pQ−αq(p−1)(Ω,w)

)
,

therefore

M(R/4)−m(R) ≤ C
(
m(R/4)−m(R) +Rα

∥∥∥ g
w

∥∥∥ 1
p−1

Lq,pQ−αq(p−1)(Ω,w)

)
,(6.3)

M(R)−m(R/4) ≤ C
(
M(R)−M(R/4) +Rα

∥∥∥ g
w

∥∥∥ 1
p−1

Lq,pQ−αq(p−1)(Ω,w)

)
.(6.4)

Using (6.3) and (6.4), we have

M(R/4)−m(R/4) ≤ C − 1

C + 1
(M(R)−m(R))+

2C

C + 1
Rα
∥∥∥ g
w

∥∥∥ 1
p−1

Lq,pQ−αq(p−1)(Ω,w)
,

It shows by Lemma 6.1 that

M(R)−m(R) ≤ CRα.(6.5)

Assume B9r(x0) ⊂ Ω (r ≤ R0) and denote r′ = d(x, y) for any x, y ∈ Br(x0).
Since B8r(x) ⊂ B9r(x0) ⊂ Ω, it follows by (6.5) that

|u(x)− u(y)| ≤ sup
Br′ (x)

u− inf
Br′ (x)

u ≤ Cr′α,
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Moreover,

|u(x)− u(y)|
d(x, y)α

≤ C.

By virtue of finite covering theorem we get (1.10) for any Ω′ ⊂⊂ Ω .
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