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In this paper, we present some characterizations of the Birkhoff-James orthogo-
nality in B(H) the algebra of bounded linear operators on Hilbert space H and
we show that orthogonality of A and B implies orthogonality of An and B for
positive operator A and n ∈ N. We give an example to show that positivity of
A is required. We also investigate some related results to this issue.
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1. INTRODUCTION

Throughout this paper H will be a complex Hilbert space. Denoting by
B(H) the algebra of bounded linear operators on H. The notion of Birkhoff-
James orthogonality in an arbitrary normed linear space is studied in literature
[7–9]. For A,B ∈ B(H), the operator A is said to be Birkhoff-James orthogonal
(shortly orthogonal) to B, denoted by A⊥B, if ‖A+λB‖ ≥ ‖A‖ for all complex
numbers of λ.

In inner product spaces (such Hilbert spaces), this orthogonality is equi-
valent to the usual notion of orthogonality. Obviously, Birkhoff-James ort-
hogonality is nondegenerate, thus A⊥A ⇐⇒ A = 0. It is homogenous, thus
A⊥B ⇐⇒ λA⊥µB for λ, µ ∈ C, and not symmetric, thus A⊥B need not imply
B⊥A. However, Turnšek in [11] proved that A⊥B always implies B⊥A if and
only if B is a scalar multiple of an isometry or coisometry. If H is a Hilbert C∗-
module, some characterizations of the Birkhoff-James orthogonality were given
by Arambašic̀ and Rajic̀ in [1,2]. Characterizations of the Birkhoff-James ort-
hogonality in C∗-algebras and B(H) were obtained in [5]. Bhatia and Šemrl [4]
obtained one of the most important results of the Birkhoff-James orthogonality
in the C∗-algebra B(H). The following result is the content of Theorem 1.1
and Remark 3.1 of [4].
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Theorem 1. Let A,B ∈ B(H). The following statements hold.

(1) If dim(H)<∞, then A⊥B if and only if there exists a unit vector ξ ∈ H
such that ‖Aξ‖ = ‖A‖ and 〈Aξ,Bξ〉 = 0.

(2) If dim(H)= ∞, then A⊥B if and only if there exists a sequence of unit
vectors (ξn) ⊂ H such that limn→∞ ‖Aξn‖ = ‖A‖ and limn→∞〈Aξn,
Bξn〉 = 0.

The authors in [3] showed a similar theorem for the algebra of bounded
linear operators on a real finite dimention normed space X with the norm
induced by an inner product. Motivated by these, the purpose of this paper is
to improve these characterizations for elements of B(H). In addition, we show
that orthogonality of A and B implies orthogonality of An and B for positive
operator A and n ∈ N. We give an example to show that positivity of A is
required. In addition, by giving an example we show that if A⊥B then A+ I
is not necessarily orthogonal to B. Also, some related results are discussed for
elements of B(H).

We recall some basic facts about the C∗-algebra B(H), before stating
our results. For A ∈ B(H) the symbol ‖A‖ denotes the operator norm of A
satisfying ‖A∗A‖ = ‖A‖2. Denoting by I the identity operator on H. An
operator A ∈ B(H) is said to be positive if it is self-adjoint whose spectrum
is contained in [0,∞), or equivalently, 〈Ax, x〉 ≥ 0 for all x ∈ H. We write
A ≥ 0, for a positive element A ∈ B(H). If A,B are self-adjoint elements of
B(H) such that A − B ≥ 0, we write A ≥ B. For every A ≥ 0, there exists a
unique positive B ∈ B(H) such that A = B2, such an element B denoted by

A
1
2 . Our reference for the theory of C∗-algebras and B(H) is [10].

2. MAIN RESULTS

We start this section with a lemma.

Lemma 1. If A,B ∈ B(H) and A is a nonzero positive operator. The
following statements hold.

(1) If dim(H)<∞, then A⊥B if and only if there exists a unit vector ξ ∈ H
such that Aξ = ‖A‖ξ and 〈ξ,Bξ〉 = 0.

(2) If dim(H)= ∞, then A⊥B if and only if there exists a sequence of unit
vectors (ξn) ⊂ H such that limn→∞Aξn − ‖A‖ξn = 0 and limn→∞〈ξn,
Bξn〉 = 0.

Proof. Let dim(H)= ∞ and let A⊥B. By Theorem 1 ((2)), there exists
a sequence of unit vectors (ξn) ⊂ H such that limn→∞ ‖Aξn‖ = ‖A‖ and
limn→∞〈Aξn, Bξn〉 = 0. By Lemma 2.1 in [11], which shows that if (ξn) is a
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sequence of unit vectors inH such that ‖Aξn‖ −→ ‖A‖ then Aξn−‖A‖ξn −→ 0,
we obtain limn→∞Aξn − ‖A‖ξn = 0. Also, we have 0 = limn→∞〈Aξn, Bξn〉 =
limn→∞〈‖A‖ξn, Bξn〉. So limn→∞〈ξn, Bξn〉 = 0.

Conversely, the proof is obvious.

Using Theorem 1 (1), we can similarly prove the statement (1). �

Remark 1. If A ∈ B(H) is a nonzero positive operator then An is a
nonzero positive operator for each n ∈ N. Moreover, we have ‖An‖ = ‖A‖n.

Theorem 2. Let A,B ∈ B(H) and let A be a positive operator. If A⊥B
then Am⊥B for all m ∈ N. Moreover, if Am⊥B for some m ∈ N then A⊥B.

Proof. Let A > 0 and A⊥B. Then by Lemma 1, there exists a sequence
of unit vectors (ξn) ⊂ H such that Aξn − ‖A‖ξn −→ 0. Now we have:

lim
n→∞

Amξn = lim
n→∞

Am−1(Aξn)

= lim
n→∞

Am−1(‖A‖ξn) = lim
n→∞

‖A‖Am−1(ξn)

= lim
n→∞

‖A‖Am−2(Aξn)

= lim
n→∞

‖A‖2Am−2(ξn)

By continuing this process we obtain that limn→∞A
mξn = limn→∞ ‖A‖mξn.

Hence

lim
n→∞

Amξn − ‖Am‖ξn = lim
n→∞

‖A‖mξn − ‖Am‖ξn = 0.

Since 〈ξn, Bξn〉 −→ 0 we get Am⊥B for all m ∈ N.

Moreover, if Am⊥B for some m ∈ N then there is a sequence of unit
vectors (ξn) ⊂ H such that limn→∞ ‖Am(ξn)‖ = ‖A‖m and limn→∞A

mξn −
‖A‖mξn = 0 and limn→∞〈Amξn, Bξn〉 = 0. Put ηn := Am−1ξn

‖A‖m−1 which is a

sequence of unit vectors. So we obtain that:

lim
n→∞

‖A(ηn)‖ = lim
n→∞

‖A(
Am−1ξn
‖A‖m−1

)‖ = ‖A‖.

Thus limn→∞Aηn − ‖A‖ηn = 0. Also:

lim
n→∞

〈Aηn, Bηn〉 = lim
n→∞

〈 1

‖A‖m−1
Amξn,

1

‖A‖
B(‖A‖ηn)〉

= lim
n→∞

〈 1

‖A‖m−1
Amξn,

1

‖A‖m
B(Amξn)〉

= lim
n→∞

〈 1

‖A‖m−1
Amξn, Bξn〉 = 0

Hence A⊥B. �
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The following example shows that the positivity condition is required in
the last theorem.

Example 1. Let A : l2 −→ l2 such that A(x1, x2, x3, ...) = (λx2, 0, λ1x3,
λ2x4, ...) that 0 < λ1 < λ2 < ... < λ and λj → λ. Clearly, A is not positive.
Also, we have

‖Ax‖2 =
∞∑
i=1

|(Ax)i|2

= |λ|2|x2|2 +
∞∑
i=1

|λixi+2|2

< |λ|2
∞∑
i=1

|xi|2.

Thus ‖A‖ ≤ λ. Since Ae2 = (λ, 0, 0, ....), we have ‖Ae2‖ = λ. So ‖A‖ = λ.
Hence ‖Ae2‖ = λ = ‖A‖. If B(x1, x2, x3, ...) = (λx1, 0, λ1x3, λ2x4, ...) then
B(e2) = 0. Therefore A⊥B.

On the other hand, A2(x1, x2, x3, ...) = (0, 0, λ21x3, λ
2
2x4, ...) and we have

‖A2x‖2 =
∞∑
i=1

|λ2ixi+2|2 < λ4
∞∑
i=1

|xi|2.

So ‖A2‖ ≤ λ2. Also, supj ‖A2ej‖ ≤ ‖A2‖ and ‖A2ej‖ = λ2j for j ≥ 3. Thus

‖A2‖ ≥ limj λ
2
j = λ2. Hence ‖A2‖ = λ2. But for every x ∈ H, we obtain that

A2x 6= ‖A2‖x = λ2x. It means that A2 is not orthogonal to B.

Proposition 1. Let A,B ∈ B(H) and A be a positive operator. The
following statements hold.

(1) If dim(H) < ∞, then A⊥B if and only if there is a unit vector ξ ∈ H
such that ‖A‖ = 〈Aξ, ξ〉 and 〈ξ,Bξ〉 = 0.

(2) If dim(H) =∞, then A⊥B if and only if there is a sequence of unit vec-
tors (ξn) ∈ H such that ‖A‖ = limn→∞〈Aξn, ξn〉 and limn→∞〈ξn, Bξn〉 =
0.

Proof.

(1) Let ‖A‖ = 〈Aξ, ξ〉 for some ξ ∈ H. Put Ã := ‖A‖I − A. We have
〈Aξ, ξ〉 + 〈Ãξ, ξ〉 = ‖A‖. So 〈Ãξ, ξ〉 = 0. Since Ã is positive we obtain
that Ãξ = 0, so ‖A‖ξ = Aξ. Hence A⊥B.

Conversely, the proof is obvious.

(2) The proof is similar to the last part. �

In the next example, we want to show that if A⊥B then A + I is not
necessarily orthogonal to B.
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Example 2. Let H be a Hilbert space with an orthonormal basis (ej)j .
We define the operator A : H −→ H by Aej = λjej and B : H −→ H by
Bej = λjej+1 with λj = αj + iβj which α2

j +β2j = 1 and 0 < α1 < α2 < ... < α
with αj −→ α. We can see ‖Ax‖ = ‖x‖ for all x ∈ H. Since ‖Ae1‖ = ‖e1‖ =
1 = ‖A‖ and Be1 = 0, so A⊥B.

Now we want to show A+I is not orthogonal to B. Since for every x ∈ H
we have x =

∑
j〈x, ej〉ej , we get Ax+ x =

∑
j(1 + λj)〈x, ej〉ej . So

‖Ax+ x‖2 =
∑
j

|1 + λj |2|〈x, ej〉|2

=
∑
j

(1 + λj)(1 + λ̄j)|〈x, ej〉|2

=
∑
j

2(1 + αj)|〈x, ej〉|2

< 2(1 + α)‖x‖2.

On the other hand, ‖(A + I)ej‖ =
√

2(1 + αj) and ‖A + I‖ ≥ limj ‖(A +

I)ej‖ =
√

2(1 + α). Thus ‖A+ I‖ =
√

2(1 + α). But for every x ∈ H we have
‖(A+ I)x‖ � ‖A+ I‖. Hence A+ I is not orthogonal to B.

Now we define [A] := inf‖x‖=1 ‖Ax‖ and show that if A⊥B then (An −
[A]nI)⊥B. At first, we need the following lemma.

Lemma 2. Let H be a Hilbert space and A ∈ B(H) be a positive operator
then [A]‖x‖2 ≤ 〈Ax, x〉.

Proof. If Ker(A) 6= 0 then [A] = 0. Let Ker(A) = 0. We have
|〈Ax, y〉|2 ≤ 〈Ax, x〉〈Ay, y〉, for x, y ∈ H. Put y := Ax

‖Ax‖ . So we obtain

‖Ax‖2 ≤ 〈Ax, x〉〈 1

‖Ax‖
A(Ax),

1

‖Ax‖
Ax〉.(2.1)

On the other hand, put B := A− [A]I. So

0 ≤ ‖Bx‖2 = 〈Ax,Ax〉 − 〈Ax, [A]x〉+ 〈[A]x, [A]x〉 − 〈[A]x,Ax〉
= ‖Ax‖2 − 2[A]〈Ax, x〉+ [A]2‖x‖2

≤ 2‖Ax‖2 − 2[A]〈Ax, x〉.

Hence [A]〈Ax, x〉 ≤ ‖Ax‖2. By combining this with 2.1 we have [A] ≤
〈 1
‖Ax‖A(Ax), 1

‖Ax‖Ax〉. If we write H = Ker(A) ⊕ (Ker(A))⊥ then we get

H = A(H). Hence [A]‖x‖2 ≤ 〈Ax, x〉 for every x ∈ H. �

Theorem 3. Let A be a positive operator in B(H) and A⊥B. Then
(Am − [A]mI)⊥B for each m ∈ N.
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Proof. If dim(H) =∞ and A⊥B then there is a sequence of unit vectors
(ξn) ∈ H such that ‖A‖m = limn→∞〈Amξn, ξn〉 and limn→∞〈ξn, Bξn〉 = 0.
Since by Lemma 2, 〈(Am − [A]mI)x, x〉 = 〈Amx, x〉 − [A]m‖x‖2 ≥ 0 for every
x ∈ H, so (Am − [A]mI) is a positive operator. Hence

‖Am − [A]mI‖ = sup
‖x‖=1

〈(Am − [A]mI)x, x〉

= ‖Am‖ − [A]m = lim
n→∞

〈Amξn, ξn〉 − [A]m

= lim
n→∞

〈(Am − [A]mI)ξn, ξn〉.

So by Proposition 1 we get (Am − [A]mI)⊥B.
If dim(H) <∞, the proof is similar. �

Next we obtain some characterizations of the Birkhoff-James orthogona-
lity for elements of B(H).

Theorem 4. Let dim(H) = ∞ and A ∈ B(H) then A⊥B if and only if
limn→∞(A∗Aξn − ‖A‖2ξn) = 0 and limn→∞〈Aξn, Bξn〉 = 0. If dim(H) < ∞
we use a unit vector ξ ∈ H instead of a sequence of unit vectors.

Proof. Let A⊥B, then there exists a sequence of unit vectors such that
limn→∞ ‖Aξn‖ = ‖A‖. Since we have

lim
n→∞

‖(A∗A)
1
2 ξn‖2 = lim

n→∞
‖Aξn‖2 = ‖A‖2 = ‖(A∗A)

1
2 ‖2.

So limn→∞(A∗A)
1
2 ξn − ‖A‖ξn = 0. Hence we obtain that limn→∞(A∗A)ξn −

‖A‖2ξn = 0.
The converse is obvious. �

Theorem 5. Let A,B be two operators with A⊥ABA. Then A∗⊥B.

Proof. Let dimH =∞. Since A⊥ABA, there exists a sequence of unit vec-
tors such that limn→∞(A∗Aξn − ‖A‖2ξn) = 0 and limn→∞〈Aξn, ABAξn〉 = 0.

So limn→∞〈A∗Aξn, BAξn〉 = 0. Also, we have limn→∞ ‖A∗(A(
1

‖A‖
ξn)‖ =

‖A‖ = ‖A∗‖. Put ηn := (A(
1

‖A‖
ξn). Obviously, the sequence (ηn) is a se-

quence of unit vectors that ‖A∗ηn‖ → ‖A∗‖ and 〈A∗ηn, Bηn〉 → 0. Hence by
Theorem 1 A∗⊥B.

In the case of dimH <∞, the proof is similar. �
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