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1. INTRODUCTION

The aim of this paper is to study the following perturbed damped vibra-
tion problem
(1.1)
—i(t) — q(t)u(t) + A(t)u(t) = AVF(t,u(t)) + uVG(t,u(t)) a.e. t€]0,T],
{u(O) —u(T)=4(0)—u(T)=0

where T > 0, ¢ € LY(0,T;R), Q(t) = [, q(s)ds for all t € [0,T), Q(T) = 0,
A [0,T] — R¥*N is a continuous map from the interval [0,7] to the set
of N-order symmetric matrices, A > 0, g > 0, and F,G : [0,7] x RN — R
are measurable with respect to ¢, for all u € RY, continuously differentiable
in u, for almost every ¢t € [0, T], satisfies the following standard summability
condition:

(1.2) Sup max{|F (- &, |G( ), IVF(-&|,|VG(, )} € L([0,T))
<a
for any a > 0.
Assume that VF, VG : [0,T] x RN — R are continuous, then the con-
dition (1.2) is satisfied.
Inspired by the monographs [15,17], the existence and multiplicity of peri-

odic solutions for Hamiltonian systems have been investigated in many papers
(see [1,3,4,10-13,16,20-23,29,30] and the references therein) via variational
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methods. For example, in [3] Bonanno and Livrea ensured the existence of infi-
nitely many periodic solutions for a class of second-order Hamiltonian systems
under an appropriate oscillating behavior of the nonlinear term. Moreover,
they obtained the multiplicity of periodic solutions for the system with a coer-
cive potential and also in the noncoercive case. In [22] the authors obtained
existence theorems for periodic solutions of a class of unbounded nonautono-
mous nonconvex subquadratic second order Hamiltonian systems by using the
minimax methods in critical point theory. In [10] Cordaro established a mul-
tiplicity result to an eigenvalue problem related to second-order Hamiltonian
systems, and proved the existence of an open interval of positive eigenvalues
in which the problem admits three distinct periodic solutions. In [12] Faraci
studied the multiplicity of solutions of a second order nonautonomous system.
In [16] the authors obtained an existence theorem of homoclinic solution for a
class of the nonautonomous second order Hamiltonian systems, by the mini-
max methods in the critical point theory, specially, the generalized mountain
pass theorem. In [21] the existence and multiplicity of periodic solutions are
obtained for nonautonomous second order systems with sublinear nonlinearity
by using the least action principle and the minimax methods. In [23] the aut-
hor presented two new existence results of periodic solutions with saddle point
character and one new multiplicity result for Hamiltonian systems by using
the critical point reduction method. In [29] the existence of homoclinic or-
bits for the second-order Hamiltonian systems without periodicity was studied
and infinitely many homoclinic orbits for both superlinear and asymptotically
linear cases were obtained. In [30] the author considered two classes of the
second-order Hamiltonian systems with symmetry. In fact, if the systems are
asymptotically linear with resonance, infinitely many small-energy solutions
by minimax technique was obtained. If the systems possess sign-changing po-
tential, an existence theorem of infinitely many solutions by Morse theory was
established.

We also refer to [8,14,19] in which based on variational methods and cri-
tical point theory the existence of multiple solutions for second-order impulsive
Hamiltonian systems was established.

Very recently, some researchers have paid attention to the existence and
multiplicity of solutions for damped vibration problems, for instance, see [6,7,9,
24-27] and references therein. For example, Chen in [6,7] studied a class of non-
periodic damped vibration systems with subquadratic terms and with asymp-
totically quadratic terms, respectively, and obtained infinitely many nontrivial
homoclinic orbits by a variant fountain theorem developed recently by Zou [28].
Wu and Chen in [26] based on a variational principle gave three existence
theorems for periodic solutions of a class of damped vibration problems. In
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particular, the authors in [25] based on variational methods and critical point
theory studied the existence of one solution and multiple solutions for damped
vibration problems.

In the present paper, motivated by [25], employing a smooth version of [5,
Theorem 2.1] which is a more precise version of Ricceri’s Variational Principle
[18, Theorem 2.5] under some hypotheses on the behavior of the nonlinear
terms at infinity, under conditions on F' and G we prove the existence of a
definite interval about A and g in which the problem (1.1) admits a sequence
of solutions which is unbounded in the space £ which will be introduced later
(Theorem 3.1).

We also refer the reader to [2] in which the existence of infinitely many
solutions to a fourth-order boundary value problem has been studied.

2. PRELIMINARIES

Our main tool to investigate the existence of infinitely many periodic
solutions for the problem (1.1) is a smooth version of Theorem 2.1 of [5] which
is a more precise version of Ricceri’s Variational Principle [18, Theorem 2.5]
that we now recall here.

THEOREM 2.1. Let X be a reflexive real Banach space, let &,V : X — R
be two Gateaur differentiable functionals such that ® is sequentially weakly
lower semicontinuous, strongly continuous, and coercive and ¥ is sequentially
weakly upper semicontinuous. For every r > infx ®, let us put

. SUPycd—1(—o0,r) \I/(’U) - \Ij(u)
o(r) := inf
u€P~1(—o0,r) r— ®(u)

and
v :=liminf p(r), ¢:= liminf ¢(r).

r—+00 r—(infx &)+
Then, one has
(a) for every r > infx ® and every \ €]0, ﬁ[, the restriction of the
functional Iy = ® — AV to ®~1(] — oo, 7]) admits a global minimum, which is
a critical point (local minimum) of I in X.
(b) If v < +o0 then, for each X\ €0, %[, the following alternative holds:
either
(b1) I possesses a global minimum,
or
(b2) there is a sequence {u,} of critical points (local minima) of Iy
such that
lim ®(u,) = +oc.

n—-4o0o
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(c) If § < +00 then, for each X €]0, %[, the following alternative holds:
either
(c1) there is a global minimum of ® which is a local minimum of I,
or
(c2) there is a sequence of pairwise distinct critical points (local mi-
nima) of I which weakly converges to a global minimum of ®.

We assume that A satisfies the following conditions:

(A1) A(t) = (a4(t)) is a symmetric matrix with a;; € L*°[0,T] for any ¢ €
[07T]a i,j=1,--,N;

(A2) there exists £ > 0 such that (A(t)z,z) > k|z|? for any z € RY and a.e.
t € [0,T], where (-,-) denotes the inner product in R,
Let us recall some basic concepts. Denote

E = {u:[0,7] — RY| u is absolutely continuous, u(0) = u(T),
i € L2((0, 7], RY)}

with the inner product

T
U g /0 [(0(t), (1)) + (u(t), vo(£))]dt.

The corresponding norm is defined by
T
|ullg = / (Ja(t)* + |u(t)[?)dt, for allu € E.
0

For every u,v € E, we define

T
< U,V == /0 eQ(t)[(iL(t),i)(t)) + (A(t)u(t), v(t))]dt,

and we observe that, by assumptions (A1) and (A2), it defines an inner product
in E. Then E is a separable and reflexive Banach space with the norm

|ul| =< u,u >%, for allu € E.

Obviously, E is an uniformly convex Banach space.

Clearly, the norm || - || is equivalent to the norm || - [|g (see [13]).

Since (E, || - ||) is compactly embedded in C([0,7],R"™) (see [15]), there
exists a positive constant ¢ such that

(2.1) [ulloo < cffull,

where |[ul = maxycpo ) |u(t)]. We mean by a weak solution of the problem
(1.1), any u € E such that

T T
/ Q0 (a(t), 0(t)) + (A®)u(t), v(t))|dt — A / QO (VE(tu(t)), v(t))dt
0 0
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T
- ,u/ eQ(t)(VG(t, u(t)),v(t))dt =0
0

for every v € E.
A special case of our main result is the following theorem.

THEOREM 2.2. Assume that Assumptions (A1) and (A2) hold. Let F :
RY — R be continuously differentiable function such that

Sup|z<¢ F(x o
lim inf P\|§—§() =0 and limsup — (]fv) =
(oo ¢ Etoo D im1 Dojm1 6
where & = (&1,...,&,) and § — +00 means that (&1, . ..,&,) — (+00,. .., +00).
Then, the problem

{ —ii(t) — q(t)a(t) + A@t)u(t) = VE(u(t))  ae. te0,T),
w(0) — u(T) = @(0) — i(T) =0

has an unbounded sequence of solutions.

3. MAIN RESULTS

In this section, we formulate our main results and prove them. For this
purpose we put

N
B := max Haz]Hoo
3,7=1

)

THEOREM 3.1. Assume that Assumptions (A1) and (A2) hold and

o fOT QW sup, ¢ F(t,x)dt 1 . fOT QO F(t, €)dt
(a1) liminf 5 < T limsup =—x——x

where € € RN, ¢ = (&1,...,&,) and € — +oo means that (&1,...,&) —
(400, ..., +00).
Then, for each X €]\1, o[ where
BfOT eQd¢
S QW Rt g)dt
SiLy e i

where & = (&1,...,&,) and & — 400 means that (&1,...,&,) — (+00,...,4+00),
and

A=

2lim supg_, 4 o

1
fOT eQ(t) sup| <¢ F(t,x)dt ’
<2

Ag 1=

2¢2 liminfe_, 4o



352 S. Heidarkhani, M. Ferrara and A. Salari 6

for every arbitrary non-negative function G : [0,T] x RN — R which is mea-
surable with respect to t, for all x € RN, continuously differentiable in x, for
almost every t € [0,T), satisfying the condition

T
/ e? sup G(t, z)dt
0

. || <¢
3.1 Goo =26 1
(3:1) © ot ¢

< 400,

and for every p € [0, pa | where pg y = i(l — /\—)‘2), the problem (1.1) has
an unbounded sequence of solutions.

Proof. Fix E €]\, A2[ and let G be a function satisfying the condi-
tion (3.1). Since, A < Ag, one has p,y > 0. Fix 1z € [0, pu; 5[ and set vy := A\
A2

H_%m. If Goo = 0, clearly, VG = )\17 vy = AQ and X E]I/l,VQ[.

and vy =
X
1+LX0Go0
namely, A < vo. Hence, since A > \; = v1, one has A\ €]v,vs[. Now, put
H(t,§) = F(t,€) + EG(t,€) for all (t,£) € [0,T] x RN. Take X = E and
consider the functionals &, ¥ : X — R defined as follows

If G # 0, since 1 < Iy x> We obtain /\;)‘2 + G < 1, and so > A,

1
®(u) = 5 ull
and

T
U(u) = /0 H(t,u(t))dt

for all uw € X. It is well known that ¥ is a Gateaux differentiable functional
whose Gateaux derivative at the point u € X is the functional ¥/(u) € X*,
given by

T _
W (u)o = /O 20 (VE(tu(t) + EVG(Eu). o(t) at

for every v € X. Moreover, ® is a Gateaux differentiable functional whose
Gateaux derivative at the point v € X is the functional ®'(u) € X*, given by

T
&' (u)o = /0 Q) [(u(t),@(t))+(A(t)u(t),v(t))}dt

for every v € X. Furthermore, ® is sequentially weakly lower semicontinuous
and coercive. From the definition of @, since (X, ||-||) is compactly embedded in
C([0,T],RY), we observe that ® is strongly continuous. Put Iy := ® —A¥. We
observe that the weak solutions of the problem (1.1) are exactly the solutions
of the equation I{(u) = 0. Now, we want to show that v < 400, where v
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is defined in Theorem 2.1. Let {(,} be a real sequence such that n € N and
Cn — +00 as n — oo and

= lim inf Jo €9 supj<¢ H(t,x)dt

n—00 TQL (—+o0 CQ
Put r, = %(%)2 for all n € N. Taking (2.1) into account that, we have
& (—00,m) C {u € X;||ulloo < G}

Hence, one has

f t) supy, <, H(t,r)dt
2f eQ®) SUP||<¢ [F(t,:v) + %G(t,x)}dt
=2c 2
T
<9 2f0 eQ) SUp|g|<c, F'(t, 2)dt N E202 IR eQ(®) SUp|y|<c, G (¢, )dt
= ¢z ) 7 '

Moreover, it follows from Assumption (a;) that

T
0 eQ) Sup| < F(t, z)dt

it e = e
so we obtain
Q) F(t,z)dt
e su , T
(3.2) lim %0 Plelse Go)dt
n—oo

Then, in view of (3.1) and (3.2), we have

fOT Q) SUP|z|<c, F(t,x)dt #fo eQ®) SUP|z|<¢, G(t,z)dt

i C2 + 3 2 < oo,
which follows
o PO sup < [Pt )+ EG (@) |t

lim 3 < +o0.

n—oo &
Therefore,
(3.3)

T _
fo eQ(t) SUD|g(<(,, [F(t, x) + %G(t, CC)} dt

v < hm 1nfg0(rn) <2¢% lim < 400.

n—o0 ¢2

Since
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fOT QW supy, <o, H(t, x)dt _ fOT QW supy, <, F(t, x)dt
G - &

Mfo eQ®) SUp|y|<c, G(t, v)dt
A G ’

_l’_

taking (3.1) into account, one has

fT eQ) sup|g<c H (¢, z)dt
3.4) 2c%liminf =2 =
(3.4) 2¢ 1ot &
T Q) F
e~\Y sup,, t,x)dt
< 2¢% liminf fo Plzl<¢ (t,2)
(—+oo C2

+ 50
Moreover, since G is nonnegative, we have
TeQW (¢, ¢)dt TeQO (¢, ¢)dt
(3.5) lim sup Jo ; N( .8) > lim sup Jo ]s N( .8)
Eotoe D121 &i&y oo Doiny D i1 Gk

where £ = (&1,...,&,) and £ — +o00 means that (§1,...,&,) — (+00,...,+00).
Therefore, from (3.4) and (3.5), and from Assumption (a;) and (3.3) we
observe

AE (1/1, 1/2)
BfOT eQdt 1 )
= eQ) H(t,£) .. T eQ®) sup, < H(t,z)dt
21lim SUP¢ 400 IEOIV@W 2¢2 lim lnfC_H_OO fo éQ\SC

()

where £ = (&1,...,&,) and £ — +o00 means that ({1, ...,&,) = (+00,...,+00).
For the fixed A, the inequality (3.3) concludes that the condition (b) of
Theorem 2.1 can be applied and either I3 has a global minimum or there exists
a sequence {uy, } of solutions of the problem (1.1) such that lim,,_, ||u] = +oo.
The other step is to show that for the fixed A the functional I5 has no
global minimum. Let us verify that the functional I5 is unbounded from below.
Since

(t,&)dt
i < —— 2 lim sup fo (t,¢)
A B [y eQWdt gotoo Ez 12 —1&i&j

where £ = (&1,...,&,) and £ — +o0o0 means that (§1,...,&) — (+00,...,+00),
we can consider a sequence {d,, = (dn1,...,d,nN)} and a positive constant 7
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such that d,,; - +o0asn — +oo forv=1,..., N and
1 2
(3.6) = <7< ————limsup Jo F N
A B [, eQMdt n—+oo Zl 12 d  dij
for each n € N large enough. Let {w,} be a sequence in X defined by
(3.7) wp(t) =d,, te€]0,T].

For any fixed n € N, w,, € X and

(3.8) <I><wn>_6f° 20 Zdedm

i=1 j=1

On the other hand, since G is nonnegative, from the definition of ¥, we infer

(3.9) ¥ (w,) / Pt dy)

So, according to (3.6), (3.8) and (3.9) we obtain

T N N
9 0 Z Z dm dnj
i=1 j=1
for every n € N large enough. Hence, the functional I3 is unbounded from
below, and it follows that I5 has no global minimum. Therefore, applying
Theorem 2.1 we deduce that there is a sequence {u,} C X of critical points
of I such that lim, o ®(u,) = +oo, which from the definition of ® follows
that lim,, o ||, || = 400. Hence, since the critical points of I5 are actually the
solutions of the problem (1.1) (see [25, Theorem 2.2]) we have conclusion. [

We now present the following examples in which the hypotheses of Theo-
rem 3.1 are satisfied, whose constructions are motivated by Examples 3.11 and
3.12 of [5], respectively.

Example 3.1. Let N =1, T =1 and put

2nl(n +2)! -1 2nl(n +2)1 +1
p = ——— =TT
" 4n+1)0 7" 4(n+1)!
for every n € N. Consider the problem

(3.10)
{ —u"(t) — cos(mt) u/ (t) + u(t) = Nf(t,u(t)) + pug(t, u(t)) a.e. t€0,1],
u(0) —u(l) =4'(0) =4/ (1) =0
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where
32 cos(mt)(n + 1)1?[(n + 1)!2 — n!?]
T
f(t,x)= 1 n!(n + 2) 5
mame @ 1 s b,
“Vismrne @ g )7 i (t:2) €0, 1< Unenlan, bl
0 elsewhere,

and g(t,z) = P (z)(2 — 2™) where 27 = max{z, 0}, for all t € [0, 1]
and z € R.

One has f(nH (1,z)dr = (n + 1)!2 — n!? for every n € N. Then,

one has lim, F(ll)gb n) — 4 and lim, 10 F (i’f") = 0. Therefore, simple
computations show that
F(1 F(1
lim inf (20 =0 and limsup ( 2’0 = 4.
E—too ¢ E—r+o0 ¢
Hence
1 sin(mt)
i 90 e = Sup|x‘§CF(t,x)dt
(—>r4o00 CQ
sin(7t)
fol cos(mt)e = : Sup|y <¢ F(1,z)dt
= liminf 5 = =0
{—+o00 C
and ezt
1 sin(7wt
1 i Joe = F(t,§dt
@m(ﬂ'f) lm sup 2
B [le w dt Etoo ¢
1 Slﬂ(ﬂ'
 Jo cos(mt)e dt i F(1,8)
= Sm(m) im sup 57— = 0.
2 fo dt t—+0o &

Hence, using Theorem 3.1, since

1 sin(mt) _ sin(nt) et +12
e = su e« zT)“dt
Goo = 2¢2 lim fo Plal<¢ 5 (") —92¢2 lim e ¢ = 0,
¢(—+oo ¢ (=400

the problem (3.10) for every A > 0 and g > 0 has an unbounded sequence of
solutions.

Ezample 3.2. Let N = 2, T = 1, where A : [0,1] — R?>*2 is an unit
matrix. Consider the problem
(3.11)

—uf(t —COS(T('t)U (t) u
(

) t) = A1t u®) + pgi(t u(t)) ae tel0
t) — cos 0

)=\

; = Ma(t,u(t)) + pga(t,u(t)) ae. te]
0

) =0

3
Sb

/(
—uy(
u1(0) — uy (1) ’1() U’1(1
u2(0) — uz(1) = u5(0) — us(1
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where

fi(t,z) = 4cos(mt)z(1 — sinx) 4 2 cos(nt)x? cos x for all (t,z) € [0,1] x R

and
Cos(ﬂ-t) (an+1)3e (1’/*<an+1*1>>(111+(an+1+1>>+1
Rty ={ 2(ans1 — y) "
’ ,y) € 10,1] x S
(@ — D)2 (a2 1 B9 €101
0 otherwise
where
3
ay =2, ap+1 = (an)2

for every n € N and S := U, solan+1 — 1, ant1 + 1, and g1(¢,§) = g2(t,§) =
2(6H)e™ where £+ = max{¢,0}, for all t € [0,1] and £ € R. Thus, setting
(fi(t,z), fa(t,y)) = VF(t,z,y) and (g1(t,x), g2(t,y)) = VG(t,z,y), one has
F(t,z,y) =
2 cos(mt) (1 + sin z)z>
+t(ans1)3e@ O TR if (t,z,y) €[0,1] xR x §

2 cos(mt)(1 + sinz)z? otherwise

and

sin 7t

G(t,z,y) = [()* + (y")?e” = forall (t,z,y) €[0,1] xR x S.

Simple calculations show that

1 sinmt
Joe = sup 5 _ F(t,x,y)dt 1 .
lim inf z zy =¢ :/ cos(mt)e = At =0
(—rtoo ¢ 0

and

sin 7t
= F(t, &,
lim sup fo (t, &1, &2)dt = +o00

(€1,62)—(+00,400) Zi:l Zj:l §i &

Hence, since all assumptions of Theorem 3.1 are satisfied, taking into account
that

_ sinmwt

= (@) + (y*)?)dt

fl sin 7t

(& su VY (&
Goo = 2¢% lim o PVariisc
0o —

= 2¢% < o0.
{—+oo CQ

Thus the problem (3.11) for every A > 0 and p € [0, 5 2) has an unbounded
sequence of solutions.
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Remark 3.1. Under the conditions
o fOT eQ(t) SUP|3)<¢ F(t,z)dt ) fOT eQ(t)F(t,ﬁ)dt
lim inf R = and limsup ‘= 7 =
(o0 ¢ E=too Dl Zj:l §i&j
where £ = (&1,...,&,) and £ — +00 means that (§1,...,&) = (+00,...,+00),
Theorem 3.1 concludes that for every A > 0 and for each p € [0, Gloo[ the

problem (1.1) admits infinitely many solutions. Moreover, if Go, = 0, the
result holds for every A > 0 and p > 0.

Here, we point out a simple consequence of Theorem 3.1.

COROLLARY 3.2.TAssume that
.. QM sup) 1 < F(t,x)dt
(a2)  liminfe 4o L C‘Q‘ﬂ < ﬁ;

. T QW F(t,6)dt T
(a3)  limsupe_, o fZNZ—JJg)g > B [T Q0L where € = (€1, ... ,£,) and

& — 400 means that (&1,...,&) — (+00,...,+00).
Then, for every arbitrary non-negative function G : [0,T] x RN — R which
is measurable with respect to t, for all x € RN, continuously differentiable in
x, for almost every t € [0,T], satisfying the condition (3.1), and for every
p € [0, pa x| where pg y := Gloo (1 - )\%), the problem

{ —i(t) — q(t)ult) + A@)u(t) = VE(E u(t) + pVG(tut))  ae. te0,T),
u(0) — u(T) = 4(0) — w(T) = 0.

has an unbounded sequence of solutions.

Remark 3.2. Theorem 2.2 is an immediate consequence of Corollary 3.2
when p = 0.

Remark 3.3. We observe in Theorem 3.1 we can replace £ — +oo with
¢ — 0T, that by the same arguing as in the proof of Theorem 3.1 but using
conclusion (c) of Theorem 2.1 instead of (b), the problem (1.1) has a sequence
of pairwise distinct solutions, which strongly converges to 0 in E.
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