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1. INTRODUCTION

The aim of this paper is to study the following perturbed damped vibra-
tion problem
(1.1){
−ü(t)− q(t)u̇(t) +A(t)u(t) = λ∇F (t, u(t)) + µ∇G(t, u(t)) a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0

where T > 0, q ∈ L1(0, T ;R), Q(t) =
∫ t

0 q(s)ds for all t ∈ [0, T ), Q(T ) = 0,
A : [0, T ] → RN×N is a continuous map from the interval [0, T ] to the set
of N -order symmetric matrices, λ > 0, µ ≥ 0, and F,G : [0, T ] × RN → R
are measurable with respect to t, for all u ∈ RN , continuously differentiable
in u, for almost every t ∈ [0, T ], satisfies the following standard summability
condition:

(1.2) sup
|ξ|≤a

max{|F (·, ξ)|, |G(·, ξ)|, |∇F (·, ξ)| , |∇G(·, ξ)|} ∈ L1([0, T ])

for any a > 0.

Assume that ∇F,∇G : [0, T ] × RN → RN are continuous, then the con-
dition (1.2) is satisfied.

Inspired by the monographs [15,17], the existence and multiplicity of peri-
odic solutions for Hamiltonian systems have been investigated in many papers
(see [1, 3, 4, 10–13, 16, 20–23, 29, 30] and the references therein) via variational
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methods. For example, in [3] Bonanno and Livrea ensured the existence of infi-
nitely many periodic solutions for a class of second-order Hamiltonian systems
under an appropriate oscillating behavior of the nonlinear term. Moreover,
they obtained the multiplicity of periodic solutions for the system with a coer-
cive potential and also in the noncoercive case. In [22] the authors obtained
existence theorems for periodic solutions of a class of unbounded nonautono-
mous nonconvex subquadratic second order Hamiltonian systems by using the
minimax methods in critical point theory. In [10] Cordaro established a mul-
tiplicity result to an eigenvalue problem related to second-order Hamiltonian
systems, and proved the existence of an open interval of positive eigenvalues
in which the problem admits three distinct periodic solutions. In [12] Faraci
studied the multiplicity of solutions of a second order nonautonomous system.
In [16] the authors obtained an existence theorem of homoclinic solution for a
class of the nonautonomous second order Hamiltonian systems, by the mini-
max methods in the critical point theory, specially, the generalized mountain
pass theorem. In [21] the existence and multiplicity of periodic solutions are
obtained for nonautonomous second order systems with sublinear nonlinearity
by using the least action principle and the minimax methods. In [23] the aut-
hor presented two new existence results of periodic solutions with saddle point
character and one new multiplicity result for Hamiltonian systems by using
the critical point reduction method. In [29] the existence of homoclinic or-
bits for the second-order Hamiltonian systems without periodicity was studied
and infinitely many homoclinic orbits for both superlinear and asymptotically
linear cases were obtained. In [30] the author considered two classes of the
second-order Hamiltonian systems with symmetry. In fact, if the systems are
asymptotically linear with resonance, infinitely many small-energy solutions
by minimax technique was obtained. If the systems possess sign-changing po-
tential, an existence theorem of infinitely many solutions by Morse theory was
established.

We also refer to [8,14,19] in which based on variational methods and cri-
tical point theory the existence of multiple solutions for second-order impulsive
Hamiltonian systems was established.

Very recently, some researchers have paid attention to the existence and
multiplicity of solutions for damped vibration problems, for instance, see [6,7,9,
24–27] and references therein. For example, Chen in [6,7] studied a class of non-
periodic damped vibration systems with subquadratic terms and with asymp-
totically quadratic terms, respectively, and obtained infinitely many nontrivial
homoclinic orbits by a variant fountain theorem developed recently by Zou [28].
Wu and Chen in [26] based on a variational principle gave three existence
theorems for periodic solutions of a class of damped vibration problems. In
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particular, the authors in [25] based on variational methods and critical point
theory studied the existence of one solution and multiple solutions for damped
vibration problems.

In the present paper, motivated by [25], employing a smooth version of [5,
Theorem 2.1] which is a more precise version of Ricceri’s Variational Principle
[18, Theorem 2.5] under some hypotheses on the behavior of the nonlinear
terms at infinity, under conditions on F and G we prove the existence of a
definite interval about λ and µ in which the problem (1.1) admits a sequence
of solutions which is unbounded in the space E which will be introduced later
(Theorem 3.1).

We also refer the reader to [2] in which the existence of infinitely many
solutions to a fourth-order boundary value problem has been studied.

2. PRELIMINARIES

Our main tool to investigate the existence of infinitely many periodic
solutions for the problem (1.1) is a smooth version of Theorem 2.1 of [5] which
is a more precise version of Ricceri’s Variational Principle [18, Theorem 2.5]
that we now recall here.

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R
be two Gâteaux differentiable functionals such that Φ is sequentially weakly
lower semicontinuous, strongly continuous, and coercive and Ψ is sequentially
weakly upper semicontinuous. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1(−∞,r)

supv∈Φ−1(−∞,r) Ψ(v)−Ψ(u)

r − Φ(u)

and
γ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX Φ)+
ϕ(r).

Then, one has
(a) for every r > infX Φ and every λ ∈]0, 1

ϕ(r) [, the restriction of the

functional Iλ = Φ − λΨ to Φ−1(] −∞, r[) admits a global minimum, which is
a critical point (local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈]0, 1
γ [, the following alternative holds:

either
(b1) Iλ possesses a global minimum,

or
(b2) there is a sequence {un} of critical points (local minima) of Iλ

such that
lim

n→+∞
Φ(un) = +∞.
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(c) If δ < +∞ then, for each λ ∈]0, 1
δ [, the following alternative holds:

either
(c1) there is a global minimum of Φ which is a local minimum of Iλ,

or
(c2) there is a sequence of pairwise distinct critical points (local mi-

nima) of Iλ which weakly converges to a global minimum of Φ.

We assume that A satisfies the following conditions:

(A1) A(t) = (aij(t)) is a symmetric matrix with aij ∈ L∞[0, T ] for any t ∈
[0, T ], i, j = 1, · · · , N ;

(A2) there exists κ > 0 such that (A(t)x, x) ≥ κ|x|2 for any x ∈ RN and a.e.
t ∈ [0, T ], where (·, ·) denotes the inner product in RN .

Let us recall some basic concepts. Denote

E = {u : [0, T ]→ RN | u is absolutely continuous, u(0) = u(T ),

u̇ ∈ L2([0, T ],RN )}
with the inner product

≺ u, v �E=

∫ T

0
[(u̇(t), v̇(t)) + (u(t), v(t))]dt.

The corresponding norm is defined by

‖u‖E =

∫ T

0
(|u̇(t)|2 + |u(t)|2)dt, for allu ∈ E.

For every u, v ∈ E, we define

≺ u, v �=

∫ T

0
eQ(t)[(u̇(t), v̇(t)) + (A(t)u(t), v(t))]dt,

and we observe that, by assumptions (A1) and (A2), it defines an inner product
in E. Then E is a separable and reflexive Banach space with the norm

‖u‖ =≺ u, u �
1
2 , for allu ∈ E.

Obviously, E is an uniformly convex Banach space.
Clearly, the norm ‖ · ‖ is equivalent to the norm ‖ · ‖E (see [13]).
Since (E, ‖ · ‖) is compactly embedded in C([0, T ],RN ) (see [15]), there

exists a positive constant c such that

(2.1) ‖u‖∞ ≤ c‖u‖,
where ‖u‖∞ = maxt∈[0,T ] |u(t)|. We mean by a weak solution of the problem
(1.1), any u ∈ E such that∫ T

0
eQ(t)

[
(u̇(t), v̇(t)) + (A(t)u(t), v(t))

]
dt− λ

∫ T

0
eQ(t)

(
∇F (t, u(t)), v(t)

)
dt
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− µ
∫ T

0
eQ(t)

(
∇G(t, u(t)), v(t)

)
dt = 0

for every v ∈ E.

A special case of our main result is the following theorem.

Theorem 2.2. Assume that Assumptions (A1) and (A2) hold. Let F :
RN → R be continuously differentiable function such that

lim inf
ζ→+∞

sup|x|≤ζ F (x)

ζ2
= 0 and lim sup

ξ→+∞

F (ξ)∑N
i=1

∑N
j=1 ξi ξj

= +∞

where ξ = (ξ1, . . . , ξn) and ξ → +∞ means that (ξ1, . . . , ξn)→ (+∞, . . . ,+∞).
Then, the problem{

−ü(t)− q(t)u̇(t) +A(t)u(t) = ∇F (u(t)) a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0

has an unbounded sequence of solutions.

3. MAIN RESULTS

In this section, we formulate our main results and prove them. For this
purpose we put

B :=
N

max
i,j=1

‖aij‖∞.

Theorem 3.1. Assume that Assumptions (A1) and (A2) hold and

(a1) lim inf
ζ→+∞

∫ T
0 eQ(t) sup|x|≤ζ F (t, x)dt

ζ2
<

1

c2B
∫ T

0 eQ(t)dt
lim sup
ξ→+∞

∫ T
0 eQ(t)F (t, ξ)dt∑N
i=1

∑N
j=1 ξiξj

where ξ ∈ RN , ξ = (ξ1, . . . , ξn) and ξ → +∞ means that (ξ1, . . . , ξn) →
(+∞, . . . ,+∞).

Then, for each λ ∈]λ1, λ2[ where

λ1 :=
B
∫ T

0 eQ(t)dt

2 lim supξ→+∞

∫ T
0 eQ(t)F (t,ξ)dt∑N
i=1

∑N
j=1 ξiξj

where ξ = (ξ1, . . . , ξn) and ξ → +∞ means that (ξ1, . . . , ξn)→ (+∞, . . . ,+∞),
and

λ2 :=
1

2c2 lim infζ→+∞

∫ T
0 eQ(t) sup|x|≤ζ F (t,x)dt

ζ2

,
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for every arbitrary non-negative function G : [0, T ] × RN → R which is mea-
surable with respect to t, for all x ∈ RN , continuously differentiable in x, for
almost every t ∈ [0, T ], satisfying the condition

(3.1) G∞ := 2c2 lim
ζ→+∞

∫ T

0
eQ(t) sup

|x|≤ζ
G(t, x)dt

ζ2
< +∞,

and for every µ ∈ [0, µG,λ[ where µG,λ := 1
G∞

(
1 − λ

λ2

)
, the problem (1.1) has

an unbounded sequence of solutions.

Proof. Fix λ ∈]λ1, λ2[ and let G be a function satisfying the condi-
tion (3.1). Since, λ < λ2, one has µG,λ > 0. Fix µ ∈ [0, µG,λ[ and set ν1 := λ1

and ν2 := λ2
1+µ

λ
λ2G∞

. If G∞ = 0, clearly, ν1 = λ1, ν2 = λ2 and λ ∈]ν1, ν2[.

If G∞ 6= 0, since µ < µg,λ, we obtain λ
λ2

+ µG∞ < 1, and so λ2
1+µ

λ
λ2G∞

> λ,

namely, λ < ν2. Hence, since λ > λ1 = ν1, one has λ ∈]ν1, ν2[. Now, put
H(t, ξ) = F (t, ξ) + µ

λ
G(t, ξ) for all (t, ξ) ∈ [0, T ] × RN . Take X = E and

consider the functionals Φ, Ψ : X → R defined as follows

Φ(u) =
1

2
‖u‖2

and

Ψ(u) =

∫ T

0
H(t, u(t))dt

for all u ∈ X. It is well known that Ψ is a Gâteaux differentiable functional
whose Gâteaux derivative at the point u ∈ X is the functional Ψ′(u) ∈ X∗,
given by

Ψ′(u)v =

∫ T

0
eQ(t)

(
∇F (t, u(t)) +

µ

λ
∇G(t, u(t)), v(t)

)
dt

for every v ∈ X. Moreover, Φ is a Gâteaux differentiable functional whose
Gâteaux derivative at the point u ∈ X is the functional Φ′(u) ∈ X∗, given by

Φ′(u)v =

∫ T

0
eQ(t)

[
(u̇(t), v̇(t)) + (A(t)u(t), v(t))

]
dt

for every v ∈ X. Furthermore, Φ is sequentially weakly lower semicontinuous
and coercive. From the definition of Φ, since (X, ‖·‖) is compactly embedded in
C([0, T ],RN ), we observe that Φ is strongly continuous. Put Iλ := Φ−λΨ. We
observe that the weak solutions of the problem (1.1) are exactly the solutions
of the equation I ′λ(u) = 0. Now, we want to show that γ < +∞, where γ
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is defined in Theorem 2.1. Let {ζn} be a real sequence such that n ∈ N and
ζn → +∞ as n→∞ and

lim
n→∞

∫ T
0 eQ(t) sup|x|≤ζn H(t, x)dt

ζ2
n

= lim inf
ζ→+∞

∫ T
0 eQ(t) sup|x|≤ζ H(t, x)dt

ζ2
.

Put rn = 1
2( ζnc )2 for all n ∈ N. Taking (2.1) into account that, we have

Φ−1(−∞, rn) ⊆ {u ∈ X; ||u||∞ ≤ ζn} .

Hence, one has

ϕ(rn) ≤ 2c2

∫ T
0 eQ(t) sup|x|≤ζn H(t, x)dt

ζ2
n

= 2c2

∫ T
0 eQ(t) sup|x|≤ζn

[
F (t, x) + µ

λ
G(t, x)

]
dt

ζ2
n

≤ 2c2

∫ T
0 eQ(t) sup|x|≤ζn F (t, x)dt

ζ2
n

+
µ

λ
2c2

∫ T
0 eQ(t) sup|x|≤ζn G(t, x)dt

ζ2
n

.

Moreover, it follows from Assumption (a1) that

lim inf
ζ→+∞

∫ T
0 eQ(t) sup|x|≤ζ F (t, x)dt

ζ2
< +∞,

so we obtain

(3.2) lim
n→∞

∫ T
0 eQ(t) sup|x|≤ζn F (t, x)dt

ζ2
n

< +∞.

Then, in view of (3.1) and (3.2), we have

lim
n→∞

∫ T
0 eQ(t) sup|x|≤ζn F (t, x)dt

ζ2
n

+ lim
n→∞

µ

λ

∫ T
0 eQ(t) sup|x|≤ζn G(t, x)dt

ζ2
n

< +∞,

which follows

lim
n→∞

∫ T
0 eQ(t) sup|x|≤ζn

[
F (t, x) + µ

λ
G(t, x)

]
dt

ζ2
n

< +∞.

Therefore,
(3.3)

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ 2c2 lim
n→∞

∫ T
0 eQ(t) sup|x|≤ζn

[
F (t, x) + µ

λ
G(t, x)

]
dt

ζ2
n

< +∞.

Since
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0 eQ(t) sup|x|≤ζn H(t, x)dt

ζ2
n

≤
∫ T

0 eQ(t) sup|x|≤ζn F (t, x)dt

ζ2
n

+
µ

λ

∫ T
0 eQ(t) sup|x|≤ζn G(t, x)dt

ζ2
n

,

taking (3.1) into account, one has

(3.4) 2c2 lim inf
ζ→+∞

∫ T
0 eQ(t) sup|x|≤ζ H(t, x)dt

ζ2

≤ 2c2 lim inf
ζ→+∞

∫ T
0 eQ(t) sup|x|≤ζ F (t, x)dt

ζ2
+
µ

λ
G∞.

Moreover, since G is nonnegative, we have

(3.5) lim sup
ξ→+∞

∫ T
0 eQ(t)H(t, ξ)dt∑N
i=1

∑N
j=1 ξi ξj

≥ lim sup
ξ→+∞

∫ T
0 eQ(t)F (t, ξ)dt∑N
i=1

∑N
j=1 ξi ξj

where ξ = (ξ1, . . . , ξn) and ξ → +∞ means that (ξ1, . . . , ξn)→ (+∞, . . . ,+∞).

Therefore, from (3.4) and (3.5), and from Assumption (a1) and (3.3) we
observe

λ ∈ (ν1, ν2)

⊆
( B

∫ T
0 eQ(t)dt

2 lim supξ→+∞

∫ T
0 eQ(t)H(t,ξ)dt∑N
i=1

∑N
j=1 ξi ξj

,
1

2c2 lim infζ→+∞

∫ T
0 eQ(t) sup|x|≤ζ H(t,x)dt

ζ2

)

⊆
(

0,
1

γ

)
where ξ = (ξ1, . . . , ξn) and ξ → +∞ means that (ξ1, . . . , ξn)→ (+∞, . . . ,+∞).

For the fixed λ, the inequality (3.3) concludes that the condition (b) of
Theorem 2.1 can be applied and either Iλ has a global minimum or there exists
a sequence {un} of solutions of the problem (1.1) such that limn→∞ ‖u‖ = +∞.

The other step is to show that for the fixed λ the functional Iλ has no
global minimum. Let us verify that the functional Iλ is unbounded from below.
Since

1

λ
<

2

B
∫ T

0 eQ(t)dt
lim sup
ξ→+∞

∫ T
0 F (t, ξ)dt∑N
i=1

∑N
j=1 ξi ξj

where ξ = (ξ1, . . . , ξn) and ξ → +∞ means that (ξ1, . . . , ξn)→ (+∞, . . . ,+∞),
we can consider a sequence {dn = (dn1, . . . , dnN )} and a positive constant τ
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such that dni → +∞ as n→ +∞ for i = 1, . . . , N and

(3.6)
1

λ
< τ <

2

B
∫ T

0 eQ(t)dt
lim sup
n→+∞

∫ T
0 F (t, dn)dt∑N

i=1

∑N
j=1 dni dnj

for each n ∈ N large enough. Let {wn} be a sequence in X defined by

(3.7) wn(t) = dn, t ∈ [0, T ].

For any fixed n ∈ N, wn ∈ X and

(3.8) Φ(wn) ≤
B
∫ T

0 eQ(t)dt

2

N∑
i=1

N∑
j=1

dni dnj .

On the other hand, since G is nonnegative, from the definition of Ψ, we infer

(3.9) Ψ(wn) ≥
∫ T

0
F (t, dn)dt.

So, according to (3.6), (3.8) and (3.9) we obtain

Iλ(wn) ≤ 1

2

N∑
i=1

N∑
j=1

‖aij‖∞dni dnj
∫ T

0
eQ(t)dt− λ

∫ T

0
F (t, dn)dt

≤
B(1− λτ)

∫ T
0 eQ(t)dt

2

N∑
i=1

N∑
j=1

dni dnj

for every n ∈ N large enough. Hence, the functional Iλ is unbounded from
below, and it follows that Iλ has no global minimum. Therefore, applying
Theorem 2.1 we deduce that there is a sequence {un} ⊂ X of critical points
of Iλ such that limn→∞Φ(un) = +∞, which from the definition of Φ follows
that limn→∞ ‖un‖ = +∞. Hence, since the critical points of Iλ are actually the
solutions of the problem (1.1) (see [25, Theorem 2.2]) we have conclusion. �

We now present the following examples in which the hypotheses of Theo-
rem 3.1 are satisfied, whose constructions are motivated by Examples 3.11 and
3.12 of [5], respectively.

Example 3.1. Let N = 1, T = 1 and put

an :=
2n!(n+ 2)!− 1

4(n+ 1)!
, bn :=

2n!(n+ 2)! + 1

4(n+ 1)!

for every n ∈ N. Consider the problem
(3.10){
−u′′(t)− cos(πt)u′(t) + u(t) = λf(t, u(t)) + µg(t, u(t)) a.e. t ∈ [0, 1],
u(0)− u(1) = u′(0)− u′(1) = 0
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where

f(t, x)=



32 cos(πt)(n+ 1)!2[(n+ 1)!2 − n!2]

π

×

√
1

16(n+ 1)!2
− (x− n!(n+ 2)

2
)2 if (t, x)∈ [0, 1]×∪n∈N[an, bn],

0 elsewhere,

and g(t, x) = e−
sin(πt)
π
−x+(x+)(2− x+) where x+ = max{x, 0}, for all t ∈ [0, 1]

and x ∈ R.
One has

∫ (n+1)!
n! f(1, x)dx = (n + 1)!2 − n!2 for every n ∈ N. Then,

one has limn−→+∞
F (1,bn)
b2n

= 4 and limn−→+∞
F (1,an)
a2n

= 0. Therefore, simple

computations show that

lim inf
ξ−→+∞

F (1, ζ)

ζ2
= 0 and lim sup

ξ−→+∞

F (1, ζ)

ζ2
= 4.

Hence

lim inf
ζ−→+∞

∫ 1
0 e

sin(πt)
π sup|x|≤ζ F (t, x)dt

ζ2

= lim inf
ζ−→+∞

∫ 1
0 cos(πt)e

sin(πt)
π sup|x|≤ζ F (1, x)dt

ζ2
= 0

and

1

c2B
∫ 1

0 e
sin(πt)
π dt

lim sup
ξ−→+∞

∫ 1
0 e

sin(πt)
π F (t, ξ)dt

ξ2

=

∫ 1
0 cos(πt)e

sin(πt)
π dt

c2
∫ 1

0 e
sin(πt)
π dt

lim sup
ξ−→+∞

F (1, ξ)

ξ2
= 0.

Hence, using Theorem 3.1, since

G∞ = 2c2 lim
ζ→+∞

∫ 1
0 e

sin(πt)
π sup|x|≤ζ e

− sin(πt)
π
−x+(x+)2dt

ζ2
= 2c2 lim

ζ→+∞
e−ζ = 0,

the problem (3.10) for every λ > 0 and µ ≥ 0 has an unbounded sequence of
solutions.

Example 3.2. Let N = 2, T = 1, where A : [0, 1] → R2×2 is an unit
matrix. Consider the problem
(3.11)
−u′′1(t)− cos(πt)u′1(t) + u1(t) = λf1(t, u(t)) + µg1(t, u(t)) a.e. t ∈ [0, 1],
−u′′2(t)− cos(πt)u′2(t) + u2(t) = λf2(t, u(t)) + µg2(t, u(t)) a.e. t ∈ [0, 1],
u1(0)− u1(1) = u′1(0)− u′1(1) = 0,
u2(0)− u2(1) = u′2(0)− u′2(1) = 0
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where

f1(t, x) = 4 cos(πt)x(1− sinx) + 2 cos(πt)x2 cosx for all (t, x) ∈ [0, 1]× R

and

f2(t, y) =


cos(πt)(an+1)3e

1
(y−(an+1−1))(y+(an+1+1))+1

× 2(an+1 − y)

(y − (an+1 − 1))2(y − (an+1 + 1))2
if (t, y) ∈ [0, 1]× S

0 otherwise

where

a1 := 2, an+1 := (an)
3
2

for every n ∈ N and S :=
⋃
n≥2]an+1 − 1, an+1 + 1[, and g1(t, ξ) = g2(t, ξ) =

2(ξ+)e−t
2

where ξ+ = max{ξ, 0}, for all t ∈ [0, 1] and ξ ∈ R. Thus, setting
(f1(t, x), f2(t, y)) = ∇F (t, x, y) and (g1(t, x), g2(t, y)) = ∇G(t, x, y), one has

F (t, x, y) =:
2 cos(πt)(1 + sinx)x2

+t(an+1)3e
1

(y−(an+1−1))(y+(an+1+1))+1 if (t, x, y) ∈ [0, 1]× R× S

2 cos(πt)(1 + sinx)x2 otherwise

and

G(t, x, y) = [(x+)2 + (y+)2]e−
sinπt
π for all (t, x, y) ∈ [0, 1]× R× S.

Simple calculations show that

lim inf
ζ−→+∞

∫ 1
0 e

sinπt
π sup√

x2+y2≤ζ F (t, x, y)dt

ζ2
=

∫ 1

0
cos(πt)e

sinπt
π dt = 0

and

lim sup
(ξ1,ξ2)−→(+∞,+∞)

∫ 1
0 e

sinπt
π F (t, ξ1, ξ2)dt∑2
i=1

∑2
j=1 ξi ξj

= +∞.

Hence, since all assumptions of Theorem 3.1 are satisfied, taking into account
that

G∞ = 2c2 lim
ζ→+∞

∫ 1
0 e

sinπt
π sup√

x2+y2≤ζ e
− sinπt

π [(x+)2 + (y+)2]dt

ζ2
= 2c2 <∞.

Thus the problem (3.11) for every λ > 0 and µ ∈
[
0, 1

2c2

)
has an unbounded

sequence of solutions.
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Remark 3.1. Under the conditions

lim inf
ζ→+∞

∫ T
0 eQ(t) sup|x|≤ζ F (t, x)dt

ζ2
= 0 and lim sup

ξ→+∞

∫ T
0 eQ(t)F (t, ξ)dt∑N
i=1

∑N
j=1 ξi ξj

= +∞

where ξ = (ξ1, . . . , ξn) and ξ → +∞ means that (ξ1, . . . , ξn)→ (+∞, . . . ,+∞),
Theorem 3.1 concludes that for every λ > 0 and for each µ ∈ [0, 1

G∞
[ the

problem (1.1) admits infinitely many solutions. Moreover, if G∞ = 0, the
result holds for every λ > 0 and µ ≥ 0.

Here, we point out a simple consequence of Theorem 3.1.

Corollary 3.2. Assume that

(a2) lim infζ→+∞

∫ T
0 eQ(t) sup|x|≤ζ F (t,x)dt

ζ2
< 1

2c2
;

(a3) lim supξ→+∞

∫ T
0 eQ(t)F (t,ξ)dt∑N
i=1

∑N
j=1 ξi ξj

> B
2

∫ T
0 eQ(t)dt, where ξ = (ξ1, . . . , ξn) and

ξ → +∞ means that (ξ1, . . . , ξn)→ (+∞, . . . ,+∞).

Then, for every arbitrary non-negative function G : [0, T ] × RN → R which
is measurable with respect to t, for all x ∈ RN , continuously differentiable in
x, for almost every t ∈ [0, T ], satisfying the condition (3.1), and for every
µ ∈ [0, µG,λ[ where µG,λ := 1

G∞

(
1− 1

λ2

)
, the problem{

−ü(t)− q(t)u̇(t) +A(t)u(t) = ∇F (t, u(t)) + µ∇G(t, u(t)) a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0.

has an unbounded sequence of solutions.

Remark 3.2. Theorem 2.2 is an immediate consequence of Corollary 3.2
when µ = 0.

Remark 3.3. We observe in Theorem 3.1 we can replace ξ → +∞ with
ξ → 0+, that by the same arguing as in the proof of Theorem 3.1 but using
conclusion (c) of Theorem 2.1 instead of (b), the problem (1.1) has a sequence
of pairwise distinct solutions, which strongly converges to 0 in E.
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