INFINITELY MANY SOLUTIONS FOR A CLASS OF PERTURBED DAMPED VIBRATION PROBLEMS

SHAPOUR HEIDARKHANI, MASSIMILIANO FERRARA and AMJAD SALARI

Communicated by Viorel Barbu

In the present paper, the existence of infinitely many solutions for a class of perturbed damped vibration boundary value problems is established. Our approach is based on variational methods.

AMS 2010 Subject Classification: 34C25, 58E30, 47H04.

Key words: infinitely many solutions, perturbed damped vibration problem, variational methods, critical point theory.

1. INTRODUCTION

The aim of this paper is to study the following perturbed damped vibration problem

$$\begin{cases} -\ddot{u}(t) - q(t)\dot{u}(t) + A(t)u(t) = \lambda \nabla F(t, u(t)) + \mu \nabla G(t, u(t)) & a.e. \ t \in [0, T], \\ u(0) - u(T) = \dot{u}(0) - \dot{u}(T) = 0 \end{cases}$$

where T>0, $q\in L^1(0,T;\mathbb{R})$, $Q(t)=\int_0^t q(s)\mathrm{d}s$ for all $t\in [0,T)$, Q(T)=0, $A:[0,T]\to\mathbb{R}^{N\times N}$ is a continuous map from the interval [0,T] to the set of N-order symmetric matrices, $\lambda>0$, $\mu\geq0$, and $F,G:[0,T]\times\mathbb{R}^N\to\mathbb{R}$ are measurable with respect to t, for all $u\in\mathbb{R}^N$, continuously differentiable in u, for almost every $t\in[0,T]$, satisfies the following standard summability condition:

(1.2)
$$\sup_{|\xi| \le a} \max\{|F(\cdot,\xi)|, |G(\cdot,\xi)|, |\nabla F(\cdot,\xi)|, |\nabla G(\cdot,\xi)|\} \in L^1([0,T])$$

for any a > 0.

Assume that $\nabla F, \nabla G: [0,T] \times \mathbb{R}^N \to \mathbb{R}^N$ are continuous, then the condition (1.2) is satisfied.

Inspired by the monographs [15,17], the existence and multiplicity of periodic solutions for Hamiltonian systems have been investigated in many papers (see [1, 3, 4, 10-13, 16, 20-23, 29, 30] and the references therein) *via* variational

methods. For example, in [3] Bonanno and Livrea ensured the existence of infinitely many periodic solutions for a class of second-order Hamiltonian systems under an appropriate oscillating behavior of the nonlinear term. Moreover, they obtained the multiplicity of periodic solutions for the system with a coercive potential and also in the noncoercive case. In [22] the authors obtained existence theorems for periodic solutions of a class of unbounded nonautonomous nonconvex subquadratic second order Hamiltonian systems by using the minimax methods in critical point theory. In [10] Cordaro established a multiplicity result to an eigenvalue problem related to second-order Hamiltonian systems, and proved the existence of an open interval of positive eigenvalues in which the problem admits three distinct periodic solutions. In [12] Faraci studied the multiplicity of solutions of a second order nonautonomous system. In [16] the authors obtained an existence theorem of homoclinic solution for a class of the nonautonomous second order Hamiltonian systems, by the minimax methods in the critical point theory, specially, the generalized mountain pass theorem. In [21] the existence and multiplicity of periodic solutions are obtained for nonautonomous second order systems with sublinear nonlinearity by using the least action principle and the minimax methods. In [23] the author presented two new existence results of periodic solutions with saddle point character and one new multiplicity result for Hamiltonian systems by using the critical point reduction method. In [29] the existence of homoclinic orbits for the second-order Hamiltonian systems without periodicity was studied and infinitely many homoclinic orbits for both superlinear and asymptotically linear cases were obtained. In [30] the author considered two classes of the second-order Hamiltonian systems with symmetry. In fact, if the systems are asymptotically linear with resonance, infinitely many small-energy solutions by minimax technique was obtained. If the systems possess sign-changing potential, an existence theorem of infinitely many solutions by Morse theory was established.

We also refer to [8,14,19] in which based on variational methods and critical point theory the existence of multiple solutions for second-order impulsive Hamiltonian systems was established.

Very recently, some researchers have paid attention to the existence and multiplicity of solutions for damped vibration problems, for instance, see [6,7,9,24–27] and references therein. For example, Chen in [6,7] studied a class of non-periodic damped vibration systems with subquadratic terms and with asymptotically quadratic terms, respectively, and obtained infinitely many nontrivial homoclinic orbits by a variant fountain theorem developed recently by Zou [28]. Wu and Chen in [26] based on a variational principle gave three existence theorems for periodic solutions of a class of damped vibration problems. In

particular, the authors in [25] based on variational methods and critical point theory studied the existence of one solution and multiple solutions for damped vibration problems.

In the present paper, motivated by [25], employing a smooth version of [5, Theorem 2.1] which is a more precise version of Ricceri's Variational Principle [18, Theorem 2.5] under some hypotheses on the behavior of the nonlinear terms at infinity, under conditions on F and G we prove the existence of a definite interval about λ and μ in which the problem (1.1) admits a sequence of solutions which is unbounded in the space E which will be introduced later (Theorem 3.1).

We also refer the reader to [2] in which the existence of infinitely many solutions to a fourth-order boundary value problem has been studied.

2. PRELIMINARIES

Our main tool to investigate the existence of infinitely many periodic solutions for the problem (1.1) is a smooth version of Theorem 2.1 of [5] which is a more precise version of Ricceri's Variational Principle [18, Theorem 2.5] that we now recall here.

Theorem 2.1. Let X be a reflexive real Banach space, let $\Phi, \Psi : X \to \mathbb{R}$ be two Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicontinuous, strongly continuous, and coercive and Ψ is sequentially weakly upper semicontinuous. For every $r > \inf_X \Phi$, let us put

$$\varphi(r) := \inf_{u \in \Phi^{-1}(-\infty, r)} \frac{\sup_{v \in \Phi^{-1}(-\infty, r)} \Psi(v) - \Psi(u)}{r - \Phi(u)}$$

and

$$\gamma:= \liminf_{r \to +\infty} \varphi(r), \quad \delta:= \liminf_{r \to (\inf_{\mathbf{X}} \Phi)^+} \varphi(r).$$

Then, one has

- (a) for every $r > \inf_X \Phi$ and every $\lambda \in]0, \frac{1}{\varphi(r)}[$, the restriction of the functional $I_{\lambda} = \Phi \lambda \Psi$ to $\Phi^{-1}(]-\infty, r[)$ admits a global minimum, which is a critical point (local minimum) of I_{λ} in X.
 - (b) If $\gamma < +\infty$ then, for each $\lambda \in]0, \frac{1}{\gamma}[$, the following alternative holds: either
 - (b_1) I_{λ} possesses a global minimum, or
- (b₂) there is a sequence $\{u_n\}$ of critical points (local minima) of I_{λ} such that

$$\lim_{n \to +\infty} \Phi(u_n) = +\infty.$$

- (c) If $\delta < +\infty$ then, for each $\lambda \in]0, \frac{1}{\delta}[$, the following alternative holds: either
 - (c₁) there is a global minimum of Φ which is a local minimum of I_{λ} , or
- (c₂) there is a sequence of pairwise distinct critical points (local minima) of I_{λ} which weakly converges to a global minimum of Φ .

We assume that A satisfies the following conditions:

- (A1) $A(t) = (a_{ij}(t))$ is a symmetric matrix with $a_{ij} \in L^{\infty}[0,T]$ for any $t \in [0,T]$, $i, j = 1, \dots, N$;
- (A2) there exists $\kappa > 0$ such that $(A(t)x, x) \ge \kappa |x|^2$ for any $x \in \mathbb{R}^N$ and a.e. $t \in [0, T]$, where (\cdot, \cdot) denotes the inner product in \mathbb{R}^N .

Let us recall some basic concepts. Denote

$$\mathbf{E} = \{u : [0, T] \to \mathbb{R}^N | u \text{ is absolutely continuous, } u(0) = u(T),$$
$$\dot{u} \in \mathbf{L}^2([0, T], \mathbb{R}^N)\}$$

with the inner product

$$\forall u, v \succ_E = \int_0^T [(\dot{u}(t), \dot{v}(t)) + (u(t), v(t))] dt.$$

The corresponding norm is defined by

$$||u||_E = \int_0^T (|\dot{u}(t)|^2 + |u(t)|^2) dt$$
, for all $u \in E$.

For every $u, v \in E$, we define

$$\forall u, v \succ = \int_{0}^{T} e^{Q(t)} [(\dot{u}(t), \dot{v}(t)) + (A(t)u(t), v(t))] dt,$$

and we observe that, by assumptions (A1) and (A2), it defines an inner product in E. Then E is a separable and reflexive Banach space with the norm

$$||u|| = \langle u, u \rangle^{\frac{1}{2}}, \text{ for all } u \in E.$$

Obviously, E is an uniformly convex Banach space.

Clearly, the norm $\|\cdot\|$ is equivalent to the norm $\|\cdot\|_{E}$ (see [13]).

Since $(E, \|\cdot\|)$ is compactly embedded in $C([0, T], \mathbb{R}^N)$ (see [15]), there exists a positive constant c such that

$$(2.1) ||u||_{\infty} \le c||u||,$$

where $||u||_{\infty} = \max_{t \in [0,T]} |u(t)|$. We mean by a weak solution of the problem (1.1), any $u \in E$ such that

$$\int_0^T e^{Q(t)} \Big[(\dot{u}(t), \dot{v}(t)) + (A(t)u(t), v(t)) \Big] dt - \lambda \int_0^T e^{Q(t)} \big(\nabla F(t, u(t)), v(t) \big) dt$$

$$-\mu \int_0^T e^{Q(t)} (\nabla G(t, u(t)), v(t)) dt = 0$$

for every $v \in E$.

A special case of our main result is the following theorem.

THEOREM 2.2. Assume that Assumptions (A1) and (A2) hold. Let $F: \mathbb{R}^N \to \mathbb{R}$ be continuously differentiable function such that

$$\liminf_{\zeta \to +\infty} \frac{\sup_{|x| \le \zeta} F(x)}{\zeta^2} = 0 \quad and \quad \limsup_{\xi \to +\infty} \frac{F(\xi)}{\sum_{i=1}^N \sum_{j=1}^N \xi_i \, \xi_j} = +\infty$$

where $\xi = (\xi_1, \dots, \xi_n)$ and $\xi \to +\infty$ means that $(\xi_1, \dots, \xi_n) \to (+\infty, \dots, +\infty)$. Then, the problem

$$\left\{ \begin{array}{ll} -\ddot{u}(t)-q(t)\dot{u}(t)+A(t)u(t)=\nabla F(u(t)) & \quad a.e. \ t\in[0,T], \\ u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 \end{array} \right.$$

has an unbounded sequence of solutions.

3. MAIN RESULTS

In this section, we formulate our main results and prove them. For this purpose we put

$$\mathcal{B} := \max_{i,j=1}^{N} \|a_{ij}\|_{\infty}.$$

THEOREM 3.1. Assume that Assumptions (A1) and (A2) hold and

$$(a_1) \lim_{\zeta \to +\infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \le \zeta} F(t, x) dt}{\zeta^2} < \frac{1}{c^2 \mathcal{B} \int_0^T e^{Q(t)} dt} \limsup_{\xi \to +\infty} \frac{\int_0^T e^{Q(t)} F(t, \xi) dt}{\sum_{i=1}^N \sum_{j=1}^N \xi_i \xi_j}$$

where $\xi \in \mathbb{R}^N$, $\xi = (\xi_1, \dots, \xi_n)$ and $\xi \to +\infty$ means that $(\xi_1, \dots, \xi_n) \to (+\infty, \dots, +\infty)$.

Then, for each $\lambda \in]\lambda_1, \lambda_2[$ where

$$\lambda_1 := \frac{\mathcal{B} \int_0^T e^{Q(t)} dt}{2 \lim \sup_{\xi \to +\infty} \frac{\int_0^T e^{Q(t)} F(t,\xi) dt}{\sum_{i=1}^N \sum_{i=1}^N \xi_i \xi_i}}$$

where $\xi = (\xi_1, \dots, \xi_n)$ and $\xi \to +\infty$ means that $(\xi_1, \dots, \xi_n) \to (+\infty, \dots, +\infty)$, and

$$\lambda_2 := \frac{1}{2c^2 \lim \inf_{\zeta \to +\infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \le \zeta} F(t, x) dt}{\zeta^2}},$$

for every arbitrary non-negative function $G:[0,T]\times\mathbb{R}^N\to\mathbb{R}$ which is measurable with respect to t, for all $x\in\mathbb{R}^N$, continuously differentiable in x, for almost every $t\in[0,T]$, satisfying the condition

(3.1)
$$G_{\infty} := 2c^2 \lim_{\zeta \to +\infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \le \zeta} G(t, x) dt}{\zeta^2} < +\infty,$$

and for every $\mu \in [0, \mu_{G,\lambda}[$ where $\mu_{G,\lambda} := \frac{1}{G_{\infty}} (1 - \frac{\lambda}{\lambda_2}),$ the problem (1.1) has an unbounded sequence of solutions.

Proof. Fix $\overline{\lambda} \in]\lambda_1, \lambda_2[$ and let G be a function satisfying the condition (3.1). Since, $\overline{\lambda} < \lambda_2$, one has $\mu_{G,\overline{\lambda}} > 0$. Fix $\overline{\mu} \in [0, \mu_{G,\overline{\lambda}}[$ and set $\nu_1 := \lambda_1$ and $\nu_2 := \frac{\lambda_2}{1 + \frac{\overline{\mu}}{\lambda} \lambda_2 G_{\infty}}$. If $G_{\infty} = 0$, clearly, $\nu_1 = \lambda_1$, $\nu_2 = \lambda_2$ and $\overline{\lambda} \in]\nu_1, \nu_2[$. If $G_{\infty} \neq 0$, since $\overline{\mu} < \mu_{g,\overline{\lambda}}$, we obtain $\frac{\overline{\lambda}}{\lambda_2} + \overline{\mu} G_{\infty} < 1$, and so $\frac{\lambda_2}{1 + \frac{\overline{\mu}}{\lambda} \lambda_2 G_{\infty}} > \overline{\lambda}$, namely, $\overline{\lambda} < \nu_2$. Hence, since $\overline{\lambda} > \lambda_1 = \nu_1$, one has $\overline{\lambda} \in]\nu_1, \nu_2[$. Now, put $H(t,\xi) = F(t,\xi) + \frac{\overline{\mu}}{\overline{\lambda}} G(t,\xi)$ for all $(t,\xi) \in [0,T] \times \mathbb{R}^N$. Take X = E and consider the functionals Φ , $\Psi : X \to \mathbb{R}$ defined as follows

$$\Phi(u) = \frac{1}{2} ||u||^2$$

and

$$\Psi(u) = \int_0^T H(t, u(t)) dt$$

for all $u \in X$. It is well known that Ψ is a Gâteaux differentiable functional whose Gâteaux derivative at the point $u \in X$ is the functional $\Psi'(u) \in X^*$, given by

$$\Psi'(u)v = \int_0^T e^{Q(t)} \left(\nabla F(t, u(t)) + \frac{\overline{\mu}}{\overline{\lambda}} \nabla G(t, u(t)), v(t) \right) dt$$

for every $v \in X$. Moreover, Φ is a Gâteaux differentiable functional whose Gâteaux derivative at the point $u \in X$ is the functional $\Phi'(u) \in X^*$, given by

$$\Phi'(u)v = \int_0^T e^{Q(t)} \Big[(\dot{u}(t), \dot{v}(t)) + (A(t)u(t), v(t)) \Big] dt$$

for every $v \in X$. Furthermore, Φ is sequentially weakly lower semicontinuous and coercive. From the definition of Φ , since $(X, \|\cdot\|)$ is compactly embedded in $C([0,T],\mathbb{R}^N)$, we observe that Φ is strongly continuous. Put $I_{\overline{\lambda}} := \Phi - \overline{\lambda}\Psi$. We observe that the weak solutions of the problem (1.1) are exactly the solutions of the equation $I'_{\lambda}(u) = 0$. Now, we want to show that $\gamma < +\infty$, where γ

is defined in Theorem 2.1. Let $\{\zeta_n\}$ be a real sequence such that $n \in \mathbb{N}$ and $\zeta_n \to +\infty$ as $n \to \infty$ and

$$\lim_{n\to\infty}\frac{\int_0^T e^{Q(t)}\sup_{|x|\leq \zeta_n}H(t,x)\mathrm{d}t}{\zeta_n^2}=\liminf_{\zeta\to+\infty}\frac{\int_0^T e^{Q(t)}\sup_{|x|\leq \zeta}H(t,x)\mathrm{d}t}{\zeta^2}.$$

Put $r_n = \frac{1}{2} (\frac{\zeta_n}{c})^2$ for all $n \in \mathbb{N}$. Taking (2.1) into account that, we have

$$\Phi^{-1}(-\infty, r_n) \subseteq \{u \in X; ||u||_{\infty} \le \zeta_n\}.$$

Hence, one has

$$\varphi(r_n) \leq 2c^2 \frac{\int_0^T e^{Q(t)} \sup_{|x| \leq \zeta_n} H(t, x) dt}{\zeta_n^2}$$

$$= 2c^2 \frac{\int_0^T e^{Q(t)} \sup_{|x| \leq \zeta_n} \left[F(t, x) + \frac{\overline{\mu}}{\overline{\lambda}} G(t, x) \right] dt}{\zeta_n^2}$$

$$\leq 2c^2 \frac{\int_0^T e^{Q(t)} \sup_{|x| \leq \zeta_n} F(t, x) dt}{\zeta_n^2} + \frac{\overline{\mu}}{\overline{\lambda}} 2c^2 \frac{\int_0^T e^{Q(t)} \sup_{|x| \leq \zeta_n} G(t, x) dt}{\zeta_n^2}.$$

Moreover, it follows from Assumption (a₁) that

$$\liminf_{\zeta \to +\infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \le \zeta} F(t, x) dt}{\zeta^2} < +\infty,$$

so we obtain

(3.2)
$$\lim_{n \to \infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \le \zeta_n} F(t, x) dt}{\zeta_n^2} < +\infty.$$

Then, in view of (3.1) and (3.2), we have

$$\lim_{n\to\infty} \frac{\int_0^T e^{Q(t)} \sup_{|x|\leq \zeta_n} F(t,x) dt}{\zeta_n^2} + \lim_{n\to\infty} \frac{\overline{\mu}}{\overline{\lambda}} \frac{\int_0^T e^{Q(t)} \sup_{|x|\leq \zeta_n} G(t,x) dt}{\zeta_n^2} < +\infty,$$

which follows

$$\lim_{n \to \infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \le \zeta_n} \left[F(t, x) + \frac{\overline{\mu}}{\overline{\lambda}} G(t, x) \right] dt}{\zeta_n^2} < +\infty.$$

Therefore,

(3.3)

$$\gamma \leq \liminf_{n \to +\infty} \varphi(r_n) \leq 2c^2 \lim_{n \to \infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \leq \zeta_n} \left[F(t, x) + \frac{\overline{\mu}}{\overline{\lambda}} G(t, x) \right] dt}{\zeta_n^2} < +\infty.$$

Since

$$\begin{split} \frac{\int_0^T e^{Q(t)} \sup_{|x| \leq \zeta_n} H(t,x) \mathrm{d}t}{\zeta_n^2} & \leq \frac{\int_0^T e^{Q(t)} \sup_{|x| \leq \zeta_n} F(t,x) \mathrm{d}t}{\zeta_n^2} \\ & + \frac{\overline{\mu}}{\overline{\lambda}} \frac{\int_0^T e^{Q(t)} \sup_{|x| \leq \zeta_n} G(t,x) \mathrm{d}t}{\zeta_n^2}, \end{split}$$

taking (3.1) into account, one has

$$(3.4) \quad 2c^{2} \liminf_{\zeta \to +\infty} \frac{\int_{0}^{T} e^{Q(t)} \sup_{|x| \leq \zeta} H(t, x) dt}{\zeta^{2}}$$

$$\leq 2c^{2} \liminf_{\zeta \to +\infty} \frac{\int_{0}^{T} e^{Q(t)} \sup_{|x| \leq \zeta} F(t, x) dt}{\zeta^{2}} + \frac{\overline{\mu}}{\overline{\lambda}} G_{\infty}.$$

Moreover, since G is nonnegative, we have

(3.5)
$$\limsup_{\xi \to +\infty} \frac{\int_0^T e^{Q(t)} H(t,\xi) dt}{\sum_{i=1}^N \sum_{j=1}^N \xi_i \xi_j} \ge \limsup_{\xi \to +\infty} \frac{\int_0^T e^{Q(t)} F(t,\xi) dt}{\sum_{i=1}^N \sum_{j=1}^N \xi_i \xi_j}$$

where $\xi = (\xi_1, \dots, \xi_n)$ and $\xi \to +\infty$ means that $(\xi_1, \dots, \xi_n) \to (+\infty, \dots, +\infty)$.

Therefore, from (3.4) and (3.5), and from Assumption (a_1) and (3.3) we observe

$$\overline{\lambda} \in (\nu_1, \nu_2)
\subseteq \left(\frac{\mathcal{B} \int_0^T e^{Q(t)} dt}{2 \lim \sup_{\xi \to +\infty} \frac{\int_0^T e^{Q(t)} H(t, \xi) dt}{\sum_{i=1}^N \sum_{j=1}^N \xi_i \xi_j}}, \frac{1}{2c^2 \lim \inf_{\zeta \to +\infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \le \zeta} H(t, x) dt}{\zeta^2}}\right)
\subseteq \left(0, \frac{1}{\gamma}\right)$$

where $\xi = (\xi_1, \dots, \xi_n)$ and $\xi \to +\infty$ means that $(\xi_1, \dots, \xi_n) \to (+\infty, \dots, +\infty)$.

For the fixed $\overline{\lambda}$, the inequality (3.3) concludes that the condition (b) of Theorem 2.1 can be applied and either $I_{\overline{\lambda}}$ has a global minimum or there exists a sequence $\{u_n\}$ of solutions of the problem (1.1) such that $\lim_{n\to\infty} ||u|| = +\infty$.

The other step is to show that for the fixed $\overline{\lambda}$ the functional $I_{\overline{\lambda}}$ has no global minimum. Let us verify that the functional $I_{\overline{\lambda}}$ is unbounded from below. Since

$$\frac{1}{\overline{\lambda}} < \frac{2}{\mathcal{B} \int_0^T e^{Q(t)} dt} \limsup_{\xi \to +\infty} \frac{\int_0^T F(t, \xi) dt}{\sum_{i=1}^N \sum_{j=1}^N \xi_i \xi_j}$$

where $\xi = (\xi_1, \dots, \xi_n)$ and $\xi \to +\infty$ means that $(\xi_1, \dots, \xi_n) \to (+\infty, \dots, +\infty)$, we can consider a sequence $\{d_n = (d_{n1}, \dots, d_{nN})\}$ and a positive constant τ

such that $d_{ni} \to +\infty$ as $n \to +\infty$ for i = 1, ..., N and

(3.6)
$$\frac{1}{\overline{\lambda}} < \tau < \frac{2}{\mathcal{B} \int_0^T e^{Q(t)} dt} \limsup_{n \to +\infty} \frac{\int_0^T F(t, d_n) dt}{\sum_{i=1}^N \sum_{j=1}^N d_{ni} d_{nj}}$$

for each $n \in \mathbb{N}$ large enough. Let $\{w_n\}$ be a sequence in X defined by

$$(3.7) w_n(t) = d_n, t \in [0, T].$$

For any fixed $n \in \mathbb{N}$, $w_n \in X$ and

(3.8)
$$\Phi(w_n) \le \frac{\mathcal{B} \int_0^T e^{Q(t)} dt}{2} \sum_{i=1}^N \sum_{j=1}^N d_{ni} d_{nj}.$$

On the other hand, since G is nonnegative, from the definition of Ψ , we infer

(3.9)
$$\Psi(w_n) \ge \int_0^T F(t, d_n) dt.$$

So, according to (3.6), (3.8) and (3.9) we obtain

$$I_{\overline{\lambda}}(w_n) \leq \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \|a_{ij}\|_{\infty} d_{ni} d_{nj} \int_{0}^{T} e^{Q(t)} dt - \overline{\lambda} \int_{0}^{T} F(t, d_n) dt$$

$$\leq \frac{\mathcal{B}(1 - \overline{\lambda}\tau) \int_{0}^{T} e^{Q(t)} dt}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{ni} d_{nj}$$

for every $n \in \mathbb{N}$ large enough. Hence, the functional $I_{\overline{\lambda}}$ is unbounded from below, and it follows that $I_{\overline{\lambda}}$ has no global minimum. Therefore, applying Theorem 2.1 we deduce that there is a sequence $\{u_n\} \subset X$ of critical points of $I_{\overline{\lambda}}$ such that $\lim_{n\to\infty} \Phi(u_n) = +\infty$, which from the definition of Φ follows that $\lim_{n\to\infty} \|u_n\| = +\infty$. Hence, since the critical points of $I_{\overline{\lambda}}$ are actually the solutions of the problem (1.1) (see [25, Theorem 2.2]) we have conclusion. \square

We now present the following examples in which the hypotheses of Theorem 3.1 are satisfied, whose constructions are motivated by Examples 3.11 and 3.12 of [5], respectively.

Example 3.1. Let N = 1, T = 1 and put

$$a_n := \frac{2n!(n+2)! - 1}{4(n+1)!}, \quad b_n := \frac{2n!(n+2)! + 1}{4(n+1)!}$$

for every $n \in \mathbb{N}$. Consider the problem (3.10)

$$\begin{cases} -u''(t) - \cos(\pi t) u'(t) + u(t) = \lambda f(t, u(t)) + \mu g(t, u(t)) & a.e. \ t \in [0, 1], \\ u(0) - u(1) = u'(0) - u'(1) = 0 \end{cases}$$

where

where
$$f(t,x) = \begin{cases} \frac{32\cos(\pi t)(n+1)!^2[(n+1)!^2 - n!^2]}{\pi} \\ \times \sqrt{\frac{1}{16(n+1)!^2} - (x - \frac{n!(n+2)}{2})^2} & \text{if } (t,x) \in [0,1] \times \cup_{n \in \mathbb{N}} [a_n,b_n], \\ 0 & \text{elsewhere,} \end{cases}$$

and $g(t,x) = e^{-\frac{\sin(\pi t)}{\pi} - x^{+}}(x^{+})(2 - x^{+})$ where $x^{+} = \max\{x, 0\}$, for all $t \in [0, 1]$ and $x \in \mathbb{R}$.

One has $\int_{n!}^{(n+1)!} f(1,x) dx = (n+1)!^2 - n!^2$ for every $n \in \mathbb{N}$. Then, one has $\lim_{n \to +\infty} \frac{F(1,b_n)}{b_n^2} = 4$ and $\lim_{n \to +\infty} \frac{F(1,a_n)}{a_n^2} = 0$. Therefore, simple computations show that

$$\liminf_{\xi \longrightarrow +\infty} \frac{F(1,\zeta)}{\zeta^2} = 0 \quad \text{and} \quad \limsup_{\xi \longrightarrow +\infty} \frac{F(1,\zeta)}{\zeta^2} = 4.$$

Hence

$$\lim_{\zeta \to +\infty} \inf_{\frac{\zeta}{\zeta} \to +\infty} \frac{\int_0^1 e^{\frac{\sin(\pi t)}{\pi}} \sup_{|x| \le \zeta} F(t, x) dt}{\zeta^2}$$

$$= \liminf_{\zeta \to +\infty} \frac{\int_0^1 \cos(\pi t) e^{\frac{\sin(\pi t)}{\pi}} \sup_{|x| \le \zeta} F(1, x) dt}{\zeta^2} = 0$$

and

$$\frac{1}{c^2 \mathcal{B} \int_0^1 e^{\frac{\sin(\pi t)}{\pi}} dt} \limsup_{\xi \to +\infty} \frac{\int_0^1 e^{\frac{\sin(\pi t)}{\pi}} F(t,\xi) dt}{\xi^2}$$

$$= \frac{\int_0^1 \cos(\pi t) e^{\frac{\sin(\pi t)}{\pi}} dt}{c^2 \int_0^1 e^{\frac{\sin(\pi t)}{\pi}} dt} \limsup_{\xi \to +\infty} \frac{F(1,\xi)}{\xi^2} = 0.$$

Hence, using Theorem 3.1, since

$$G_{\infty} = 2c^{2} \lim_{\zeta \to +\infty} \frac{\int_{0}^{1} e^{\frac{\sin(\pi t)}{\pi}} \sup_{|x| \le \zeta} e^{-\frac{\sin(\pi t)}{\pi} - x^{+}} (x^{+})^{2} dt}{\zeta^{2}} = 2c^{2} \lim_{\zeta \to +\infty} e^{-\zeta} = 0,$$

the problem (3.10) for every $\lambda > 0$ and $\mu \geq 0$ has an unbounded sequence of solutions.

Example 3.2. Let N=2, T=1, where $A:[0,1]\to\mathbb{R}^{2\times 2}$ is an unit matrix. Consider the problem (3.11)

$$\begin{cases} -u_1''(t) - \cos(\pi t) u_1'(t) + u_1(t) = \lambda f_1(t, u(t)) + \mu g_1(t, u(t)) & a.e. \ t \in [0, 1], \\ -u_2''(t) - \cos(\pi t) u_2'(t) + u_2(t) = \lambda f_2(t, u(t)) + \mu g_2(t, u(t)) & a.e. \ t \in [0, 1], \\ u_1(0) - u_1(1) = u_1'(0) - u_1'(1) = 0, \\ u_2(0) - u_2(1) = u_2'(0) - u_2'(1) = 0 \end{cases}$$

where

$$f_1(t,x) = 4\cos(\pi t)x(1-\sin x) + 2\cos(\pi t)x^2\cos x \text{ for all } (t,x) \in [0,1] \times \mathbb{R}$$
 and

$$f_2(t,y) = \begin{cases} \cos(\pi t)(a_{n+1})^3 e^{\frac{1}{(y-(a_{n+1}-1))(y+(a_{n+1}+1))+1}} \\ \times \frac{2(a_{n+1}-y)}{(y-(a_{n+1}-1))^2(y-(a_{n+1}+1))^2} & \text{if } (t,y) \in [0,1] \times S \\ 0 & \text{otherwise} \end{cases}$$

where

$$a_1 := 2, \qquad a_{n+1} := (a_n)^{\frac{3}{2}}$$

for every $n \in \mathbb{N}$ and $S := \bigcup_{n \geq 2} a_{n+1} - 1$, $a_{n+1} + 1[$, and $g_1(t, \xi) = g_2(t, \xi) = 2(\xi^+)e^{-t^2}$ where $\xi^+ = \max\{\xi, 0\}$, for all $t \in [0, 1]$ and $\xi \in \mathbb{R}$. Thus, setting $(f_1(t, x), f_2(t, y)) = \nabla F(t, x, y)$ and $(g_1(t, x), g_2(t, y)) = \nabla G(t, x, y)$, one has

$$F(t, x, y) =: \begin{cases} 2\cos(\pi t)(1 + \sin x)x^2 \\ +t(a_{n+1})^3 e^{\frac{1}{(y-(a_{n+1}-1))(y+(a_{n+1}+1))+1}} & \text{if } (t, x, y) \in [0, 1] \times \mathbb{R} \times S \\ 2\cos(\pi t)(1 + \sin x)x^2 & \text{otherwise} \end{cases}$$

and

$$G(t, x, y) = [(x^+)^2 + (y^+)^2]e^{-\frac{\sin \pi t}{\pi}}$$
 for all $(t, x, y) \in [0, 1] \times \mathbb{R} \times S$.

Simple calculations show that

$$\liminf_{\zeta \longrightarrow +\infty} \frac{\int_0^1 e^{\frac{\sin \pi t}{\pi}} \sup_{\sqrt{x^2 + y^2} \le \zeta} F(t, x, y) \mathrm{d}t}{\zeta^2} = \int_0^1 \cos(\pi t) e^{\frac{\sin \pi t}{\pi}} \mathrm{d}t = 0$$

and

$$\limsup_{(\xi_1,\xi_2)\longrightarrow (+\infty,+\infty)}\frac{\int_0^1 e^{\frac{\sin\pi t}{\pi}}F(t,\xi_1,\xi_2)\mathrm{d}t}{\sum_{i=1}^2\sum_{j=1}^2\xi_i\,\xi_j}=+\infty.$$

Hence, since all assumptions of Theorem 3.1 are satisfied, taking into account that

$$G_{\infty} = 2c^2 \lim_{\zeta \to +\infty} \frac{\int_0^1 e^{\frac{\sin \pi t}{\pi}} \sup_{\sqrt{x^2 + y^2} \le \zeta} e^{-\frac{\sin \pi t}{\pi}} [(x^+)^2 + (y^+)^2] dt}{\zeta^2} = 2c^2 < \infty.$$

Thus the problem (3.11) for every $\lambda > 0$ and $\mu \in \left[0, \frac{1}{2c^2}\right)$ has an unbounded sequence of solutions.

Remark 3.1. Under the conditions

$$\liminf_{\zeta \to +\infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \le \zeta} F(t,x) \mathrm{d}t}{\zeta^2} = 0 \quad \text{and} \quad \limsup_{\xi \to +\infty} \frac{\int_0^T e^{Q(t)} F(t,\xi) \mathrm{d}t}{\sum_{i=1}^N \sum_{j=1}^N \xi_i \, \xi_j} = +\infty$$

where $\xi = (\xi_1, \dots, \xi_n)$ and $\xi \to +\infty$ means that $(\xi_1, \dots, \xi_n) \to (+\infty, \dots, +\infty)$, Theorem 3.1 concludes that for every $\lambda > 0$ and for each $\mu \in [0, \frac{1}{G_{\infty}}]$ the problem (1.1) admits infinitely many solutions. Moreover, if $G_{\infty} = 0$, the result holds for every $\lambda > 0$ and $\mu \geq 0$.

Here, we point out a simple consequence of Theorem 3.1.

$$(a_2) \quad \liminf_{\zeta \to +\infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \le \zeta} F(t, x) dt}{\zeta^2} < \frac{1}{2c^2};$$

COROLLARY 3.2. Assume that
$$(a_2) \quad \liminf_{\zeta \to +\infty} \frac{\int_0^T e^{Q(t)} \sup_{|x| \le \zeta} F(t,x) dt}{\zeta^2} < \frac{1}{2c^2};$$

$$(a_3) \quad \limsup_{\xi \to +\infty} \frac{\int_0^T e^{Q(t)} F(t,\xi) dt}{\sum_{i=1}^N \sum_{j=1}^N \xi_i \xi_j} > \frac{\mathcal{B}}{2} \int_0^T e^{Q(t)} dt, \text{ where } \xi = (\xi_1, \dots, \xi_n) \text{ and } \xi \to +\infty \text{ means that } (\xi_1, \dots, \xi_n) \to (+\infty, \dots, +\infty).$$

Then, for every arbitrary non-negative function $G:[0,T]\times\mathbb{R}^N\to\mathbb{R}$ which is measurable with respect to t, for all $x \in \mathbb{R}^N$, continuously differentiable in x, for almost every $t \in [0,T]$, satisfying the condition (3.1), and for every $\mu \in [0, \mu_{G,\lambda}[\text{ where } \mu_{G,\lambda} := \frac{1}{G_{\infty}} (1 - \frac{1}{\lambda_2}), \text{ the problem}$

$$\begin{cases} -\ddot{u}(t) - q(t)\dot{u}(t) + A(t)u(t) = \nabla F(t, u(t)) + \mu \nabla G(t, u(t)) & a.e. \ t \in [0, T], \\ u(0) - u(T) = \dot{u}(0) - \dot{u}(T) = 0. \end{cases}$$

has an unbounded sequence of solutions.

Remark 3.2. Theorem 2.2 is an immediate consequence of Corollary 3.2 when $\mu = 0$.

Remark 3.3. We observe in Theorem 3.1 we can replace $\xi \to +\infty$ with $\xi \to 0^+$, that by the same arguing as in the proof of Theorem 3.1 but using conclusion (c) of Theorem 2.1 instead of (b), the problem (1.1) has a sequence of pairwise distinct solutions, which strongly converges to 0 in E.

REFERENCES

- [1] F. Antonacci and P. Magrone, Second order nonautonomous systems with symmetric potential changing sign. Rend. Mat. Appl. **18**(2) (1998), 367–379.
- [2] G. Bonanno and B. Di Bella, Infinitely many solutions for a fourth-order elastic beam equation. NoDEA Nonlinear Differential Equations Appl. 18 (2011), 357-368.
- [3] G. Bonanno and R. Livrea, Multiple periodic solutions for Hamiltonian systems with not coercive potential. J. Math. Anal. Appl. **363** (2010), 627–638.
- [4] G. Bonanno and R. Livrea, Periodic solutions for a class of second-order Hamiltonian systems. Electron. J. Differential Equations 2005 (2005), 115, 1-13.

- [5] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009 (2013). Article ID 670675, 20 pages.
- [6] G. Chen, Non-periodic damped vibration systems with asymptotically quadratic terms at infinity: infinitely many homoclinic orbits. Abstr. Appl. Anal. 2013 (2013). Article ID 937128, 7 pages.
- [7] G. Chen, Non-periodic damped vibration systems with sublinear terms at infinity: infinitely many homoclinic orbits. Nonlinear Anal. 92 (2013), 168–176.
- [8] H. Chen and Z. He, New results for perturbed Hamiltonian systems with impulses. Appl. Math. Comput. 218 (2012), 9489-9497.
- [9] G.-W. Chen and J. Wang, Ground state homoclinic orbits of damped vibration problems. Bound. Value Probl. **2014**(1) (2014), 1–15.
- [10] G. Cordaro, Three periodic solutions to an eigenvalue problem for a class of second order Hamiltonian systems. Abstr. Appl. Anal. 18 (2003), 1037–1045.
- [11] G. Cordaro and G. Rao, Three periodic solutions for perturbed second order Hamiltonian systems. J. Math. Anal. Appl. 359 (2009), 780–785.
- [12] F. Faraci, Multiple periodic solutions for second order systems with changing sign potential. J. Math. Anal. Appl. 319 (2006), 567–578.
- [13] F. Faraci and R. Livrea, Infinitely many periodic solutions for a second-order nonautonomous system. Nonlinear Anal 54 (2003), 417–429.
- [14] J. R. Graef, S. Heidarkhani and L. Kong, Infinitely many solutions for a class of perturbed second-order impulsive Hamiltonian systems. Preprint.
- [15] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1989.
- [16] Z.-Q. Ou and C.-L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems. J. Math. Anal. Appl. 291 (2004), 203–213.
- [17] P.H. Rabinowitz, Variational methods for Hamiltonian systems. Handbook of dynamical systems 1 (2002), 1091–1127.
- [18] B. Ricceri, A general variational principle and some of its applications. J. Comput. Appl. Math. 113 (2000), 401–410.
- [19] J. Sun, H. Chen, J.J. Nieto and M. Otero-Novoa, The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects. Nonlinear Anal. 72 (2010), 4575–4586.
- [20] C.-L. Tang, Periodic solutions for non-autonomous second order systems with sublinear nonlinearity. Proc. Amer. Math. Soc. 126(11) (1998), 3263–3270.
- [21] C.-L Tang, Periodic solutions of non-autonomous second order systems with γ-quasisub-additive potential. J. Math. Anal. Appl. 189 (1995), 671–675.
- [22] C.-L. Tang and X.-P. Wu, Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems. J. Math. Anal. Appl. 275 (2002), 870–882.
- [23] X. Wu, Saddle point characterization and multiplicity of periodic solutions of nonautonomous second order systems. Nonlinear Anal. 58 (2004), 899–907.
- [24] X. Wu and J. Chen, Existence theorems of periodic solutions for a class of damped vibration problems. Appl. Math. Comput. 207 (2009), 230–235.
- [25] X. Wu, S. Chen and K. Teng, On variational methods for a class of damped vibration problems. Nonlinear Anal. 68 (2008), 1432–1441.
- [26] X. Wu and W. Zhang, Existence and multiplicity of homoclinic solutions for a class of damped vibration problems. Nonlinear Anal. 74 (2011), 4392–4398.

- [27] J. Xiao and J.J. Nieto, Variational approach to some damped Dirichlet nonlinear impulsive differential equations. J. Franklin Inst. 348 (2001), 369–377.
- [28] W. Zou, Variant fountain theorems and their applications. Manuscripta Math. 104 (2001), 343–358.
- [29] W. Zou and S. Li, Infinitely many homoclinic orbits for the second-order Hamiltonian systems. Appl. Math. Lett. 16 (2003), 1283–1287.
- [30] W. Zou and S. Li, *Infinitely many solutions for Hamiltonian systems*. J. Differential Equations **186** (2002), 141–164.

Received 25 December 2015

Razi University,
Faculty of Sciences,
Department of Mathematics,
67149 Kermanshah, Iran
s.heidarkhani@razi.ac.ir

University Mediterranea of Reggio Calabria, Department of Law and Economics, Via dei Bianchi, 2 - 89131 Reggio Calabria, Italy massimiliano.ferrara@unirc.it

> Islamic Azad University, Kermanshah Branch, Young researchers and elite club, Kermanshah, Iran amjads45@yahoo.com