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Let G be a group and πe(G) be the set of element orders of G. Assume that
k ∈ πe(G) and let mk be the number of elements of order k in G. Set nse(G) :=
{mk | k ∈ πe(G)}. In this paper, we give a new characterization of the simple
group L2(127) by the set nse(L2(127)).
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1. INTRODUCTION

Throughout this paper, all groups are finite and G is always a group.
Denote by π(G) the set of prime divisors of |G|, and by πe(G) the set of
element orders of G. If r is a prime divisor of the order of G, then Pr denotes
a Sylow r-subgroup of G and nr(G) denotes the number of Sylow r-subgroups
of G. Let n be an integer. We denote by ϕ(n) the Euler function of n. We call
that G is a simple Kn-group if G is simple with |π(G)| = n.

Recall that the prime graph GK(G) of a groupG is defined as a graph with
vertex set π(G) and two distinct primes p, q ∈ π(G) are adjacent if G contains
an element of order pq. Further, the connected components of GK(G) are
denoted by πi, 1 ≤ i ≤ t(G), where t(G) is the number of connected components
of G. In particular, we denote by π1 the component containing the prime 2 for
a group of even order.

The motivation of this article is to investigate Thompson’s Problem re-
lated to algebraic number fields as follows (see [7, Problem 12.37]).

Let k ∈ πe(G) and mk be the number of elements of order k in G. Set
nse(G) := {mk | k ∈ πe(G)}. Write Mt(G) := {g ∈ G | gt = 1}. G1 and G2 are
called of the same order type if and only if |Mt(G1)| = |Mt(G2)|, t = 1, 2, . . . .

Thompson’s Problem. Suppose that G1 and G2 are of the same order
type. If G1 is solvable, is it true that G2 is also necessarily solvable?
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So far, no one could prove it completely, or even give a counterexample.
However, if groups G1 and G2 are of the same order type, we see clearly that
nse(G1) = nse(G2). So it is natural to try to investigate the Thompson’s
Problem by |G| and nse(G).

Note that not all groups can be characterized by nse(G) and |G|. For
instance, in 1987, Thompson gave an example as follows: Let G1 = (C2×C2×
C2 ×C2)oA7 and G2 = L3(4)oC2 be two maximal subgroups of M23. Then
nse(G1) = nse(G2) and |G1| = |G2|, but G1 � G2.

Then authors of [10] proved that all simple K4-groups can be uniquely
determined by nse(G) and |G|. Moreover, in [11], it is proved that L2(3) ∼= A4,
L2(4) ∼= L2(5) ∼= A5 and L2(9) ∼= A6 are uniquely determined by nse(G). M.
Khatami, B. Khosravi and Z. Akhlaghi [6] deduced that simple groups L2(p) are
characterizable uniquely by the set nse(L2(p)) if p ∈ {7, 8, 11, 13}. Recently,
S.T. Liu [5] proved that L5(2) is uniquely determined by nse(G).

In this paper, by using prime graph properties and Lemma 2.2, we prove
that L2(127) is characterizable by its associated set nse(L2(127)). Our result
is:

Theorem A. Let G be a finite group with

nse(G) = {1, 16256, 48768, 97536, 292608, 8001, 16002, 32004,

64008, 128016, 256032, 16128} = nse(L2(127)),

then G ∼= L2(127).

In this paper, we denote nr(G) by nr and mk(G) by mk if there is no
confusion. Further unexplained notation is standard, readers may refer to [2].

2. PRELIMINARIES

In this section, we give the lemmas which will be used in the sequel. We
begin with a classical by Frobenius.

Lemma 2.1 ([3]). Let G be a group and m be a positive integer dividing
|G|. If Lm(G) = {g ∈ G|gm = 1}, then m | |Lm(G)|.

Although the following lemma is simple, it is powerful in characterizing
simple groups G by nse(G).

Lemma 2.2 ([9, Lemma 2.2]). Let G be a group and P be a cyclic Sylow
p-subgroup of G. Assume further that |P | = pa and r is an integer such that
par ∈ πe(G). Then mpar = mr(CG(P ))mpa. In particular, ϕ(r)mpa | mpar.
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Lemma 2.3 ([8]). Let G be a group and p ∈ π(G) be odd. Suppose that P
is a Sylow p-subgroup of G and n = psm, where (p,m) = 1. If P is not cyclic
and s > 1, then the number of elements of order n is always a multiple of ps.

Recall that G is a 2-Frobenius group, if G has a normal series GDKDHD1
such that G/H and K are Frobenius groups with K/H and H as Frobenius
kernel.

Lemma 2.4 ([13, Theorem]). Let G be a group such that t(G) ≥ 2. Then
G has one of the following structures:

(a) G is a Frobenius or 2-Frobenius group.
(b) G has a normal series 1ENEG1EG such that π(N)∪π(G/G1) ⊆ π1

and G1/N is a nonabelian simple group.

Lemma 2.5 ([1, Theorem 2]). If G is a 2-Frobenius group of even order,
then t(G) = 2 and G has a normal series 1EHEKEG such that π(K/H) = π2,
π(H)

⋃
π(G/K) = π1, |G/K| | |Aut (K/H)|, G/K and K/H are cyclic. In

particular, |G/K| < |K/H| and G is solvable.

Lemma 2.6 ([10, Lemma 2.5]). Let G be a group with a normal series:
K ELEG. Suppose that P ∈ Sylp(G), where p ∈ π(G). If P ≤ L and p - |K|,
then the following statements hold:

(1) |G : NG(P )| = |L : NL(P )|, that is, np(G) = np(L);
(2) |L/K : NL/K(PK/K)|t = |G : NG(P )| = |L : NL(P )| , that is,

np(L/K)t = np(G) = np(L) for some positive integer t. Furthermore, |NK(P )|t
= |K|.

Lemma 2.7 ([4, Theorem 2]). If G is a simple K3-group, then G is iso-
morphic to one of the following groups: A5, A6, L2(7), L2(8), L2(17), L3(3),
U3(3) or U4(2).

Lemma 2.8. Let G be a simple K4-group. If π(G) = {2, 3, 7, 127}, then
G ∼= L2(127).

Proof. This follows from [12. Corollary 3]. �

3. PROOF OF THEOREM A

The necessity is obvious by [2]. We only prove the sufficiency. Let n ∈
πe(G) and k be the number of cyclic subgroups of G of order n. Then mn =
k · ϕ(n). In particular, ϕ(n) | mn. Further, along with Lemma 2.1 we obtain
that for any positive integer n | |G|, the following hold:

(1)


ϕ(n) | mn

n |
∑
d|n

md
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For convenience, we denote by Ωi the set of all elements of order i in G.

Proof. Note that nse(G) = {1, 16256, 48768, 97536, 292608, 8001, 16002,
32004, 64008, 128016, 256032, 16128} = nse(L2(127)). By (1), it follows that
π(G) ⊆ {2, 3, 5, 7, 127}, 2 ∈ π(G) and m2 = 8001. Moreover, if 3, 5, 7, 127 ∈
π(G), then m3 = 16256, m5 = 32004, m7 = 48768, m127 = 16128. Assume
that exp(P2) = 2s. Since ϕ(2s) | m2s ∈ nse(G), we obtain s ≤ 9. Moreover,
(1) indicates that |P2| | (1 +m2 + · · ·+m2s), and thus |P2| ≤ 212. Similarly, if
5, 7, 127 ∈ π(G), then exp(P127) = 127, |P127| ≤ 1272, |P5| = 5 and |P7| = 7.

We prove that π(G) = {2, 3, 7, 127}. If 5 ∈ π(G), then n5(G) = m5/4 =
32 · 7 · 127, which implies that 127 ∈ π(G). On the other hand, Lemma 2.2
indicates that 5 · 127 6∈ πe(G). Hence, P5 acts fixed-pointed-freely on Ω127.
That is, 5 | m127, a contradiction. Hence π(G) ⊆ {2, 3, 7, 127}.

If 3 ∈ π(G), assume that exp(P3) = 3s. Then s ≤ 3 since ϕ(3s) | m3s ∈
nse(G). If s = 1, then |P3| | 1+m3 by (1), implying P3 is cyclic. If s ≥ 2, again
by applying (1), m9 = 48768 and m27 ∈ {16002, 64008, 256032}. Along with
Lemma 2.3, we see that P3 is always cyclic. Hence n3 = m3s/ϕ(3s), leading
to 127 ∈ π(G). Therefore {2, 3, 127} ⊆ π(G). Similarly, if 7 ∈ π(G), then
n7(G) = m7/6 = 26 · 127, also implying that 127 ∈ π(G). Consequently, we
only need to consider one of the following cases {2}, {2, 127}, {2, 3, 127} and
{2, 7, 127}.

Easily, G is not a 2-group since |nse(G)| = 12. Assume that π(G) =
{2, 127}. It follows |G| ≤ 212 · 127 = 520192 <

∑
i∈nse(G) i = 975360 that

|P127| = 1272. Further, |G| = 2a · 1272 ≥ 975360 implies that a ≥ 6.

Note that exp(P2) ≤ 29 and exp(P127) = 127. Hence πe(G) ⊆ {1, 2, 22, · · · ,
29}∪ {127, 2 · 127, · · · , 28 · 127}, which indicates that |G| = 2a1272 = 975360 +
16256k1 + 48768k2 + 97536k3 + 292608k4 + 16002k5 + 32004k6 + 64008k7 +
128016k8 + 256032k9 + 16128k10 and

∑10
i=1 ki ≤ 9. Moreover, a ≤ 7. If

|P2| = 27, then P2 is not cyclic since otherwise, m27 = 16128 and thus
n2 = m27/ϕ(27) = 22 · 32 · 7, a contradiction. Hence exp(P2) ≤ 26 and∑10

i=1 ki ≤ 2. Easily, a ≤ 6, leading to a = 6. However, the equation
26 · 1272 = 975360 + 16256k1 + 48768k2 + 97536k3 + 292608k4 + 16002k5 +
32004k6 + 64008k7 + 128016k8 + 256032k9 + 16128k10 = 2a3b ≤ 4779264 and
thus 26 · 127 = 7680 + 27k1 + 27 · 3k2 + 2 · 32 · 7k5 + 22 · 32 · 7k6 with

∑6
i=1 ki ≤ 2

has no solutions.

Assume then π(G) = {2, 7, 127}. Further, 1272 6∈ πe(G). Assume that
|P127| = 1272, then 127 | |CG(P7)| since |G : NG(P7)| = 26 · 127. By Lemma
2.2, 126m7 | m7·127, a contradiction. Hence |P127| = 127. By Lemma 2.2 and
(1), we have that 127r 6∈ πe(G), where r = 2, 7 and 14 6∈ πe(G). It follows
that t(G) ≥ 2. By Lemma 2.4, G is not solvable. Note that there is no simple
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K3-group of order divisible by 127, also a contradiction. Hence the remaining
case is π(G) = {2, 3, 127}.

We show that 32 · 127 6∈ πe(G). If not, (1) indicates that ϕ(32 · 127) |
m32·127 ∈ nse(G), a contradiction. Suppose that |P127| = 127. If exp(P3) ≥
32, then P127 acts fixed-point-freely on Ω32 , which implies that 1272 | m9, a
contradiction. Hence exp(P3) = 3. Recall that |P3| = 3, leading to n3 =
m3/ϕ(3) = 26 · 127. As a result, 127 | |NG(P3)|. Let N ∈ Syl127(NG(P3)).
Then NEP3N by Sylow’s Theorem and thus 3 ·127 ∈ πe(G). Lemma 2.2 gives
that 126m3 | m3·127, this is impossible and as a result, |P127| = 127. Again
by Lemma 2.2, it follows that 3 · 127 6∈ πe(G) and 2 · 127 6∈ πe(G). Hence
t(G) ≥ 2. As there is no simple K3-group whose order is divisible by 127, G is
solvable. Further, we see from Lemma 2.5 that G is either a Frobenius group
or a 2-Frobenius group. If the former holds, write G = K o H, then either
|H| = 127 or |K| = 127. Suppose that |H| = 127. Then m2 ≤ |K2|−1 ≤ 4095,
a contradiction. If |K| = 127, then m127 = 126, also a contradiction. Hence G
is a 2-Frobenius group and then G has the following normal series 1EHEKEG
with |K/H| = 127 and |G/K| | 126.

Therefore, π(G) = {2, 3, 7, 127}. By the same reasoning above we deduce
that |P127| = 127 and |P7| = 7. Further, |G : NG(P7)| = 26 · 127. Let
N ∈Syl2(CG(P7)). Then P7 oN ≤ G. Since 14 6∈ πe(G), P7N is a Frobenius
group with Frobenius kernel P7. Hence |N | | 2, leading to |P2| = 26 or 27. If G
is solvable, then G is either a Frobenius group or a 2-Frobenius group. Write
G = K oH, where K and H are Frobenius kernel and Frobenius complement,
respectively. Then either |H| = 127 or |K| = 127. Assuming first that |H| =
127, then m3 ≤ |K3| − 1 ≤ 33 − 1 = 26, a contradiction. On the other hand,
if |K| = 127, then m127 ≤ |K| − 1 ≤ 33 − 1 = 126, also a contradiction.
As a result, G is unsolvable and has a normal series 1 E H E K E G such
that |K/H| = 127, |G/K| | |Aut K/H| = 126 and G/K is cyclic. Since K
is a Frobenius group with kernel H, we have that 127 | |H3| − 1. However,
exp(P3) ≤ 3 and P3 is cyclic, we have that H is a 2-group. By the same reason,
we have that 127 | (|H| − 1). So we have that |H| = 28. Since |G/K| | 126,
we have that |P3| ≤ 32 and |P2| ≤ 29. Hence |G| ≤ 29 · 32 · 127 = 585216 <
Σi∈nse(G)i = 975360, a contradiction. Hence G is unsolvable.

Further, Lemma 2.4 shows that G has the following normal series:

1EH EK EG

with K/H a simple K4-group and 127 - |H|. By Lemma 2.8, we have that
K/H ∼= L2(127). By Lemma 2.6, |NH(P127)|t = |H| and n127(K/H)t =
n127(K). Since K/H ∼= L2(127), we have that m127(K/H) = m127. Hence
n127(K/H) = n127(K) and thus t = 1. Furthermore, we have that H ≤
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NG(P127). It follows that H × P127 ≤ G. Note that 127r 6∈ πe(G), we have
that H = 1. So we have that K ∼= L2(127) and G/K ≤ C2. If G = K.2,
then m2 = 16129 6∈ nse(G), a contradiction. Hence G = K ∼= L2(127). This
completes the proof.
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