STRONGLY C-COHERENT RINGS

ZHANMIN ZHU

Communicated by Constantin Năstăsescu

Let R be a ring and C be a class of some finitely presented left R-modules. R is called left strongly C-coherent, if whenever $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ is exact, where $C \in C$ and P is finitely generated projective, then K is C-projective. Characterizations of left strongly C-coherent rings are given, C-injective (resp., C-projective, C-flat) dimensions of modules over left strongly C-coherent rings are studied, conditions under which left strongly C-coherent rings are left C-semihereditary are given.

AMS 2010 Subject Classification: 16D40, 16D50, 16E60, 16P70.

Key words: C-injective modules, C-flat modules, strongly C-coherent rings, C-semihereditary rings.

1. INTRODUCTION

Recall that a ring R is said to be left coherent [2] if every finitely generated left ideal of R is finitely presented. Coherent rings and their generalizations have been studied extensively by many authors. For example, Costa introduced the concept of left n-coherent rings in [3]. Let n be a nonnegative integer, then following [3], a ring R is said to be left n-coherent if every n-presented left R-module is $(n+1)$-presented, where a left R-module M is said to be n-presented in case there is an exact sequence of left R-modules $F_n \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$ in which every F_i is a finitely generated free, equivalently projective left R-module. It is easy to see that a ring R is left 0-coherent if and only if R is left noetherian, R is left 1-coherent if and only if R is left coherent. We note that in some literatures such as [4, 9], Dobbs etc. called a ring R left n-coherent if every $(n-1)$-presented left ideal of R is n-presented, and they called R left strong n-coherent if every n-presented left R-modules is $(n+1)$-presented. Clearly, Dobbs’s “strong n-coherent” implies Dobbs’s “n-coherent”, and Dobbs’s “strong n-coherent” coincides with Costa’s “n-coherent”. We remark that the terminology of “n-coherence” in this paper is Costa’s “n-coherence” but is not the same as that of Dobbs’s.

In [18], we introduced a new generalization for left coherent rings. Let C be a class of some finitely presented left R-modules. Following [18], a ring
R is called \emph{left \mathcal{C}-coherent} if every $C \in \mathcal{C}$ is 2-presented. We recall also that a left R-module M is called \mathcal{C}-injective \cite{18} if $\text{Ext}^1_R(C, M) = 0$ for every $C \in \mathcal{C}$; a right R-module M is called \mathcal{C}-flat \cite{18} if $\text{Tor}^1_R(M, C) = 0$ for every $C \in \mathcal{C}$. In this article, we will call a left R-module M \mathcal{C}-projective if $\text{Ext}^1_R(M, N) = 0$ for any \mathcal{C}-injective module N, and we will call a ring R \emph{left strongly \mathcal{C}-coherent}, if whenever $0 \to K \to P \to C \to 0$ is exact, where $C \in \mathcal{C}$ and P is finitely generated projective, then K is \mathcal{C}-projective. We will give some characterizations and properties of \mathcal{C}-projective modules and left strongly \mathcal{C}-coherent rings, left strongly \mathcal{C}-coherent rings will be characterized by \mathcal{C}-injective modules, \mathcal{C}-projective modules and \mathcal{C}-flat modules. Furthermore, we define \mathcal{C}-injective dimensions, \mathcal{C}-projective dimensions and \mathcal{C}-flat dimensions of modules, we will show that over a left strongly \mathcal{C}-coherent ring, the three classes of dimensions of modules have some nice properties.

Following \cite{18}, a ring R is called \emph{left \mathcal{C}-semihereditary}, if whenever $0 \to K \to P \to C \to 0$ is exact, where $C \in \mathcal{C}$, P is finitely generated projective, then K is projective. Following \cite{1}, a pair $(\mathcal{A}, \mathcal{B})$ of classes of R-modules is called a \emph{cotorsion pair} if $\mathcal{A}^\perp = \mathcal{B}$ and $\perp \mathcal{B} = \mathcal{A}$. We note that a cotorsion pair is also called a cotorsion theory in some literatures such as \cite{6, 15}. A cotorsion pair $(\mathcal{A}, \mathcal{B})$ is called \emph{hereditary} \cite[Definition 1.1]{7} if whenever $0 \to A' \to A \to A'' \to 0$ is exact with $A, A'' \in \mathcal{A}$ then A' is also in \mathcal{A}. By \cite[Proposition 1.2]{7}, a cotorsion pair $(\mathcal{A}, \mathcal{B})$ is hereditary if and only if whenever $0 \to B' \to B \to B'' \to 0$ is exact with $B', B \in \mathcal{B}$ then B'' is also in \mathcal{B}. In this paper, we will give some new characterizations of left \mathcal{C}-semihereditary rings.

Throughout this paper, R is an associative ring with identity and all modules considered are unitary, \mathcal{C} is a class of some finitely presented left R-modules. For any R-module M, $M^+ = \text{Hom}(M, \mathbb{Q}/\mathbb{Z})$ will be the character module of M. Given a class \mathcal{L} of R-modules, we will denote by $\mathcal{L}^\perp = \{M : \text{Ext}^1_R(L, M) = 0, L \in \mathcal{L}\}$ the right orthogonal class of \mathcal{L}, and by $\perp \mathcal{L} = \{M : \text{Ext}^1_R(M, L) = 0, L \in \mathcal{L}\}$ the left orthogonal class of \mathcal{L}. $\mathcal{C}I$, $\mathcal{C}F$, $\mathcal{F}I$, $\mathcal{F}P$ will denote the class of all \mathcal{C}-injective modules, \mathcal{C}-flat modules, FP-injective left R-modules and flat right R-modules, respectively.

2. STRONGLY \mathcal{C}-COHERENT RINGS

Recall that a left R-module M is said to be P-injective \cite{13} if $\text{Ext}^1_R(R/Ra, M) = 0$ for any $a \in R$; a left R-module N is said to be P-projective \cite{16} if $\text{Ext}^1_R(N, M) = 0$ for any P-injective left R-module M; a left R-module M is said to be FP-injective \cite{14} if $\text{Ext}^1_R(V, M) = 0$ for any finitely presented left R-module V; a left R-module N is said to be FP-projective \cite{11} if $\text{Ext}^1_R(N, M) = 0$.
for any FP-injective left R-module M. We extend the concepts of P-projective modules and FP-projective modules as follows.

Definition 1. Let R be a ring and \mathcal{C} be a class of some finitely presented left R-modules. Then a left R-module M is called \mathcal{C}-projective if $\text{Ext}^1_R(M, N) = 0$ for any \mathcal{C}-injective module N.

We will denote the class of \mathcal{C}-projective modules by $\mathcal{C}P$. The class of \mathcal{C}-projective modules is known in the sense that it is exactly the class $\bot(\bot)$ for a class \mathcal{C} of finitely presented modules, which is the first class of the cotorsion pair cogenerated by \mathcal{C} (e.g. [11, Def. 1.10]). Clearly, the name \mathcal{C}-projective was inspired by the work of Mao and Ding [11] on FP-projective modules.

Definition 2. A ring R is called left strongly \mathcal{C}-coherent, if whenever $0 \to K \to P \to C \to 0$ is exact, where $C \in \mathcal{C}$ and P is finitely generated projective, then K is \mathcal{C}-projective.

Theorem 1. The following are equivalent for a ring R:

1. R is left strongly \mathcal{C}-coherent.
2. If $C \in \mathcal{C}$, then there exists an exact sequence of left R-modules $0 \to K \to P \to C \to 0$, where P is finitely generated projective, and K is \mathcal{C}-projective.
3. If $C \in \mathcal{C}$, then there exists an exact sequence of left R-modules $0 \to K \to P \to C \to 0$, where P is projective, and K is \mathcal{C}-projective.
4. If $0 \to K \to P \to C \to 0$ is exact, where $C \in \mathcal{C}$ and P is projective, then K is \mathcal{C}-projective.
5. $\text{Ext}_R^{n+1}(C, N) = 0$ for any nonnegative integer n, any left R-module $C \in \mathcal{C}$ and any \mathcal{C}-injective left R-module N.
6. $\text{Ext}_R^2(C, N) = 0$ for any left R-module $C \in \mathcal{C}$ and any \mathcal{C}-injective left R-module N.
7. If N is a \mathcal{C}-injective left R-module, N_1 is a \mathcal{C}-injective submodule of N, then N/N_1 is \mathcal{C}-injective.
8. For any \mathcal{C}-injective left R-module N, $E(N)/N$ is \mathcal{C}-injective.
9. $(\mathcal{C}P, \mathcal{T})$ is a hereditary cotorsion pair.
10. R is left \mathcal{C}-coherent, and $\text{Tor}_R^{n+1}(M, C) = 0$ for any nonnegative integer n, any left R-module $C \in \mathcal{C}$ and any \mathcal{C}-flat right R-module M.
11. R is left \mathcal{C}-coherent, and $\text{Tor}_R^2(M, C) = 0$ for any left R-module $C \in \mathcal{C}$ and any \mathcal{C}-flat right R-module M.
12. $\text{Ext}_R^{n+1}(P, N) = 0$ for any nonnegative integer n, any \mathcal{C}-projective left R-module P and any \mathcal{C}-injective left R-module N.

Proof.

(1) \Rightarrow (2) \Rightarrow (3), and (4) \Rightarrow (1) are obvious.
(3) ⇒ (4) follows from Schanuel’s Lemma.

(1) ⇒ (5). Use induction on \(n \). If \(n = 0 \), then it is clear that (5) holds. Assume that \(\text{Ext}_{R}^{k+1}(C, N) = 0 \) for any \(C \in \mathcal{C} \) and any \(\mathcal{C} \)-injective left \(R \)-module \(N \). Then, by the isomorphism \(\text{Ext}_{R}^{k+1}(C, N) \cong \text{Ext}_{R}^{1}(C, L^{k}) \), where \(L^{k} \) is the \(k \)th cosyzygy of \(N \), we have that \(\text{Ext}_{R}^{1}(C, L^{k}) = 0 \) and so \(L^{k} \) is \(\mathcal{C} \)-injective. Then, \(\text{Ext}_{R}^{k+1}(K, N) \cong \text{Ext}_{R}^{1}(K, L^{k}) = 0 \) for any \(\mathcal{C} \)-projective module \(K \) and any \(\mathcal{C} \)-injective left \(R \)-module \(N \). Now, let \(C \in \mathcal{C} \) and \(N \) be any \(\mathcal{C} \)-injective left \(R \)-module. Then there exists an exact sequence of left \(R \)-modules \(0 \to K \to P \to C \to 0 \), where \(P \) is finitely generated projective. Since \(R \) is left strongly \(\mathcal{C} \)-coherent, \(K \) is \(\mathcal{C} \)-projective, and so \(\text{Ext}_{R}^{k+1}(K, N) = 0 \). Thus, from the exact sequence

\[
0 = \text{Ext}_{R}^{k+1}(P, N) \to \text{Ext}_{R}^{k+1}(K, N) \to \text{Ext}_{R}^{k+2}(C, N) \to \text{Ext}_{R}^{k+2}(P, N) = 0
\]

we have \(\text{Ext}_{R}^{k+2}(C, N) \cong \text{Ext}_{R}^{k+1}(K, N) = 0 \). Therefore, (5) holds by induction axioms.

(5) ⇒ (6) is obvious.

(6) ⇒ (7). For any left \(R \)-module \(C \in \mathcal{C} \). The exact sequence \(0 \to N_{1} \to N \to N/N_{1} \to 0 \) induces the exactness of the sequence

\[
0 = \text{Ext}_{R}^{1}(C, N) \to \text{Ext}_{R}^{1}(C, N/N_{1}) \to \text{Ext}_{R}^{2}(C, N_{1}) = 0.
\]

This follows that \(\text{Ext}_{R}^{1}(C, N/N_{1}) = 0 \), as desired.

(7) ⇒ (8) is obvious.

(8) ⇒ (1). Let \(C \in \mathcal{C} \). If \(0 \to K \to P \to C \to 0 \) is an exact sequence of left \(R \)-modules, where \(P \) is finitely generated projective. Then for any \(\mathcal{C} \)-injective module \(N \), \(E(N)/N \) is \(\mathcal{C} \)-injective by (7). From the exactness of the two sequences

\[
0 = \text{Ext}_{R}^{1}(P, N) \to \text{Ext}_{R}^{1}(K, N) \to \text{Ext}_{R}^{2}(C, N) \to \text{Ext}_{R}^{2}(P, N) = 0
\]

and

\[
0 = \text{Ext}_{R}^{1}(C, E(N)) \to \text{Ext}_{R}^{1}(C, E(N)/N) \to \text{Ext}_{R}^{2}(C, N) \to \text{Ext}_{R}^{2}(C, E(N)) = 0,
\]

we have \(\text{Ext}_{R}^{1}(K, N) \cong \text{Ext}_{R}^{2}(C, N) \cong \text{Ext}_{R}^{1}(C, E(N)/N) = 0 \). Thus, \(K \) is \(\mathcal{C} \)-projective, as required.

(6) ⇔ (9) ⇔ (11). It follows from [18, Proposition 3.11].

(5),(11) ⇒ (10). By (11), \(R \) is left \(\mathcal{C} \)-coherent. Let \(M \) be any \(\mathcal{C} \)-flat right \(R \)-module, \(C \in \mathcal{C} \) and \(n \) be any nonnegative integer. Then by [18, Theorem 2.7], \(M^{+} \) is \(\mathcal{C} \)-injective. So, by (5), we have \(\text{Ext}_{R}^{n+1}(C, M^{+}) = 0 \), and thus \(\text{Tor}_{n+1}^{R}(M, C) = 0 \) by the isomorphism \(\text{Tor}_{n+1}^{R}(M, C)^{+} \cong \text{Ext}_{R}^{n+1}(C, M^{+}) \).

(10) ⇒ (11) is obvious.

(9) ⇔ (12) follows from [7, Proposition 1.2]. □
Recall that if \(n \) is a positive integer, then a left \(R \)-module \(M \) is called \((n,0)\)-injective \([17]\) if \(\text{Ext}^1_R(A,M) = 0 \) for every \(n \)-presented left \(R \)-module \(A \).

Proposition 1. Let \(n \) be a positive integer and \(\mathcal{C} \) be the class of all \(n \)-presented left \(R \)-modules. Then \(R \) is left strongly \(\mathcal{C} \)-coherent if and only if \(R \) is left \(n \)-coherent.

Proof. \(\Rightarrow. \) Let \(V \) be an \(n \)-presented left \(R \)-module. Then there is an exact sequence \(0 \to K \to P \to V \to 0 \), where \(P \) is finitely generated projective and \(K \) is \((n−1)\)-presented. Since \(R \) is left strongly \(\mathcal{C} \)-coherent, \(K \) is \(\mathcal{C} \)-projective, that is, \(\text{Ext}^1_R(K,M) = 0 \) for every \((n,0)\)-injective module \(M \). Consequently, by \([17, \text{Theorem 2.6}]\), \(K \) is \(n \)-presented, and thus \(V \) is \((n + 1)\)-presented.

\(\Leftarrow. \) Obvious. \(\square \)

Corollary 1. Let \(\mathcal{C} \) be the class of all finitely presented left \(R \)-modules. Then \(R \) is left strongly \(\mathcal{C} \)-coherent if and only if \(R \) is left \(\mathcal{C} \)-coherent if and only if \(R \) is left coherent.

Let \(A \) be a ring and \(_AE_A \) a bimodule, the trivial ring extension of \(A \) by \(E \) is the ring \(R = A \times E \) whose underlying group is \(A \times E = \{(a,e) : a \in A, e \in E\} \) with addition defined componentwise and multiplication defined by

\[
(a,e)(a',e') = (aa', ae' + ea'), \quad \text{where } a,a' \in A, e,e' \in E.
\]

Example 1. Let \((V,M)\) be a nondiscrete valuation domain and let \(R = V \times V/M \) be the trivial ring extension of \(V \) by \(V/M \). Then by \([9, \text{Example 3.8}]\), \(R \) is not Dobbs’s “2-coherent”, and so it is not 2-coherent. Let \(\mathcal{C} \) be the class of all 2-presented left \(R \)-modules. Then \(R \) is clearly left \(\mathcal{C} \)-coherent but it is not left strongly \(\mathcal{C} \)-coherent by Proposition 1.

Recall that a left \(R \)-module \(M \) is called *cyclically presented* if \(M \cong R/Ra \) for some \(a \in R \); a ring \(R \) is called *left strongly P-coherent* \([12]\) if every principal left ideal of \(R \) is cyclically presented; a ring \(R \) is called *left generalized morphic* \([16]\) if for every \(a \in R \), there exists \(b \in R \) such that \(I(a) \cong R/Rb \). By \([16, \text{Corollary 2.3}]\), a ring \(R \) is left generalized morphic if and only if \(I(a) \) is a principal left ideal for each \(a \in R \). It is easy to see that a left generalized morphic ring is left strongly P-coherent. We recall also that a ring \(R \) is called *left Lee n-coherent* \([10]\) (for integers \(n > 0 \) or \(n = \infty \)) if every finitely generated submodule of a free left \(R \)-module whose projective dimension is \(\leq n − 1 \) is finitely presented. It is easy to see that a ring \(R \) is left Lee \(n \)-coherent if and only if every finitely presented left \(R \)-module with projective dimension \(\leq n \) is 2-presented.

Example 2. (1) Let \(\mathcal{C} = \{R/I : I \text{ is a finitely generated left ideal of } R\} \). Then \(R \) is left strongly \(\mathcal{C} \)-coherent if and only if \(R \) is left \(\mathcal{C} \)-coherent if and only if \(R \) is left coherent.
(2) Let \(C \) be the class of all finitely presented left \(R \)-modules with projective dimensions \(\leq n \). Then \(R \) is left strongly \(C \)-coherent if and only if \(R \) is left \(C \)-coherent if and only if \(R \) is left Lee \(n \)-coherent.

(3) Let \(C = \{ R/Ra : a \in R \} \). Then \(R \) is left strongly \(C \)-coherent if and only if every principal left ideal is P-projective.

(4) Let \(R \) be a left strongly P-coherent ring and \(C = \{ R/Ra : a \in R \} \). Then \(R \) is left strongly \(C \)-coherent. In particular, every left generalized morphic ring is left strongly \(C \)-coherent.

(5) Every left \(C \)-semihereditary ring is left strongly \(C \)-coherent.

Proof. (1) follows from Theorem 1(2) and [5, Proposition]. The others are easy. □

Recall that a right \(R \)-module \(M \) is said to be cotorsion \([6, Definition 5.3.22]\) if \(\text{Ext}^1_R(F, M) = 0 \) for all flat right \(R \)-modules \(F \). We call a right \(R \)-module \(M \) \(C \)-cotorsion if \(\text{Ext}^1_R(F, M) = 0 \) for all \(C \)-flat right \(R \)-modules \(F \).

Proposition 2. The following are equivalent for a left \(C \)-coherent ring \(R \):

1. Every \(C \)-flat right \(R \)-module is flat.
2. Every \(C \)-injective left \(R \)-module is FP-injective.
3. Every cotorsion right \(R \)-module is \(C \)-cotorsion.
4. Every finitely presented left \(R \)-module is \(C \)-projective.

In this case, \(R \) is left coherent and left strongly \(C \)-coherent.

Proof. (1) \(\iff \) (2). By [18, Corollary 3.8].

(1) \(\Rightarrow \) (3). Assume (1). Then \(\mathcal{F} = C \mathcal{F} \). And so, if \(M \) is a cotorsion right \(R \)-module, then \(M \in \mathcal{F} \perp = (C \mathcal{F}) \perp \).

(3) \(\Rightarrow \) (1). Since \(\mathcal{F} \subseteq C \mathcal{F} \), we have \((C \mathcal{F}) \perp \subseteq \mathcal{F} \perp \). But \(\mathcal{F} \perp \subseteq (C \mathcal{F}) \perp \) by (3), so \((C \mathcal{F}) \perp = \mathcal{F} \perp \). Now let \(M \) be a \(C \)-flat right \(R \)-module. Then \(M \in \perp ((C \mathcal{F}) \perp) = (\mathcal{F} \perp) = \mathcal{F} \) since \((\mathcal{F}, \mathcal{F} \perp)\) is a cotorsion pair, and thus (1) follows.

(2) \(\Rightarrow \) (4). By (2), \(C \mathcal{I} \subseteq \mathcal{F} \mathcal{P} \mathcal{I} \). But \(\mathcal{F} \mathcal{P} \mathcal{I} \subseteq C \mathcal{I} \), so \(\mathcal{F} \mathcal{P} \mathcal{I} = C \mathcal{I} \). Let \(V \) be any finitely presented left \(R \)-module. Then \(V \in \perp (\mathcal{F} \mathcal{P} \mathcal{I}) = \perp (C \mathcal{I}) = C \mathcal{P} \).

(4) \(\Rightarrow \) (2). It is obvious.

Finally, let \(N \) be a \(C \)-injective left \(R \)-module and \(N_1 \) be a \(C \)-injective submodule of \(N \). Then by (2), \(N_1 \) is FP-injective. Since \(R \) is left \(C \)-coherent, by [18, Theorem 3.5], \(N/N_1 \) is \(C \)-injective. And so, by Theorem 1(7), \(R \) is left strongly \(C \)-coherent. Moreover, in this case, \(R \) is also left coherent by [18, Corollary 3.8]. □
\textit{Definition 3.} (1). The \mathcal{C}-injective dimension of a module RM is defined by
\[\mathcal{C}I - \text{dim}(RM) = \inf \{n : \text{Ext}^{n+1}_R(C, M) = 0 \text{ for every } C \in \mathcal{C}\}\]

(2). The \mathcal{C}-injective global dimension of a ring R is defined by
\[\mathcal{C}I - \text{GLD}(R) = \sup \{\mathcal{C}I - \text{dim}(M) : M \text{ is a left } R\text{-module}\}\]

\textit{Theorem 2.} Let R be a left strongly \mathcal{C}-coherent ring, M a left R-module and n a nonnegative integer. Then the following are equivalent:

(1) $\mathcal{C}I$-$\text{dim}(RM) \leq n$.

(2) $\text{Ext}^{n+k}_R(C, M) = 0$ for all $C \in \mathcal{C}$ and all positive integers k.

(3) $\text{Ext}^{n+1}_R(C, M) = 0$ for all $C \in \mathcal{C}$.

(4) If the sequence $0 \to M \to E_0 \to E_0 \to \cdots \to E_{n-1} \to E_n \to 0$ is exact with E_0, \cdots, E_{n-1} \mathcal{C}-injective, then E_n is also \mathcal{C}-injective.

(5) There exists an exact sequence of left R-modules $0 \to M \to E_0 \to \cdots \to E_{n-1} \to E_n \to 0$ such that $E_0, \cdots, E_{n-1}, E_n$ are \mathcal{C}-injective.

\textit{Proof.} (1) \Rightarrow (2). Use induction on n. If $n = 0$, then (2) holds by Theorem 1(5). Assume that $\text{Ext}^{n-1+k}_R(C, N) = 0$ for any $C \in \mathcal{C}$, any positive integer k and any left R-module N with $\mathcal{C}I$-$\text{dim}(N) \leq n-1$. Then for any left R-module M with $\mathcal{C}I$-$\text{dim}(M) \leq n$. If $\mathcal{C}I$-$\text{dim}(M) = 0$, then (2) holds by Theorem 1(5). If $\mathcal{C}I$-$\text{dim}(M) > 0$, then there exists a positive integer $m \leq n$ such that $\text{Ext}^{m+1}_R(C, M) = 0$ for any $C \in \mathcal{C}$, which implies that $\text{Ext}^{m}_R(C, E(M)/M) = 0$ for any $C \in \mathcal{C}$. So $\mathcal{C}I$-$\text{dim}(E(M)/M) \leq m - 1$, and hence $\mathcal{C}I$-$\text{dim}(E(M)/M) \leq n - 1$. By hypothesis, we have $\text{Ext}^{n+k}_R(C, E(M)/M) = 0$ for any $C \in \mathcal{C}$ and any positive integer k, it follows that $\text{Ext}^{n+k}_R(C, M) = 0$. Therefore, (2) holds by induction axioms.

(2) \Rightarrow (3) \Rightarrow (1) and (4) \Rightarrow (5) are obvious.

(3) \Rightarrow (4). Since R is left strongly \mathcal{C}-coherent and E_0, \cdots, E_{n-1} is \mathcal{C}-injective, by Theorem 1(5), we have $\text{Ext}^{n+1}_R(C, M) \cong \text{Ext}^{n}_R(C, \text{im}(d_0)) \cong \text{Ext}^{n-1}_R(C, \text{im}(d_1)) \cong \cdots \cong \text{Ext}^{1}_R(C, \text{im}(d_{n-1})) = \text{Ext}^{1}_R(C, E_n)$. So (4) follows from (3).

(5) \Rightarrow (3). It follows from the above isomorphism $\text{Ext}^{n+1}_R(C, M) \cong \text{Ext}^{1}_R(C, E_n)$. \hfill \Box

\textit{Definition 4.} (1). The \mathcal{C}-flat dimension of a module MR is defined by
\[\mathcal{C}F$-dim$(MR) = \inf \{n : \text{Tor}^{n+1}_R(M, C) = 0 \text{ for every } C \in \mathcal{C}\}\]

(2). The \mathcal{C}-weak global dimension of a ring R is defined by
\[\mathcal{C}$-WD$(R) = \sup \{\mathcal{C}F$-dim$(M) : M \text{ is a right } R\text{-module}\}\]
Theorem 3. Let R be a left strongly \mathcal{C}-coherent ring, M a right R-module and n a non-negative integer. Then the following statements are equivalent:

1. $\mathcal{C}\mathcal{F}$-$\text{dim}(M_R) \leq n$.
2. $\text{Tor}^R_{n+k}(M, C) = 0$ for all $C \in \mathcal{C}$ and all positive integers k.
3. $\text{Tor}^R_{n+1}(M, C) = 0$ for all $C \in \mathcal{C}$.
4. If the sequence $0 \to F_n \xrightarrow{\varepsilon} F_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{d_0} M \to 0$ is exact with F_0, \cdots, F_{n-1} \mathcal{C}-flat, then F_n is also \mathcal{C}-flat.
5. There exists an exact sequence of right R-modules $0 \to F_n \xrightarrow{\varepsilon} F_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{d_0} M \to 0$ such that $F_0, \cdots, F_{n-1}, F_n$ are \mathcal{C}-flat.

Proof. (1) \Rightarrow (2). Let $C \in \mathcal{C}$ and k be any positive integer. By (1), there exists a nonnegative integer $m \leq n$ such that $\text{Tor}^R_{m+1}(M, C) = 0$. And so, by the isomorphism $\text{Tor}^R_{m+1}(M, C)^+ \cong \text{Ext}^{m+1}_R(C, M^+)$, we have $\text{Ext}^{m+1}_R(C, M^+) = 0$. Since R is left strongly \mathcal{C}-coherent, by Theorem 2, we have $\text{Ext}^{n+k}_R(C, M^+) = 0$, and hence $\text{Tor}^R_{n+k}(M, C) = 0$ by the isomorphism $\text{Tor}^R_{n+k}(M, C)^+ \cong \text{Ext}^{n+k}_R(C, M^+)$.

(2) \Rightarrow (1) and (4) \Rightarrow (5) are obvious.

(3) \Rightarrow (4). Since R is left strongly \mathcal{C}-coherent and F_0, \cdots, F_{n-1} is \mathcal{C}-flat, by Theorem 1(10), we have $\text{Tor}^R_{n+1}(M, C) \cong \text{Tor}^R_{n}(\text{Ker}(d_0), C) \cong \text{Tor}^R_{n-1}(\text{Ker}(d_1), C) \cong \cdots \cong \text{Tor}^R_{1}(\text{Ker}(d_{n-1}), C) = \text{Tor}^R_{1}(F_n, C)$. So (4) follows from (3).

(5) \Rightarrow (3). It follows from the above isomorphism $\text{Tor}^R_{n+1}(M, C) \cong \text{Tor}^R_{1}(F_n, C)$.

Next, we give some new characterizations of left \mathcal{C}-semihereditary rings.

Theorem 4. The following are equivalent for a ring R:

1. R is left \mathcal{C}-semihereditary.
2. R is left strongly \mathcal{C}-coherent and $\mathcal{C}\mathcal{I}$-$\text{GLD}(R) \leq 1$.
3. R is left strongly \mathcal{C}-coherent and \mathcal{C}-$\text{WD}(R) \leq 1$.
4. Every torsionless right R-module is \mathcal{C}-flat.

Proof. (1) \Rightarrow (2). Suppose that R is left \mathcal{C}-semihereditary. Then it is clear that R is left strongly \mathcal{C}-coherent. Now let M be any left R-module. Then for any $C \in \mathcal{C}$, we have an exact sequence $0 \to K \to P \to C \to 0$ of left R-modules, where P is finitely generated projective. By condition, K is projective. Thus the exact sequence $0 = \text{Ext}^1_R(K, M) \to \text{Ext}^2_R(C, M) \to \text{Ext}^2_R(P, M) = 0$ implies that $\text{Ext}^2_R(C, M) = 0$. This follows that $\mathcal{C}\mathcal{I}$-$\text{GLD}(R) \leq 1$ by Definition 3.
(2) \Rightarrow (3). It follows from Theorem 2 and the isomorphism
\[
\text{Tor}_2^R(M, C)^+ \cong \text{Ext}_R^2(C, M^+).
\]

(3) \Rightarrow (1). Assume (3). Then R is clearly left \mathcal{C}-coherent. Let A be a submodule of a \mathcal{C}-flat right R-module B and let $C \in \mathcal{C}$. Since R is left strongly \mathcal{C}-coherent and \mathcal{C}-WD(R)≤ 1, by Theorem 3, we have $\text{Tor}_2^R(B/A, C) = 0$. Then, from the exactness of the sequence $0 = \text{Tor}_2^R(B/A, C) \rightarrow \text{Tor}_1^R(A, C) \rightarrow \text{Tor}_1^R(B, C) = 0$ we have $\text{Tor}_1^R(A, C) = 0$, and so A is \mathcal{C}-flat. Therefore, by [18, Theorem 4.3(2)], R is left \mathcal{C}-semihereditary.

(1) \Rightarrow (4). Let M be a torsionless right R-module. Then there exists an exact sequence $0 \rightarrow M \rightarrow \prod R_R$. Since R is left \mathcal{C}-semihereditary, by [18, Theorem 4.3(2)], R is left \mathcal{C}-coherent and every submodule of a \mathcal{C}-flat right R-module is \mathcal{C}-flat, so M is \mathcal{C}-flat by [18, Theorem 3.3(4)].

(4) \Rightarrow (1). Assume (4). Then $\prod R_R$ is \mathcal{C}-flat, and hence R is left \mathcal{C}-coherent by [18, Theorem 3.3(4)]. Moreover, every right ideal of R is torsionless and so is \mathcal{C}-flat. Thus, R is left \mathcal{C}-semihereditary by [18, Theorem 4.3(3)].

By taking \mathcal{C} to be the class of all finitely presented left R-modules, we have

Corollary 2. The following are equivalent for a ring R:

1. R is left semihereditary.
2. R is left coherent and left \mathcal{FP}_I-GLD(R)≤ 1.
3. R is left coherent and $\mathcal{WD}(R) \leq 1$.
4. Every torsionless right R-module is flat.

Recall that a ring R is called left PP [8] if every principal left ideal of R is projective.

Our following Examples show that strongly \mathcal{C}-coherent rings need not be \mathcal{C}-semihereditary.

Example 3. (1) Let K be a field and let $R = K \ltimes K$. Then R is a commutative ring with only three ideals: 0, R, and $(0,K) = R(0,1)$, so R is generalized morphic. Since $\mathbf{I}_R(0,1) = (0,K)$ is not a direct summand of R_R, it is not a PP ring. So, let $\mathcal{C} = \{R/Ra : a \in R\}$. Then R is strongly \mathcal{C}-coherent by Example 2(4), but it is not \mathcal{C}-semihereditary by [18, Example 4.2(3)].

(2) Let $R = \mathbb{Z}_4 = \{0, 1, 2, 3\}$. Then it is easy to see that R is a commutative generalized morphic ring. Since $\mathbf{I}(2) = \{0, 2\}$ contains no nonzero idempotent elements, it is not a direct summand of R_R, so that R_2 is not projective, and thus R is not PP. So, let $\mathcal{C} = \{R/Ra : a \in R\}$. Then R is strongly \mathcal{C}-coherent but it is not a \mathcal{C}-semihereditary ring.

We remark that the above two examples show that commutative artinian rings need not be PP.

3. \(C \)-PROJECTIVE MODULES

Next, we give some characterizations of \(C \)-projective modules.

Proposition 3. Let \(M \) be a left \(R \)-module. Then the following are equivalent:

1. \(M \) is \(C \)-projective.
2. \(M \) is projective with respect to every exact sequence \(0 \to A \to B \to C \to 0 \) of left \(R \)-modules with \(A \) \(C \)-injective.
3. \(M \) is projective with respect to the exact sequence \(0 \to A \to E(A) \xrightarrow{\pi} E(A)/A \to 0 \) of left \(R \)-modules with \(A \) \(C \)-injective.

Proof. (1) \(\Rightarrow \) (2). By the exact sequence \(\text{Hom}(M,B) \to \text{Hom}(M,C) \to \text{Ext}^1_R(M,A) = 0 \).

(2) \(\Rightarrow \) (3). It is clear.

(3) \(\Rightarrow \) (1). For any \(C \)-injective module \(A \), we get an exact sequence \(\text{Hom}(M,E(A)) \xrightarrow{\pi_*} \text{Hom}(M,E(A)/A) \to \text{Ext}^1_R(M,A) \to \text{Ext}^1_R(M,E(A)) = 0 \).

By (3), \(\pi_* \) is epic, and so \(\text{Ext}^1_R(M,A) = 0 \). Therefore, \(M \) is \(C \)-projective. \(\square \)

Let \(L \) be a class of \(R \)-modules and \(M \) an \(R \)-module. Following [6], we say that a homomorphism \(\phi : M \to L \) where \(L \in L \) is a \(L \)-preenvelope of \(M \) if for any homomorphism \(f : M \to L' \) with \(L' \in L \), there is a \(g : L \to L' \) such that \(g\phi = f \).

Proposition 4. Let \(R \) be a \(C \)-injective ring and \(M \) be a left \(R \)-module. Then the following statements are equivalent:

1. \(M \) is \(C \)-projective.
2. For every exact sequence \(0 \to K \to A \to M \to 0 \), where \(A \) is \(C \)-injective, \(K \to A \) is a \(C \)-injective preenvelope of \(K \).
3. \(M \) is a cokernel of a \(C \)-injective preenvelope \(K \to P \) with \(P \) projective.

Proof. (1) \(\Rightarrow \) (2). It follows from the exact sequence \(\text{Hom}(A,N) \to \text{Hom}(K,N) \to \text{Ext}^1_R(M,N) = 0 \), where \(N \) is \(C \)-injective.

(2) \(\Rightarrow \) (3). Let \(0 \to K \to P \to M \to 0 \) be an exact sequence of left \(R \)-modules with \(P \) projective. Since \(R \) is a \(C \)-injective ring, by [18, Proposition 2.5], \(P \) is \(C \)-injective. And so, by (2), \(K \to P \) is a \(C \)-injective preenvelope. By (3), there exists an exact sequence \(0 \to K \to P \to M \to 0 \), where \(P \) is projective and \(K \to P \) is a \(C \)-injective preenvelope. Thus we get an exact sequence \(\text{Hom}(P,N) \to \text{Hom}(K,N) \to \text{Ext}^1_R(M,N) \to 0 \) for every \(C \)-injective module \(N \). Note that the map \(\text{Hom}(P,N) \to \text{Hom}(K,N) \) is epic, we have that \(\text{Ext}^1_R(M,N) = 0 \), as required. \(\square \)

Definition 5. (1). The \(C \)-projective dimension of a module \(_RM \) is defined by
\(\mathcal{CP}-\dim(RM) = \inf\{n : \Ext_R^{n+1}(M, N) = 0 \text{ for every } \mathcal{C}\text{-injective module } N\}\)

(2). The \(\mathcal{C}\)-projective global dimension of a ring \(R\) is defined by

\[\mathcal{CP}\text{-GLD}(R) = \sup\{\mathcal{CP} - \dim(M) : M \text{ is a left } R\text{-module}\}\]

Theorem 5. Let \(R\) be a left strongly \(\mathcal{C}\)-coherent ring, \(M\) be a left \(R\)-module and \(n\) be a nonnegative integer. Then the following statements are equivalent:

(1) \(\mathcal{CP}\text{-dim}(RM) \leq n\).

(2) \(\Ext_R^{n+k}(M, N) = 0\) for all \(\mathcal{C}\text{-injective modules } N\) and all positive integers \(k\).

(3) \(\Ext_R^{n+1}(M, N) = 0\) for all \(\mathcal{C}\text{-injective modules } N\).

(4) If the sequence \(0 \to P_n \xrightarrow{\varepsilon} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0\) is exact with \(P_0, \cdots, P_{n-1}\) \(\mathcal{C}\)-projective, then \(P_n\) is also \(\mathcal{C}\)-projective.

(5) There exists an exact sequence of right \(R\)-modules \(0 \to P_n \xrightarrow{\varepsilon} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} F_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0\) such that \(P_0, \cdots, P_{n-1}, P_n\) are \(\mathcal{C}\)-projective.

Proof. (1) \(\Rightarrow\) (2). Use induction on \(n\). If \(n = 0\), then \(M\) is \(\mathcal{C}\)-projective. Since \(R\) is left strongly \(\mathcal{C}\)-coherent, by Theorem 1(12), (2) holds. Now assume that \(\Ext_R^{n-1+k}(L, N) = 0\) for any \(\mathcal{C}\text{-injective module } N\), any positive integer \(k\) and any left \(R\)-module \(L\) with \(\mathcal{CP}\text{-dim}(L) \leq n - 1\). Then for any left \(R\)-module \(M\) with \(\mathcal{CP}\text{-dim}(M) \leq n\). If \(\mathcal{CP}\text{-dim}(M) = 0\), then (2) holds by Theorem 1(12). \(\mathcal{CP}\text{-dim}(M) > 0\), then there exists a positive integer \(m \leq n\) such that \(\Ext_R^{m+1}(M, N) = 0\) for any \(\mathcal{C}\text{-injective module } N\). Let \(0 \to K \to P \to M \to 0\) be exact with \(P\) projective. Then it is easy to see that \(\Ext_R^m(K, N) = 0\) for any \(\mathcal{C}\text{-injective module } N\). So \(\mathcal{CP}\text{-dim}(K) \leq m - 1\), and hence \(\mathcal{CP}\text{-dim}(K) \leq n - 1\). By hypothesis, we have \(\Ext_R^{n-1+k}(K, N) = 0\) for any \(\mathcal{C}\text{-injective module } N\) and any positive integer \(k\), it follows that \(\Ext_R^{n+k}(M, N) = 0\). Therefore, (2) holds by induction axioms.

(2) \(\Rightarrow\) (3) \(\Rightarrow\) (1) and (4) \(\Rightarrow\) (5) are obvious.

(3) \(\Rightarrow\) (4). Since \(R\) is left strongly \(\mathcal{C}\)-coherent, by Theorem 1(12), we have \(\Ext_R^i(P, N) = 0\) for any positive integer \(i\), any \(\mathcal{C}\text{-projective left } R\text{-module } P\) and any \(\mathcal{C}\text{-injective left } R\text{-module } N\). Thus, \(\Ext_R^{n+1}(M, N) \cong \Ext_R^1(Ker(d_0), N) \cong \Ext_R^{n-1}(Ker(d_1), N) \cong \cdots \cong \Ext_R^1(Ker(d_{n-1}), N) = \Ext_R^1(P_n, N)\). So (4) follows from (3).

(5) \(\Rightarrow\) (3). It follows from the above isomorphism \(\Ext_R^{n+1}(M, N) \cong \Ext_R^1(P_n, N)\). \(\Box\)

Recall that a cotorsion pair \((\mathcal{A}, \mathcal{B})\) is called complete (see [6, Definition 7.16] and [15, Lemma 1.13]) if for any \(R\)-module \(M\), there is an exact sequence \(0 \to M \to B \to A \to 0\) with \(A \in \mathcal{A}\) and \(B \in \mathcal{B}\).
Theorem 6. The following are equivalent for a ring R:

1. $\mathcal{C}P-\text{GLD}(R)=0$.
2. Every left R-module is \mathcal{C}-projective.
3. Every \mathcal{C}-injective module is injective.
4. R is left strongly \mathcal{C}-coherent and every \mathcal{C}-injective module is \mathcal{C}-projective.
5. Every cyclic left R-module is \mathcal{C}-projective.

In this case, R is left noetherian.

Proof. (1) \iff (2) \iff (3) and (2) \implies (4), (5) are obvious.

(4) \implies (2). Let M be a left R-module. By [18, Theorem 2.10(1)], $(\mathcal{C}P, \mathcal{CI})$ is a complete cotorsion pair, so there is a short exact sequence $0 \rightarrow M \rightarrow E \rightarrow P \rightarrow 0$, where E is \mathcal{C}-injective and P is \mathcal{C}-projective. By hypothesis, every \mathcal{C}-injective module is \mathcal{C}-projective, so E is \mathcal{C}-projective. Since R is left strongly \mathcal{C}-coherent, by Theorem 1(12), we have $\text{Ext}_R^1(E,N) = \text{Ext}_R^2(P,N) = 0$ for any \mathcal{C}-injective module N. It follows that $\text{Ext}_R^1(M,N) = 0$ for any \mathcal{C}-injective module N, and so M is \mathcal{C}-projective.

(5) \implies (3). Let N be a \mathcal{C}-injective module. Then for any left ideal I, by (5), R/I is \mathcal{C}-projective, so $\text{Ext}_R^1(R/I,N) = 0$, and thus N is injective.

In this case, any direct sum of injective left R-modules is injective since any direct sum of \mathcal{C}-injective modules is \mathcal{C}-injective by [18, Proposition 2.5(3)], and hence R is left noetherian. \square

Observing that every FP-injective left module over a left noetherian ring is injective, by taking \mathcal{C} to be the class of all finitely presented left R-modules in Theorem 6, we have immediately the following results.

Corollary 3. The following are equivalent for a ring R:

1. R is left noetherian.
2. Every left R-module is FP-projective.
3. Every FP-injective module is injective.
4. R is left coherent and every FP-injective left R-module is FP-projective.
5. Every cyclic left R-module is FP-projective.

Theorem 7. Let R be a ring and consider the following conditions:

1. Every submodule of a \mathcal{C}-projective module is \mathcal{C}-projective.
2. Every submodule of a projective left R-module is \mathcal{C}-projective.
3. Every left ideal of R is \mathcal{C}-projective.
4. $\mathcal{C}P - \text{GLD}(R) \leq 1$.

Then we always have the following implications:

$$(1) \implies (2) \implies (3) \implies (4).$$
Furthermore, if R is left strongly \mathcal{C}-coherent, then the four conditions are equivalent.

Proof. (1) \Rightarrow (2) \Rightarrow (3) are obvious.

(3) \Rightarrow (4). Let N be any \mathcal{C}-injective module. Then for any left ideal I, we have $\text{Ext}^1_R(I, N) = 0$ by (3), it follows that $\text{Ext}^2_R(R/I, N) = 0$. So $id(N) \leq 1$, and then $\text{Ext}^2_R(M, N) = 0$ for every left R-module M. Therefore (4) holds.

Now suppose that R is left strongly \mathcal{C}-coherent and (4) holds. Then we will prove (1), and thus, in this case, the four conditions are equivalent. In fact, let K be a submodule of a \mathcal{C}-projective module P. Then, for any \mathcal{C}-injective module N, we get an exact sequence

$$0 = \text{Ext}^1_R(P, N) \rightarrow \text{Ext}^1_R(K, N) \rightarrow \text{Ext}^2_R(P/K, N).$$

Since R is left strongly \mathcal{C}-coherent, by (4) and Theorem 5, we have $\text{Ext}^2_R(P/K, N) = 0$, and so $\text{Ext}^1_R(K, N) = 0$, which shows that K is \mathcal{C}-projective, as required. \square

Acknowledgments. The author is very grateful to the referee for the helpful comments. This research was supported by the Natural Science Foundation of Zhejiang Province, China (LY18A010018).

REFERENCES

\textit{Received 20 May 2014} \\
Jiaxing University, \\
Department of Mathematics, \\
Jiaxing, Zhejiang Province, \\
314001, P.R.China \\
zhuzhanminzjxu@hotmail.com