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Let Ay be the Dunkl Laplacian on R? associated with a reflection group W and
a multiplicity function k. This paper deals with the existence of radial positive
solutions of the semilinear equation

Agv = —v” on R%
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1. INTRODUCTION

We consider R? with the Euclidean inner product (-,-) and its associated
norm |- |. For a € R?\ {0}, we denote by o, the reflection with respect to the
hyperplane orthogonal to « i.e.,

A finite set R C R?\ {0} is called a root system if R N Ra = {+a} and
0aR C R for all « € R. A function k : R — R is called multiplicity function if
k(oafB) = k(B) for every «, 5 € R.

Throught this paper, we fix a root system R and a nonnegative multipli-
city function k. The Dunkl Laplacian associated with R and k is given, for
every C?-function u by

o al? u(x) — u(oa(x
(1) Apu(@) = Au(@) + > k(a ( a> ) _ o u(@) <2(>>>7

= x) 2 (o, )

where A and V denote respectively the classical Laplace operator and the
gradient on R¢,

The Dunkl Laplacian was introduced by C.F. Dunkl in [3]. The study
of Dunkl operators is motivated by its interaction with various mathematics
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fields namely the analysis of certain exactly solvable models of mechanics [2,
5, 8], Fourier analysis and special function [6, 11, 12], algebra [7] and Feller
processes with jumps [1,4]. The main goal of this paper is to investigate the
existence of radially symmetric function v € C?(R?) such that

Apv = =07 on R4
(2) v>0 on R?
hm|x\—>oo U($) =0,

where v > 1. In the case where the multiplicity function k is identically
vanishing, Ay is reduced to the classical Laplace operator A. In this case, a
celebrated result of Pohozaev states that any solution of

Av=—f(v)

on smooth bounded star-shaped domain D of R? such that u = 0 on 9D
satisfies the so-called classical Pohozaev identity [10]. Using this result, it has
been proved that the problem

Av = —07 on R
v >0 on R4

admits a solution if and only if

d+2
> —.
TEa
We refer to [9] and the references therein for more details. Throughout
this paper we denote

m:d—i—Zk(a)

aER

and we assume that m > 2. Motivated by the existence result established for
the classical Laplacian, our purpose consists in proving the following theorem:

THEOREM 1. Problem (2) admits a symmetric radial solution if and only

if

2
72m+ '
m — 2

It is worth noting that, for nontrivial multiplicity function k, Pohozaev
identity relative to Ay is not yet known. So, we are led to use a somewhat
different method which is based upon tools from ordinary differential equations.
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2. PROOF OF THEOREM 1

Let v € C?(R%) be radially symmetric on R?. That is, there exists a
C?%-function 7 : [0, co[— R such that v(z) = ¥(|z|) for every = € R, It is easy
to verify that, for every a € R,

(Vo(z),a) = ﬁ/iT’) (x,a) and v(oaz) =0v().

Thus, it follows from (1) that

—1
Agu(w) = () + == (1),
and therefore, v is a solution of Ayv = —vY on R? if and only if the function @
satisfies
~/! m—1 ~/ ~ d
0" (|x]) + ——0'(|x|) = —0(|z])? for all x € R®.

||

It is well known from the general theory of ordinary differential equation
that, for every a > 0, there exists a unique positive C?-function v on a maximal
interval [0, R,[ such that

u + =Ly = —u? on [0, Ry
(3) u(0) = a
u'(0) = 0.

The solution w is said global if R, = co. We then deduce that Problem (2)
admits a radial solution if and only if there exists a > 0 such that problem (3)
has a global solution u satisfying

Tlgg@ u(r) = 0.

In order to prove Theorem 1 we need the following lemma.

LEMMA 2. Let a > 0 and let u be a solution of (3) on a mazimal interval
[0, Ry[. Then u is nonincreasing on [0, R,[ and

Tlgﬁﬂ u(r) =0.

Furthermore, for every r € [0, Ry[ the following holds:

(a)
(4) ! (r) = —/ ™ L (1) dt.
0
(b) There exists ¢ > 0 such that

2

(5) u(r) <er 1.
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(¢)

m —~v(m — r MY (r
oty e = e
(%) b DR et ey,
Proof. Writing the equation u” + ™= 1 v’ = —u” in the form
(7) (=t () = —7“7"_1(U("”))7

and then integrating from 0 to r, we obtain (4) which implies that u is nonin-

creasing and then m

m—1_/ r
< ——u(r).
r u'(r) < mu (r)

Therefore, u/(r)(u(r))~" < —r/m. Integrating this from 0 to r we obtain
1 1 y—1,
w=(r) = ar1 LT
This yields the existence of ¢ > 0 such that (5) holds. The fact that
lim,_, g, u(r) = 0 follows from the maximality condition if R, < oo, and from
(5) in the case where R, = occ.
To get (6), on one hand we multiply (7) by u(r) and then we integrate
by parts the left hand side from 0 to r to obtain

() u(r)(r) - /O Sl (1) dt = /0 Cm ()T dt.

On the other hand, multiplying (7) by ru/(r) and then integrating by
parts the right hand side from 0 to r, we obtain

(9) /OT tu/ (1) (™ (1)) dt = —/Ortmu'(t)zﬂ(t) dt

= _’yrrl (u(r))" ™ + % Or tmHu(t))r T dt.
But, a suitable integration by parts yields
(10)
u/ m—lu/ / — pm u, r 2 m— 1 2 my, //
/Ot (t)(t (t))" dt (u'(1)) /Ot dt— /Ot dt
— M u/ r 2 m—1 U 2
=P - [ o) - / " (( <t>>)
o, m—2 m—1/, 1
=P+ [ o)t

Hence, combining (8), (9) and (10), we easily obtain (6). O
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Now we turn to prove Theorem 1. As mentioned above, if there exists
a > 0 such that Problem (3) admits a positive global solution u, then the
positive function v defined for every = € R? by v(x) = u(|z|) satisfies

Agv = —0v7

on the whole space R?. Moreover, by the above lemma

lim v(x) = lim w(r)=0.
|z|—o00 ( ) r—-+00 ( )
Consequently, the theorem will be proved once we have shown that v > %

if and only if Problem (3) admits a global solution for some a > 0.

To that end, assume that v > %—f% Let a > 0 and let u be the solution of
Problem (3) on the maximal interval [0, R,[. Suppose that R, < co. By the
above lemma w is nonincreasing and u(R,) = 0. Moreover, using (4), we get
|u/(r)] < ra¥/m for every r € [0, R,[ and hence lim,_,g, u/(r) exists and is
finite. Then, by letting r tend to R, in (6) we obtain

(m+2)—7(m—2)/R” —1, y+1 : r
Tl () dt = 1 '(r)* > 0.
m-2v+1) Jo vl = )20
But, since (m +2) —y(m — 2) <0, this yields that u = 0 which is impossible.
Hence R, = oo and so u is a global solution of (3) as desired.

Conversely, let a > 0 and assume that Problem (3) admits a global solution u.
Then (5) yields the existence of ¢/ > 0 such that for every r > 0

2y

/ tm () dt < ™A
0

and then it follows from (4) that

’ ; —otl
(11) u'(r)] < ¢'r 5T
Now, we prove that v > TTZ‘_FZ by contradiction. Suppose that v < m+2.
Then using the estimates (5) and (11) we derive
: m, v+1 . H m, ! 2 _ m—1,/ —
TILIEOT uH(r) Tlggor (u'(r)) TILIEIOT u' (r)u(r) = 0.
Consequently, letting r tend to oo in (6), we immediately deduce that
o
/ tm () dt =0
0
which implies that © = 0 contradicting «(0) = a > 0. Hence v > m+§ as

desired. O
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