
RADIAL POSITIVE SOLUTIONS
OF SOME SEMILINEAR EQUATION INVOLVING

THE DUNKL LAPLACIAN

MOHAMED BEN CHROUDA and KODS HASSINE

Communicated by Horia Cornean

Let ∆k be the Dunkl Laplacian on Rd associated with a reflection group W and
a multiplicity function k. This paper deals with the existence of radial positive
solutions of the semilinear equation

∆kv = −vγ on Rd.
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1. INTRODUCTION

We consider Rd with the Euclidean inner product 〈·, ·〉 and its associated
norm | · |. For α ∈ Rd \ {0}, we denote by σα the reflection with respect to the
hyperplane orthogonal to α i.e.,

σαx = x− 2
〈x, α〉
|α|2

α.

A finite set R ⊂ Rd \ {0} is called a root system if R ∩ Rα = {±α} and
σαR ⊂ R for all α ∈ R. A function k : R→ R is called multiplicity function if
k(σαβ) = k(β) for every α, β ∈ R.

Throught this paper, we fix a root system R and a nonnegative multipli-
city function k. The Dunkl Laplacian associated with R and k is given, for
every C2-function u by

(1) ∆ku(x) = ∆u(x) +
∑
α∈R

k(α)

(
〈∇u(x), α〉
〈α, x〉

− |α|
2

2

u(x)− u(σα(x))

〈α, x〉2

)
,

where ∆ and ∇ denote respectively the classical Laplace operator and the
gradient on Rd.

The Dunkl Laplacian was introduced by C.F. Dunkl in [3]. The study
of Dunkl operators is motivated by its interaction with various mathematics

MATH. REPORTS 19(69), 4 (2017), 419–424



420 M. Ben Chrouda and K. Hassine 2

fields namely the analysis of certain exactly solvable models of mechanics [2,
5, 8], Fourier analysis and special function [6, 11, 12], algebra [7] and Feller
processes with jumps [1, 4]. The main goal of this paper is to investigate the
existence of radially symmetric function v ∈ C2(Rd) such that

(2)


∆kv = −vγ on Rd
v > 0 on Rd
lim|x|→∞ v(x) = 0,

where γ > 1. In the case where the multiplicity function k is identically
vanishing, ∆k is reduced to the classical Laplace operator ∆. In this case, a
celebrated result of Pohozaev states that any solution of

∆v = −f(v)

on smooth bounded star-shaped domain D of Rd such that u = 0 on ∂D
satisfies the so-called classical Pohozaev identity [10]. Using this result, it has
been proved that the problem

∆v = −vγ on Rd
v > 0 on Rd
lim|x|→∞ v(x) = 0

admits a solution if and only if

γ ≥ d+ 2

d− 2
.

We refer to [9] and the references therein for more details. Throughout
this paper we denote

m = d+
∑
α∈R

k(α)

and we assume that m > 2. Motivated by the existence result established for
the classical Laplacian, our purpose consists in proving the following theorem:

Theorem 1. Problem (2) admits a symmetric radial solution if and only
if

γ ≥ m+ 2

m− 2
.

It is worth noting that, for nontrivial multiplicity function k, Pohozaev
identity relative to ∆k is not yet known. So, we are led to use a somewhat
different method which is based upon tools from ordinary differential equations.
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2. PROOF OF THEOREM 1

Let v ∈ C2(Rd) be radially symmetric on Rd. That is, there exists a
C2-function ṽ : [0,∞[→ R such that v(x) = ṽ(|x|) for every x ∈ Rd. It is easy
to verify that, for every α ∈ R,

〈∇v(x), α〉 =
ṽ′(|x|)
|x|

〈x, α〉 and v(σαx) = v(x).

Thus, it follows from (1) that

∆kv(x) = ṽ′′(|x|) +
m− 1

|x|
ṽ′(|x|),

and therefore, v is a solution of ∆kv = −vγ on Rd if and only if the function ṽ
satisfies

ṽ′′(|x|) +
m− 1

|x|
ṽ′(|x|) = −ṽ(|x|)γ for all x ∈ Rd.

It is well known from the general theory of ordinary differential equation
that, for every a > 0, there exists a unique positive C2-function u on a maximal
interval [0, Ra[ such that

(3)


u′′ + m−1

r u′ = −uγ on [0, Ra[
u(0) = a
u′(0) = 0.

The solution u is said global if Ra = ∞. We then deduce that Problem (2)
admits a radial solution if and only if there exists a > 0 such that problem (3)
has a global solution u satisfying

lim
r→∞

u(r) = 0.

In order to prove Theorem 1 we need the following lemma.

Lemma 2. Let a > 0 and let u be a solution of (3) on a maximal interval
[0, Ra[. Then u is nonincreasing on [0, Ra[ and

lim
r→Ra

u(r) = 0.

Furthermore, for every r ∈ [0, Ra[ the following holds:
(a)

(4) rm−1u′(r) = −
∫ r

0
tm−1uγ(t)dt.

(b) There exists c > 0 such that

(5) u(r) ≤ cr−
2

γ−1 .
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(c)

(m+ 2)− γ(m− 2)

(m− 2)(γ + 1)

∫ r

0
tm−1uγ+1(t)dt =

2rmuγ+1(r)

(m− 2)(γ + 1)

+
rm(u′(r))2

m− 2
+ rm−1u′(r)u(r).(6)

Proof. Writing the equation u′′ + m−1
r u′ = −uγ in the form

(7) (rm−1u′(r))′ = −rm−1(u(r))γ

and then integrating from 0 to r, we obtain (4) which implies that u is nonin-
creasing and then

rm−1u′(r) ≤ −r
m

m
uγ(r).

Therefore, u′(r)(u(r))−γ ≤ −r/m. Integrating this from 0 to r we obtain

1

uγ−1(r)
≥ 1

aγ−1
+
γ − 1

2m
r2.

This yields the existence of c > 0 such that (5) holds. The fact that
limr→Ra u(r) = 0 follows from the maximality condition if Ra < ∞, and from
(5) in the case where Ra =∞.

To get (6), on one hand we multiply (7) by u(r) and then we integrate
by parts the left hand side from 0 to r to obtain

(8) rm−1u(r)u′(r)−
∫ r

0
tm−1(u′(t))2 dt = −

∫ r

0
tm−1(u(t))γ+1 dt.

On the other hand, multiplying (7) by ru′(r) and then integrating by
parts the right hand side from 0 to r, we obtain

(9)

∫ r

0
tu′(t)(tm−1u′(t))′ dt = −

∫ r

0
tmu′(t)uγ(t) dt

= − rm

γ + 1
(u(r))γ+1 +

m

γ + 1

∫ r

0
tm−1(u(t))γ+1 dt.

But, a suitable integration by parts yields

(10)∫ r

0
tu′(t)(tm−1u′(t))′ dt = rm(u′(r))2−

∫ r

0
tm−1(u′(t))2 dt−

∫ r

0
tmu′′(t)u′(t) dt

= rm(u′(r))2 −
∫ r

0
tm−1(u′(t))2 dt− 1

2

∫ r

0
tm
(
(u′(t))2

)′
dt

=
rm

2
(u′(r))2 +

m− 2

2

∫ r

0
tm−1(u′(t))2 dt.

Hence, combining (8), (9) and (10), we easily obtain (6). �
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Now we turn to prove Theorem 1. As mentioned above, if there exists
a > 0 such that Problem (3) admits a positive global solution u, then the
positive function v defined for every x ∈ Rd by v(x) = u(|x|) satisfies

∆κv = −vγ

on the whole space Rd. Moreover, by the above lemma

lim
|x|→∞

v(x) = lim
r→+∞

u(r) = 0.

Consequently, the theorem will be proved once we have shown that γ ≥ m+2
m−2

if and only if Problem (3) admits a global solution for some a > 0.
To that end, assume that γ ≥ m+2

m−2 . Let a > 0 and let u be the solution of
Problem (3) on the maximal interval [0, Ra[. Suppose that Ra < ∞. By the
above lemma u is nonincreasing and u(Ra) = 0. Moreover, using (4), we get
|u′(r)| ≤ raγ/m for every r ∈ [0, Ra[ and hence limr→Ra u

′(r) exists and is
finite. Then, by letting r tend to Ra in (6) we obtain

(m+ 2)− γ(m− 2)

(m− 2)(γ + 1)

∫ Ra

0
tm−1uγ+1(t) dt = lim

r→Ra

rm

m− 2
(u′(r))2 ≥ 0.

But, since (m+ 2)− γ(m− 2) ≤ 0, this yields that u = 0 which is impossible.
Hence Ra =∞ and so u is a global solution of (3) as desired.
Conversely, let a > 0 and assume that Problem (3) admits a global solution u.
Then (5) yields the existence of c′ > 0 such that for every r > 0∫ r

0
tm−1(u(t))γ dt ≤ c′ rm−

2γ
γ−1 ,

and then it follows from (4) that

(11) |u′(r)| ≤ c′r−
γ+1
γ−1 .

Now, we prove that γ ≥ m+2
m−2 by contradiction. Suppose that γ < m+2

m−2 .
Then using the estimates (5) and (11) we derive

lim
r→∞

rmuγ+1(r) = lim
r→∞

rm(u′(r))2 = lim
r→∞

rm−1u′(r)u(r) = 0.

Consequently, letting r tend to ∞ in (6), we immediately deduce that∫ ∞
0

tm−1uγ+1(t) dt = 0

which implies that u = 0 contradicting u(0) = a > 0. Hence γ ≥ m+2
m−2 as

desired. �
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