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Let G be a group and πe(G) be the set of element orders of G. Suppose that
k ∈ πe(G) and mk is the number of elements of order k in G. Set nse(G) :=
{mk : k ∈ πe(G)}. Let M = PSL(3, q), where q is a prime power and r =
(q2 + q + 1)/(3, q − 1) is a prime number and G be a finite group such that
r | |G|, r2 - |G| and |G|3 = |M |3. In this paper, we prove that G ∼= M if and
only if nse(G) = nse(M).
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1. INTRODUCTION

If n is an integer, then we denote by π(n) the set of all prime divisors of
n. If G is a finite group, then π(|G|) is denoted by π(G). We denote by πe(G)
the set of element orders of G. Set mk = mk(G) := |{g ∈ G : the order of g is
k}| and nse(G) := {mk(G) : k ∈ πe(G)}.

Throughout this paper, we denote by φ the Euler totient function. If G
is a finite group and r is a prime, then we denote by Sr(G) a Sylow r-subgroup
of G, by Sylr(G) the set of Sylow r-subgroups of G and nr(G) is the number
of Sylow r-subgroups of G. |clG(x)| denotes the size of the conjugacy class of
G containing x. Let n be a positive integer and p be a prime number. Then
|n|p denotes the p-part of n.

The prime graph GK(G) of a finite group G is a graph whose vertex
set is π(G) and two distinct primes p and q are joined by an edge if and
only if G contains an element of order pq (we write p ∼ q). Let t(G) be
the number of connected components of GK(G) and let π1, π2, ..., πt(G) be the
connected components of GK(G). If 2 ∈ π(G), then we always suppose that
2 ∈ π1(G). |G| can be expressed as a product of co-prime positive integers
OCi, i = 1, 2, . . . , t(G), where π(OCi) = πi. These OCi’s are called the or-
der components of G and the set of order components of G will be denoted

MATH. REPORTS 19(69), 4 (2017), 425–438



426 S. Asgary and N. Ahanjideh 2

by OC(G). Also if 2 ∈ π(G), we call OC2, ..., OCt(G) the odd order components
of G. The sets of order components of finite simple groups with disconnected
prime graph can be obtained using [10] and [17].

Let Mt(G) := {g ∈ G : gt = 1}. Then G and H are of the same order
type if and only if |Mt(G)| = |Mt(H)|, t = 1, 2, . . .. In 1987, J.G. Thompson
put forward the following problem:

Thompsons Problem. Let T (G) = {(k,mk) : k ∈ πe(G), mk ∈ nse(G)},
where mk is the number of elements of G of order k. Suppose that H is a group
with T (G) = T (H). If G is solvable, then is it true that H is also necessarily
solvable?

It is easy to see that if T (G) = T (H), then nse(G) = nse(H) and |G| =
|H|. We say that the group G is characterizable by nse (and the order) if every
group H with nse(G) = nse(H) (and |G| = |H|) is isomorphic to G. Note that
not all groups can be characterizable by nse. For instance, let G = Z4×Z4 and
H = Z2 ×Q8. Then |G| = |H| and nse(G) = nse(H), while G � H. In [12], it
is shown that the simple groups PSL(2, q), where q ≤ 13, are characterizable
by nse. In [9] and [15], it is proved that PSL(2, p), where p is a prime, is
characterizable by nse. Also, in [8], [2] and [3], the authors respectively showed
that for the prime number p, PGL(2, p), the alternating groups An, where
n ∈ {p, p+ 1, p+ 2} and, Cn(2), 2Dn(2) and 2Dn+1(2), where 2n + 1 = p, are
characterizable by nse under some extra conditions.

Throughout this paper, let q be a prime power such that q2+q+1
(3,q−1) is a

prime, namely r and M = PSL(3, q). In this paper, we are going to study the
characterization of M by nse. In fact, we prove the following theorem:

Main Theorem. Let G be a finite group such that r | |G|, r2 - |G| and
|G|3 = |M |3. Then G ∼= M if and only if nse(G) = nse(M).

2. PRELIMINARIES

Definition 2.1 ([5]). Let a be a natural number and r be a prime such
that (a, r) = 1. If n is the smallest natural number such that r | (an− 1), then
r is named a Zsigmondy prime of an − 1.

Lemma 2.1 ( [5]). Let a and n be natural numbers, then there exists a
Zsigmondy prime of an − 1, unless (a, n) = (2, 1), (a, n) = (2, 6) or n = 2 and
a = 2s − 1 for some natural number s.

Remark 2.1. If l is a Zsigmondy prime of an − 1, then Fermat’s little
theorem shows that n | l − 1. Put

Zn(a) = {l : l is a Zsigmondy prime of an − 1}.
If r ∈ Zn(a) and r | am − 1, then we can see at once that n | m.
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Lemma 2.2 ([4]). Let G be a Frobenius group of even order with kernel
K and complement H. Then t(G) = 2, the prime graph components of G are
π(H) and π(K) and the following assertions hold:

(1) K is nilpotent;

(2) |K| ≡ 1 (mod |H|).

Lemma 2.3. If x is an element of M − {1}, then either |clM (x)|r = |M |r
or |clM (x)|r < |M |r and

|clM (x)| = |M |(q − 1)d

|GL(1, q3)|
=
|GL(3, q)|
|GL(1, q3)|

.

Proof. It follows from [1, Corollary 2.8]. �

Lemma 2.4 ([6]). Let t be a positive integer dividing |G|. Then t | |Mt(G)|.

From Lemma 2.4, it may be concluded that:

Corollary 2.1. For a finite group G:

(i) if n | |G|, then n|
∑
s|n

ms;

(ii) if n ∈ πe(G), then mn = φ(n)k, where k is the number of cyclic subgroups
of order n in G. In particular, φ(n) | mn.

(iii) if R ∈ Sylr(G) is cyclic of prime order r, then mr = nr(G)(r − 1);

(iv) if P ∈ Sylp(G) is cyclic of prime order p and r ∈ π(G) − {p}, then
mrp = np(G)(p − 1)(r − 1)k, where k is the number of cyclic subgroups
of order r in CG(P ).

Lemma 2.5 ([11]). If n ≥ 6 is a natural number, then there are at least
s(n) prime numbers pi such that (n+ 1)/2 < pi < n. Here

s(n) = 1, for 6 ≤ n ≤ 13;

s(n) = 2, for 14 ≤ n ≤ 17;

s(n) = 3, for 18 ≤ n ≤ 37;

s(n) = 4, for 38 ≤ n ≤ 41;

s(n) = 5, for 42 ≤ n ≤ 47;

s(n) = 6, for n ≥ 48.

3. MAIN RESULTS

In this section, let G be a finite group such that r | |G|, r2 - |G| and
nse(G) = nse(M). In the following, we are going to bring some useful lemmas
which will be used during the proof of the main theorem:
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Lemma 3.1. mr(M) = 1
3(r − 1)q3(q2 − 1)(q − 1).

Proof. By [7], |NM (Sr(M))| = 3. q3−1
(q−1)(3,q−1) and hence,

nr(M) =
|M |

|NM (Sr(M))|
=

1

3
q3(q2 − 1)(q − 1).

Now, since Sr(M) is cyclic, Corollary 2.1(iii) implies that mr(M) = nr(M)(r−
1) = 1

3(r − 1)q3(q2 − 1)(q − 1), as desired. �

Lemma 3.2.

(i) For u ∈ πe(M), either r | mu(M) or u = r;

(ii) For every u ∈ πe(G), r - mu(G) if and only if mu(G) = mr(M);

(iii) mr(G) = mr(M);

(iv) m2(G) = m2(M).

Proof. (i) Obviously, mu(M) =
∑

O(xk)=u

|clM (xk)|, where xks are selected

from distinct conjugacy classes of M . Thus Lemma 2.3 completes the proof of
(i).
(ii) Since mu(G) ∈ nse(G) = nse(M), (i) completes the proof.
(iii) By Corollary 2.1(i), we have r | (1 +mr(G)) and hence, r - mr(G). Thus
mr(G) = mr(M), by (ii).
(iv) By Corollary 2.1(ii), for every u ∈ πe(M), φ(u) | mu(M). Thus if u > 2,
then mu is even. On the other hand, 2 | (1 + m2(M)) and hence, m2(M) is
odd. Applying the same reasoning shows that the only odd number in nse(G)
is m2(G) and hence, m2(G) = m2(M), as wanted. �

Lemma 3.3. For every s ∈ π(G)− {r}, sr 6∈ πe(G).

Proof. Suppose on the contrary, sr ∈ πe(G). Since r2 - |G|, we deduce
that Sr(G) is cyclic and hence, Corollary 2.1(iv) forces mrs(G) = (r − 1)(s −
1)nr(G)k, for some natural number k. Thus mrs(G) = mr(G)(s − 1)k and
hence, one of the following holds:

(i) r | mrs(G). Then r | (s−1)k and hence, mrs(G) > |M |, along with Lem-
mas 3.1 and 3.2(iii). Thus mrs(G) 6∈ nse(M), which is a contradiction.

(ii) r - mrs(G). Then Lemma 3.2(ii) shows that mrs(G) = mr(G) and hence,
by Corollary 2.1(iv), s = 2. On the other hand, Corollary 2.1 (i) and
Lemma 3.2(iv) show that 2r | (1 + m2(G) + mr(G) + m2r(G)) = 1 +
m2(M) + 2mr(G). Now, since by Corollary 2.1 (i) and Lemma 3.2(i),
r | (1 + mr(G)) and r | m2(M), we deduce that r | mr(G), which is a
contradiction. �

Corollary 3.1. r is an odd order component of G.
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Proof. It follows from Lemma 3.3. �

Lemma 3.4.

(i) nr(G) = nr(M) = 1
3q

3(q2 − 1)(q − 1);

(ii) 1
3 |M | | |G| and |G| | 13r(r − 1)q3(q2 − 1)(q − 1).

Proof. Since Sr(G) is cyclic, Corollary 2.1(iii) forces mr(G) = φ(r)nr(G).
Thus by Lemma 3.2(iii), φ(r)nr(M) = mr(M) = mr(G) = φ(r)nr(G) and
hence (i) follows. Now let s ∈ π(G) − {r}. By Lemma 3.3, Ss(G) acts fixed
point freely on the set of elements of order r in G and hence, |G|s | mr(G) =
φ(r)nr(G). Also, |G|r = r and nr(G) = 1

3q
3(q2 − 1)(q − 1). Thus |M |/3 | |G|

and |G| | 13r(r − 1)q3(q2 − 1)(q − 1). �

Proof of the main theorem. If G ∼= M , then it is obvious that nse(G) =
nse(M). Now we assume that nse(G) = nse(M). In the following, we show
that G has a normal series 1 E H E K E G such that K/H is a non-abelian
simple group.

Let x ∈ G be an element of order r. Since r is the maximal prime divisor
of |G| and an odd order component of G, CG(x) =< x >. Set H = Or′(G),
the largest normal r′-subgroup of G. Since < x > acts on H fixed point freely,
H is a nilpotent group. Suppose that K be a normal subgroup of G such that
K/H is a minimal normal subgroup of G/H. Then K/H is a direct product
of copies of same simple group. Since r | |K/H| and r2 - |K/H|, K/H is a
simple group. On the other hand, since < x > is a Sylow r-subgroup of K,
G = NG(< x >)K by the Frattini argument and so |G/K| divides r− 1. Now,
it’s not too hard to prove that |K/H| 6= r. Therefore, G has a normal series
1EH EK EG such that K/H is a non-abelian simple group.

In the following, assume that d = (3, q − 1) and q′ = p′α, where p′ is
a prime and α is a positive integer. Also, for convenience let f(q) = 1

3r(r −
1)q3(q2 − 1)(q − 1). We are going to continue the prove of the main theorem
in the following steps:

Step 1. K/H is not a Sporadic simple group.

Proof. Suppose that K/H is a Sporadic simple group. Thus r = q2+q+1
d ∈

{5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 67, 71}. If q2+q+1
d ∈ {5, 11}, then

since q is a prime power, we get a contradiction. Assume that q2+q+1
d = 7 and

d = 1. Thus q = 2. But |PSL(3, 2)| = 23.3.7 and K/H ∈ {M22, J1, J2, HS},
so 5 | |K/H|, which is a contradiction. If d = 3, then q = 4 and |PSL(3, 4)| =
26.32.5.7. Also, K/H ∈ {M22, J1, J2, HS}. Now, similar to the above we get a
contradiction. The same argument rules out the other possibilities of r. �

Step 2. K/H cannot be an alternating group Am, where m ≥ 5.
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Proof. If K/H ∼= Am, then since q2+q+1
d = r ∈ π(K/H), r ≤ m. Also,

since q ≥ 2 is a prime power, r ≥ 7. Thus by Lemma 2.5, there exists a prime
number u ∈ π(Am) ⊆ π(G) such that (r + 1)/2 < u < r. Lemma 3.4(ii) forces
u | 13r(r − 1)q3(q2 − 1)(q − 1). We can check at once that u - q, u - q − 1 and
u - r− 1. Thus u ∈ Z2(q). It follows that u = r− 2, where r = 7 and q = 4. So
|M | = |PSL(3, 4)| = 26.32.5.7. Since |Am| divides |G|, we get m ∈ {7, 8}. Note
that |H| divides |G|/|K/H| and S7(G) acts fixed point freely on H and hence,
7 | |H| − 1. Therefore, considering the orders of G and K/H shows that either
|H| = 8 and m = 7 or |H| = 1. If |H| = 8 and m = 7, then we can assume
that H is a 2-elementary abelian group and hence, A7 . GL(3, 2). Thus |A7|
divides |GL(3, 2)|, which is a contradiction. If |H| = 1, then G ∼= A7, S7, A8 or
S8, which in two former cases m7(G) = m7(A7) = 720 6= 5760 = m7(M), which
is a contradiction. If G ∼= A8, then 1344 ∈ nse(G) − nse(M) and if G ∼= S8,
then 763 ∈ nse(G)− nse(M), contradicting our assumptions. �

Step 3. K/H = PSL(3, q).

Proof. By Steps 1 and 2, and the classification theorem of finite simple
groups, K/H is a simple group of Lie type such that t(K/H) ≥ 2 and r ∈
OC(K/H). Thus K/H is isomorphic to one of the following groups:

Case 1. Let t(K/H) = 2. Then OC2(K/H) = r = q2+q+1
d . Thus we have:

1.1. If K/H ∼= Cn(q′), where n = 2u ≥ 2, then q′n+1
(2,q′−1) = q2+q+1

d . If (2, q′ −

1) = 2, then q′n+1
2 = r, so q′n = 2(q2+q+1)−d

d and hence, (q′, r) = (q′, q) = 1.

Also, since p′ is odd, we have p | q − 1 or p′ | q − 1 and hence, (p′α)n
2

=

|K/H|p′ ≤ |G|p′ ≤ 1
(3,p′)(q

2 − 1)p′(q − 1)p′(
q2+q+1−d

d )p′ < (2(q
2+q+1)−d

d )2 <

(p′α)2n. Therefore, n < 2, which is a contradiction. If (2, q′ − 1) = 1 and
d = 1, then we have q′n = q(q + 1), which is impossible. If (2, q′ − 1) = 1

and d = 3, then q′ = 2α and q′2 + 1 = r. Thus 22α + 1 = q2+q+1
3 and hence,

22α = (q−1)(q+2)
3 . Since 3 | q − 1, 3 | q + 2 and hence, 3 | 22α, which is a

contradiction. The same reasoning completes the proof in the case when either
K/H ∼= Bn(q′) or K/H ∼= 2Dn(q′), where n = 2u ≥ 4.

1.2. If K/H ∼= Cs(3) or Bs(3), where s is prime, then 3s−1
2 = q2+q+1

d . So

3s = 2
d(q2 + q + d+2

2 ) and hence, either (3, q) = 1 and 3s+1 > q2 + q + d+2
2 or

q = s = 3. In the former case, since 3s
2

= |K/H|3 ≤ |G|3 = (q2− 1)3(q− 1)3 <

( q
2+q+1−d

d )3 < 33(s+1), s2 < 3(s+ 1) and hence, s = 3. So q(q + 1) ∈ {12, 38}.
Obviously, q(q+1) 6= 38. If q(q+1) = 12, then q = 3, which is a contradiction.
If q = s = 3, then r = 13 and |M | = |PSL(3, 3)| = 24.33.13, so 5 - |G|. On the
other hand, 5 | |C3(3)| = |B3(3)|, which is a contradiction.
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1.3. If K/H ∼= Cs(2), where s is prime, then 2s − 1 = q2+q+1
d and hence,

2s = q2+q+1+d
d . Now, if q ∈ {2, 4}, then q2+q+1

d = 7 and hence, s = 3. In these
cases, |PSL(3, 2)| = 23.3.7 and |PSL(3, 4)| = 26.32.5.7. So 29 - |G|. On the
other hand, 29 | |C3(2)|, which is a contradiction. If q 6∈ {2, 4}, then (2, q) = 1

and hence, 2s
2

= |K/H|2 ≤ |G|2 ≤ ( q
2−1
d )2(q−1)2(

q2+q+1−d
d )2 < ( q

2+q+1+d
d )3 =

23s. So s2 < 3s, which implies that s = 2. This forces q2+q+1
d = 3, which is

impossible.
1.4. If K/H ∼= Ds(q

′), where s ≥ 5 is prime and q′ = 2, 3, 5, then q′s−1
q′−1 = r.

Thus q′s(s−1)
s−1∏
i=1

(q′2i − 1) | 1

3
(r − 1)q3(q2 − 1)(q − 1). On the other hand,

r5 = (q′s−1)5
(q′−1)5 < q′5s and q′s(s−1).q′

s(s−1)
2 < q′s(s−1)

s−1∏
i=1

(q′2i−1) ≤ 1

3
(r−1)q3(q2−

1)(q−1) < r5, which implies that q′s(s−1)+
s(s−1)

2 < q′5s and hence, s < 5, which
is a contradiction.
1.5. If K/H ∼= 2Dn(3), where 9 ≤ n = 2m + 1 and n is not prime, then
3n−1+1

2 = q2+q+1
d . Thus (3, q) = 1 and 3n−1 = 2

d(q2 + q + 2−d
2 ) and hence,

3n > q2 + q + 2−d
2 . Since 3n(n−1) = |K/H|3 ≤ |G|3 = (q2 − 1)3(q − 1)3 <

(q2 + q + 2−d
2 )3 < 33n, we obtain n− 1 < 3, which is impossible.

1.6. If K/H ∼= 2Dn(2), where n = 2m + 1 ≥ 5, then 2n−1 + 1 = q2+q+1
d . Thus

2n−1 = q2+q+1−d
d and hence, (2, q) = 1. Therefore, 2n(n−1) = |K/H|2 ≤ |G|2 <

( q
2+q+1−d

d )3 = 23(n−1), so n < 3, which is impossible.

1.7. If K/H ∼= Ds+1(q
′), where s is an odd prime and q′ = 2, 3, then q′s−1

(2,q′−1) =

r. Thus q′s(s+1)(q′s+1)(q′s+1−1)

s−1∏
i=1

(q′2i−1) | 1

3
(r−1)q3(q2−1)(q−1). Also,

r5 = (q′s−1)5
(2,q′−1)5 < q′5s and q′s(s+1)q′s(s+1)/2 < q′s(s+1)(q′s+ 1)(q′s+1−1)

s−1∏
i=1

(q′2i−

1) ≤ 1

3
(r − 1)q3(q2 − 1)(q − 1) < r5, which implies that q′3s(s+1)/2 < q′5s and

hence, s < 3, which is a contradiction.
1.8. If K/H ∼= 2Ds(3), where 5 < s 6= 2m + 1 and s is an odd prime, then

3s+1
4 = r and 3s(s−1)

s−1∏
i=1

(32i−1) | 1

3
(r−1)q3(q2−1)(q−1). Thus r5 = (3s+1)5

1024 <

35s and 3s(s−1) < 3s(s−1)
s−1∏
i=1

(32i − 1) ≤ 1

3
(r − 1)q3(q2 − 1)(q − 1) < r5, which

implies that s(s− 1) < 5s and hence, s− 1 < 5, which is a contradiction.
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1.9. If K/H ∼= G2(q
′), where 2 < q′ ≡ ε (mod 3) and ε = ±1, then q2′ −

εq′ + 1 = q2+q+1
d . Thus we can check at once that |K/H| > f(q), which is a

contradiction. If K/H ∼= F4(q
′), where q′ is odd, then similar to the above, we

get a contradiction.

1.10. If K/H ∼= 2F4(2)′, then |K/H| = 211·33·52·13 and q2+q+1
d = 13. If d = 1,

then q = 3 and |PSL(3, 3)| = 24.33.13, so 5 - |G|, which is a contradiction. If
d = 3, then q(q + 1) = 38, which is impossible.

1.11. If K/H ∼= PSU(4, 2), then |K/H| = 26 · 34 · 5. Thus q2+q+1
d = 5, which

is impossible.
1.12. If K/H ∼= PSL(s, q′), where (s, q′) 6= (3, 2), (3, 4) and s is an odd prime,

then r = q′s−1
(s,q′−1)(q′−1) and q′

s(s−1)
2

s−1∏
i=1

(q′i−1) | 1

3
(r−1)q3(q2−1)(q−1). On the

other hand, r5 = (q′s−1)5
(s,q′−1)5(q′−1)5 < q′5s and q′s(s− 1)− s < q′

s(s−1)
2

s−1∏
i=1

(q′i −

1) ≤ 1

3
(r − 1)q3(q2 − 1)(q − 1) < r5, which implies that s(s− 1) − s < 5s.

Hence s = 3, 5. If s = 5, then q2+q+1
d = q′4+q′3+q′2+q′+1

(5,q′−1) and hence, (q′, q) = 1.

Also, q′10(q′ − 1)(q′2 − 1)(q′3 − 1)(q′4 − 1) | 1
3(r − 1)q3(q2 − 1)(q − 1). But

q′10 - 1
3(r − 1)q3(q2 − 1)(q − 1), which is a contradiction. If s = 3, then

q′3−1
(3,q′−1)(q′−1) = q2+q+1

d and hence, q
′2+q′+1
(3,q′−1) = q2+q+1

d . Now, we divide the proof
into the following subcases:
(i) Suppose that (q′, q) 6= 1 and q | q′.
(1) Let (3, q′ − 1) = 1 and d = 1. Thus q′2 + q′ + 1 = q2 + q + 1, so q′ = q and
K/H ∼= PSL(3, q).

(2) If (3, q′ − 1) = 3 and d = 3, then q′2+q′+1
3 = q2+q+1

3 and similar to the
above, K/H ∼= PSL(3, q).

(3) If (3, q′ − 1) = 1 and d = 3, then q′2 + q′ + 1 = q2+q+1
3 and hence,

q(q+ 1) = 3q′2 + 3q′+ 2, which implies that q | 3q′2 + 3q′+ 2. Since q | q′, q | 2,
thus q = 2 and hence, q′(q′ + 1) = 4

3 , which is a contradiction.

(4) If (3, q′ − 1) = 3 and d = 1, then q′2+q′+1
3 = q2 + q + 1 and hence,

q(q + 1) = (q′−1)(q′+2)
3 , which implies that q | q′2 + q′ − 2. Thus q | (−2) and

hence, q = 2. It follows that 18 = q′2+q′−2. Hence, q′ = 4. But (s, q′) 6= (3, 4)
by assumption, which is a contradiction.
The same argument completes the proof when q′ | q.
(ii) Assume that (q′, q) = 1.
(1) If (3, q′ − 1) = 1 and d = 1, then q′2 + q′ + 1 = q2 + q + 1 and hence,
q′(q′ + 1) = q(q + 1). Since (q′, q) = 1, we get a contradiction.
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(2) If (3, q′ − 1) = 3 and d = 3, then q′2+q′+1
3 = q2+q+1

3 and similar to the
above, we get a contradiction.

(3) If (3, q′−1) = 3 and d = 1, then q′2+q′+1
3 = q2+q+1 and hence, q

′2+q′−2
3 =

q(q+ 1). Thus (q′−1)(q′+2)
3 = q(q+ 1), which implies that 3k(k+ 1) = q(q+ 1).

Considering the different possibilities of q leads us to get a contradiction.
(4) If (3, q′−1) = 1 and d = 3, then similar to the above, we get a contradiction.
1.13. If K/H ∼= PSL(s+ 1, q′), where (q′− 1) | (s+ 1) and s is an odd prime,

then r = q′s−1
q′−1 and q′

s(s+1)
2 (q′s+1−1)

s−1∏
i=1

(q′i−1) | 1

3
(r−1)q3(q2−1)(q−1). On the

other hand, r5 = (q′s−1)5
(q′−1)5 < q′5s and q′s(s+1)−s < q′

s(s+1)
2 (q′s+1−1)

s−1∏
i=1

(q′i−1) ≤

1

3
(r − 1)q3(q2 − 1)(q − 1) < r5 < q′5s, which implies that s + 1 < 6. Hence

s = 3, so q′2 + q′ + 1 = q2+q+1
d . Since (q′ − 1) | (s + 1), q′ ∈ {2, 3, 5},

which implies that K/H ∼= PSL(4, 2), K/H ∼= PSL(4, 3), K/H ∼= PSL(4, 5).
If K/H ∼= PSL(4, 2), then since PSL(4, 2) ∼= A8, Step 2 leads us to get a

contradiction. If K/H ∼= PSL(4, 3), then q2+q+1
d = 13 and hence q = 3. So

|K/H| - |G|, which is impossible. The same reasoning rules out the case when
K/H ∼= PSL(4, 5).

1.14. IfK/H ∼= E6(q
′), then r = q′6+q′3+1

(3,q′−1) and q′36(q′12−1)(q′8−1)(q′6−1)(q′5−

1)(q′2−1) | 13(r−1)q3(q2−1)(q−1). On the other hand, r5 = (q′6+q′3+1)5

(3,q′−1)5 < q′45

and q′36(q′12−1)(q′8−1)(q′6−1)(q′5−1)(q′2−1) ≤ 1
3(r−1)q3(q2−1)(q−1) <

r5 < q′45, which is a contradiction. The same reasoning rules out the case
when K/H ∼= 2E6(q

′), where q′ > 2.
1.15. If K/H ∼= 3D4(q

′), then r = q′4 − q′2 + 1 and q′12(q′4 + q′2 + 1)(q′6 −
1)(q′2− 1) | 13(r− 1)q3(q2− 1)(q− 1). But q′12(q′4 + q′2 + 1)(q′6− 1)(q′2− 1) >
1
3(r − 1)q3(q2 − 1)(q − 1), which is a contradiction.
1.16. If K/H ∼= PSU(s+1, q′), where (s, q′) 6= (3, 3), (5, 2), (q′+1) | (s+1) and

s is an odd prime, then r = q′s+1
q′+1 and q′

s(s+1)
2 (q′s+1− 1)

s−1∏
i=1

(q′i− (−1)i) | 1

3
(r−

1)q3(q2−1)(q−1). Moreover, r5 = ( q
′s+1
q′+1 )5 = (q′s−1−q′s−2+ ...+1)5 < q′5(s−1)

and q′
s(s+1)

2 .q′
s(s−1)

2
+s < q′

s(s+1)
2 (q′s+1 − 1)

s−1∏
i=1

(q′i − (−1)i) ≤ 1

3
(r − 1)q3(q2 −

1)(q − 1) < r5, which implies that s2 + s < 5(s − 1). Thus s < 2, which is a
contradiction.
1.17. IfK/H ∼= PSU(s, q′), where s is an odd prime, then r = q′s+1

(q′+1)(s,q′+1) and
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q′
s(s−1)

2

s−1∏
i=1

(q′i − (−1)i) | 1

3
(r− 1)q3(q2 − 1)(q− 1). Also, r5 = (q′s+1)5

(q′+1)5(s,q′+1)5
<

q′5(s−1) and q′
s(s−1)

2 q′
s(s−1)

2 < q′
s(s−1)

2

s−1∏
i=1

(q′i−(−1)i) ≤ 1

3
(r−1)q3(q2−1)(q−1) <

r5. This implies that s < 5. Thus s = 3 and hence, r = q′2−q′+1
(3,q′+1) . This shows

that q = q′ − 1, q(q + 1) = 3k(k + 1) or q′(q′ − 1) = 3k(k + 1). If q′ = q + 1,
then we can see that |K/H| - |G|, which is a contradiction. Considering the
different possibilities of k in two latter cases shows that (q, q′) = (4, 3), so
|G|5 = 5. Since 5 - |Aut(PSU(3, 3))|, so |H|5 = 5. But S7(G) acts fixed point
freely on S5(H) and hence, 7 | 5− 1, which is a contradiction.

Case 2. Let t(K/H) = 3. Then r ∈ {OC2(K/H), OC3(K/H)}:

2.1. If K/H ∼= PSL(2, q′), where 4 | q′, then the odd order components of

K/H are q′+1 and q′−1. If q′+1 = r, then q′ = r−1 = (q2+q+1)
d −1 and hence,

either q′ = q(q + 1) or q′ = (q−1)(q+2)
3 , which are impossible. So let q′ − 1 = r.

Thus q′ = 2α > 4, q′ = r+ 1 = (q2+q+1)
d + 1 and nr(K/H) = q′(q′+1)

2 | nr(G) =
1
3q

3(q−1)(q2−1). If d = 1, then q(q+1) = 2(2α−1−1) and hence, either q = 2
or (q3(q + 1), |K/H|) | 6. If q = 2, then q′ = 8, so nr(K/H) - nr(G), which is
a contradiction. In the latter case, 3q′(q′ + 1) | 2(q − 1)2, which is impossible.
Now let d = 3. Then we can see at once that (q + 2)(q − 1) = 6(2α−1 − 1)
and either (q, q′) = 1 or q = 4 and q′ = 8. Thus if (q, q′) = 1, then the above
statements show that r + 1 = q′ | 8|q + 1|2, which is impossible. If q = 4 and
q′ = 8, then |H|5 = 5 and hence, 7 | 5− 1, which is a contradiction.
2.2. If K/H ∼= PSL(2, q′), where 4 | q′ − 1, then q′ = r or (q′ + 1)/2 = r.
If q′ = r, then nr(K/H) = (q′ + 1) | nr(G) = 1

3q
3(q − 1)(q2 − 1) and either

q′ + 1 = q2 + q + 2 or q′ + 1 = (q2+q+4)
3 . So we can see at once that q′ + 1 | 2,

which is a contradiction. If (q′+1)
2 = r, then nr(K/H) = 1

2q
′(q′ − 1) | nr(G) =

1
3q

3(q − 1)(q2 − 1) and q′ = 2q2 + 2q + 1 or q′ = (2q2+2q−1)
3 . This forces q′ = 5

and hence, r = 3, which is impossible. The same reasoning completes the proof
when K/H ∼= PSL(2, q′) and 4 | q′ + 1.
2.3. If K/H ∼= PSU(6, 2) or K/H ∼= PSL(3, 2), then |K/H| = 215 ·36 ·5 ·7 ·11

or |K/H| = 23 · 3 · 7. It follows that q2+q+1
d ∈ {7, 11}. We can check that

q2+q+1
d 6= 11 and hence q2+q+1

d = 7. So q ∈ {2, 4}. Thus |PSU(6, 2)| - |G|
and hence, K/H 6∼= PSU(6, 2). Also, if K/H ∼= PSL(3, 2) and q = 4, then as
mentioned in the previous cases 7 | 5− 1, which is a contradiction. Therefore,
K/H ∼= PSL(3, 2) = M , as desired.

2.4. If K/H ∼= 2Ds(3), where s = 2t + 1 ≥ 5, then 3s+1
4 = q2+q+1

d or 3s−1+1
2 =
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q2+q+1
d . If 3s+1

4 = r, then 3s(s−1)
s−1∏
i=1

(32i − 1) | 1

3
(r − 1)q3(q2 − 1)(q − 1).

On the other hand, r5 = (3s+1)5

1024 < 35s and 32s(s−1)−s < 3s(s−1)
s−1∏
i=1

(32i − 1) ≤

1

3
(r−1)q3(q2−1)(q−1) < r5. This implies that 2s(s−1) < 6s and hence, s < 4,

which is a contradiction. The same reasoning rules out the other possibility.

2.5. If K/H ∼= 2Ds+1(2), where s = 2n− 1 and n ≥ 2, then 2s + 1 = q2+q+1
d or

2s+1 + 1 = q2+q+1
d . If 2s + 1 = r, then 2s = q(q + 1) or 2s = (q−1)(q+2)

3 , which
is impossible. The same reasoning rules out the other possibilities.

2.6. If K/H ∼= G2(q
′), where q′ ≡ 0 (mod 3), then q′2 ± q′ + 1 = q2+q+1

d .
We know that |K/H| | |G| and |G| | f(q), so |K/H| | f(q). Since |K/H| =
q′6(q′2−1)(q′6−1) and either q′(q′±1) = q(q+1) or q′(q′±1) = 1

3(q−1)(q+2),
we can check at once that q′6 - |G|p′ , which is a contradiction.

2.7. If K/H ∼= 2G2(q
′), where q′ = 32t+1 > 3, then q′ −

√
3q′ + 1 = q2+q+1

d

or q′ +
√

3q′ + 1 = q2+q+1
d . Let (3, q) = 1. If q′ −

√
3q′ + 1 = q2+q+1

d , then

q′ > q2+q+1−d
d . Thus (32t+1)3 = |K/H|3 ≤ |G|3 < ( q

2+q+1−d
d )3 < (32t+1)3,

which is a contradiction. Now let q′ +
√

3q′ + 1 = q2+q+1
d . If d = 1, then

3t+1(3t + 1) = q(q + 1). Now, since (3, q) = 1, 3 - q and hence, q | (3t + 1) and

(q + 1)3 = 3t+1, which is impossible. If d = 3, then q′ +
√

3q′ + 1 = q2+q+1
3

and hence, 3t+2(3t + 1) = (q − 1)(q + 2). Thus either 3t+1 | (q − 1) and
(q + 2) | 3(3t + 1) or 3t+1 | (q + 2) and (q − 1) | 3(3t + 1). This forces
(q − 1) = 3t+1 and (q + 2) = 3(3t + 1). This guarantees that |G|3 ≤ 33t+2. On
the other hand, 33(2t+1) = |K/H|3 ≤ |G|3 ≤ 33t+2, which is a contradiction.
Now assume that (3, q) 6= 1. So d = 1 and hence, q′ ±

√
3q′ + 1 = q2 + q + 1.

This forces q = 3t+1 and q + 1 = 3t ± 1, which is impossible.

2.8. If K/H ∼= F4(q
′), where q′ is even, then q′4 + 1 = q2+q+1

d or q′4− q′2 + 1 =
q2+q+1

d . Thus r6 = (q′4 + 1)6 < (q′5)6 = q′30 and q′24(q′12 − 1)(q′8 − 1)(q′6 −
1)(q′2−1) | 13r(r−1)q3(q2−1)(q−1). Thus q′36 ≤ 1

3r(r−1)q3(q2−1)(q−1) <
r6 < q′30, which is a contradiction.
2.9. If K/H ∼= E7(2), then r ∈ {73, 127}. Therefore, either r = 73 and q = 8
or r = 127 and q = 19. So either |M | = |PSL(3, 8)| = 29 · 32 · 72 · 73 or
|M | = |PSL(3, 19)| = 24 · 34 · 5 · 193 · 127. On the other hand, 13 | |E7(2)|, so
|K/H| - |G|, which is a contradiction.
2.10. If K/H ∼= E7(3), then r ∈ {757, 1093}. One can check at once that
(q2+q+1)

d 6= 1093. If q2+q+1
d = 757, then d = 1 and q = 27. On the other hand,

|PSL(3, 27)| = 24 · 39 · 7 · 132 · 757 and 5 | |E7(3)|, which is a contradiction.
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2.11. If K/H ∼= 2F4(q
′), where q′ = 22t+1 ≥ 2, then r = q′2 ±

√
2q′3 + q′ ±√

2q′ + 1. In both cases, one can check at once that |K/H| > |G|, which is a
contradiction.

Case 3. Let t(K/H) ∈ {4, 5}. Then

r ∈ {OC2(K/H), OC3(K/H), OC4(K/H), OC5(K/H)},

as follows:

3.1. If K/H ∼=2E6(2), then q2+q+1
d ∈ {13, 17, 19}. Obviously, q2+q+1

d 6= 17. If
q2+q+1

d = 19, then d = 3 and q = 7. Thus |M | = |PSL(3, 7)| = 25 · 32 · 73 · 19.
On the other hand 11 | |2E6(2)|, which is a contradiction. The same reasoning
rules out the case when r = 13 and q = 3.

3.2. If K/H ∼= PSL(3, 4), then q2+q+1
d ∈ {5, 7, 9}. It is easy to check that

q2+q+1
d 6∈ {5, 9}. If q2+q+1

d = 7, then either q = 2 or q = 4. In the former
case, |K/H| - |G|, which is a contradiction. So q = 4 and hence, K/H ∼=
PSL(3, 4) = M , as desired.
3.3. If K/H ∼=2B2(q

′), where q′ = 22t+1 and t ≥ 1, then r ∈ {q′ − 1, q′ ±√
2q′ + 1}. Let q′ − 1 = r and d = 1. Thus 2(22t − 1) = q(q + 1). If |q|2 = 2,

then q + 1 = 3 and hence, t = 1 and M = PSL(3, 2). Therefore, 5 - |G| and
5 | |K/H|, which is a contradiction. This forces q | 2t − 1 or q | 2t + 1 and
hence, q(q + 1) ≤ 2(2t + 1)(2t−1 + 1). Therefore, t = 2 and q = 5. Thus
|K/H| - |G|, which is a contradiction. If q′ − 1 = r and d = 3, then we can see
that 22(3.22t−1 − 1) = q(q + 1). If |q|2 = 22, then q + 1 = 5 and t = 1, which
is impossible as described above. Thus |q + 1|2 = 22 and hence, |q − 1|2 = 2.
Also, |r− 1|2 = 2. So 22(2t+1) ≤ |K/H|2 ≤ |G|2 ≤ 25, which is a contradiction.

Now assume that q′ +
√

2q′ + 1 = r. If d = 3, then q2+q−2
3 = 2t+1(2t + 1)

and hence, (q − 1)(q + 2) = 3.2t+1(2t + 1). Since 3 | q − 1, q − 1 = 3k for
some positive integer k. Thus 3k(k + 1) = 2t+1(2t + 1) and hence, k(k + 1) =
2t+1(2

t+1
3 ). Now, if 2t+1 | k, then k+1 ≤ 2t+1

3 and if 2t+1 | k+1, then k ≤ 2t+1
3 ,

which are impossible.

If d = 1, then q2 +q+1 = q′+
√

2q′+1 and hence, q(q+1) = 2t+1(2t+1),
which is impossible. The same reasoning rules out the case when q′−

√
2q′+ 1

= r.
3.4. If K/H ∼= E8(q

′), then r ∈ { q
′10+q′5+1
q′2−q′+1

= q′8 − q′7 + q′5 − q′4 + q′3 −
q′ + 1, q

′10−q′5+1
q′2−q′+1

= q′8 + q′7 − q′5 − q′4 − q′3 + q′ + 1, q
′10+1
q′2+1

= q′8 − q′6 +

q′4 − q′2 + 1, q′8 − q′4 + 1}. Thus r < q′9. On the other hand, r5 < q′45 and
|G| ≤ 1

3(r − 1)q3(q2 − 1)(q − 1) < r5. Since q′120 | |K/H| and |K/H| | |G|, we
get a contradiction.

The above cases show that K/H ∼= PSL(3, q). �
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Step 4. G ∼= M .

Proof. By the previous argument and step 3, G has a normal series 1 E
H E K E G such that K/H ∼= M = PSL(3, q). We claim that H = 1.
Suppose on the contrary, H 6= 1, so |H| ≥ 2. Let t ∈ π(H). By Frattini’s
argument NG(St(H))H = G, so NG(St(H))/NH(St(H)) ∼= G/H. Since r |
|G/H|, r | |NG(St(H))| and hence, NG(St(H)) contains an element x of order
r. Also, by Lemma 3.3, rt 6∈ πe(G), thus < x > acts fixed point freely on
St(H) − {1}, so r | |St(H)| − 1. On the other hand, |St(H)| | |H| and since
|G| = |G/K||K/H||H| and |K/H| = |PSL(3, q)|, |H| ≤ r − 1. This forces
r ≤ r − 1, which is impossible. Therefore H = 1 and hence, K ∼= M .

We know that G ≤ AutM . If q = pm, then since by Lemma 3.3, GK(G)
is disconnected, by [14], G/K ∼=< ϕ > × < θ >, where ϕ is the field au-
tomorphism of order 3u and θ is the graph automorphism of order 2. Since
|G|3 = |M |3, the order of ϕ is 1 and hence, G = K or G = K· < θ >. If
G = K· < θ >, then m2

(
K· < θ >

)
> m2(K), but nse(G) contains exactly

one odd number m2(K), which is a contradiction. Therefore G = K ∼= M . �
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