CHARACTERIZATION OF PSL(3,Q) BY NSE

S. ASGARY and N. AHANJIDEH

Communicated by Alexandru Buium

Let G be a group and $\pi_e(G)$ be the set of element orders of G. Suppose that $k \in \pi_e(G)$ and m_k is the number of elements of order k in G. Set $\mathrm{nse}(G) := \{m_k : k \in \pi_e(G)\}$. Let M = PSL(3,q), where q is a prime power and $r = (q^2 + q + 1)/(3, q - 1)$ is a prime number and G be a finite group such that $r \mid |G|, r^2 \nmid |G|$ and $|G|_3 = |M|_3$. In this paper, we prove that $G \cong M$ if and only if $\mathrm{nse}(G) = \mathrm{nse}(M)$.

AMS 2010 Subject Classification: 20D05, 20D20.

Key words: set of the number of elements of the same order, prime graph, the classification theorem of finite simple groups.

1. INTRODUCTION

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. If G is a finite group, then $\pi(|G|)$ is denoted by $\pi(G)$. We denote by $\pi_e(G)$ the set of element orders of G. Set $m_k = m_k(G) := \{g \in G : \text{the order of } g \text{ is } k\}$ and $\text{nse}(G) := \{m_k(G) : k \in \pi_e(G)\}.$

Throughout this paper, we denote by ϕ the Euler totient function. If G is a finite group and r is a prime, then we denote by $S_r(G)$ a Sylow r-subgroup of G, by $\mathrm{Syl}_r(G)$ the set of Sylow r-subgroups of G and $n_r(G)$ is the number of Sylow r-subgroups of G. $|cl_G(x)|$ denotes the size of the conjugacy class of G containing x. Let n be a positive integer and p be a prime number. Then $|n|_p$ denotes the p-part of n.

The prime graph GK(G) of a finite group G is a graph whose vertex set is $\pi(G)$ and two distinct primes p and q are joined by an edge if and only if G contains an element of order pq (we write $p \sim q$). Let t(G) be the number of connected components of GK(G) and let $\pi_1, \pi_2, ..., \pi_{t(G)}$ be the connected components of GK(G). If $2 \in \pi(G)$, then we always suppose that $2 \in \pi_1(G)$. |G| can be expressed as a product of co-prime positive integers OC_i , i = 1, 2, ..., t(G), where $\pi(OC_i) = \pi_i$. These OC_i 's are called the order components of G and the set of order components of G will be denoted

by OC(G). Also if $2 \in \pi(G)$, we call $OC_2, ..., OC_{t(G)}$ the odd order components of G. The sets of order components of finite simple groups with disconnected prime graph can be obtained using [10] and [17].

Let $M_t(G) := \{g \in G : g^t = 1\}$. Then G and H are of the same order type if and only if $|M_t(G)| = |M_t(H)|$, $t = 1, 2, \ldots$ In 1987, J.G. Thompson put forward the following problem:

THOMPSONS PROBLEM. Let $T(G) = \{(k, m_k) : k \in \pi_e(G), m_k \in \text{nse}(G)\}$, where m_k is the number of elements of G of order k. Suppose that H is a group with T(G) = T(H). If G is solvable, then is it true that H is also necessarily solvable?

It is easy to see that if T(G) = T(H), then $\operatorname{nse}(G) = \operatorname{nse}(H)$ and |G| = |H|. We say that the group G is characterizable by nse (and the order) if every group H with $\operatorname{nse}(G) = \operatorname{nse}(H)$ (and |G| = |H|) is isomorphic to G. Note that not all groups can be characterizable by nse . For instance, let $G = \mathbb{Z}_4 \times \mathbb{Z}_4$ and $H = \mathbb{Z}_2 \times \mathbb{Q}_8$. Then |G| = |H| and $\operatorname{nse}(G) = \operatorname{nse}(H)$, while $G \ncong H$. In [12], it is shown that the simple groups PSL(2,q), where $q \le 13$, are characterizable by nse . In [9] and [15], it is proved that PSL(2,p), where p is a prime, is characterizable by nse . Also, in [8], [2] and [3], the authors respectively showed that for the prime number p, PGL(2,p), the alternating groups A_n , where $n \in \{p, p+1, p+2\}$ and, $C_n(2)$, ${}^2D_n(2)$ and ${}^2D_{n+1}(2)$, where $2^n+1=p$, are characterizable by nse under some extra conditions.

Throughout this paper, let q be a prime power such that $\frac{q^2+q+1}{(3,q-1)}$ is a prime, namely r and M = PSL(3,q). In this paper, we are going to study the characterization of M by nse. In fact, we prove the following theorem:

MAIN THEOREM. Let G be a finite group such that $r \mid |G|$, $r^2 \nmid |G|$ and $|G|_3 = |M|_3$. Then $G \cong M$ if and only if $\operatorname{nse}(G) = \operatorname{nse}(M)$.

2. PRELIMINARIES

Definition 2.1 ([5]). Let a be a natural number and r be a prime such that (a,r)=1. If n is the smallest natural number such that $r \mid (a^n-1)$, then r is named a Zsigmondy prime of a^n-1 .

LEMMA 2.1 ([5]). Let a and n be natural numbers, then there exists a Zsigmondy prime of $a^n - 1$, unless (a, n) = (2, 1), (a, n) = (2, 6) or n = 2 and $a = 2^s - 1$ for some natural number s.

Remark 2.1. If l is a Zsigmondy prime of $a^n - 1$, then Fermat's little theorem shows that $n \mid l - 1$. Put

 $Z_n(a) = \{l : l \text{ is a Zsigmondy prime of } a^n - 1\}.$

If $r \in Z_n(a)$ and $r \mid a^m - 1$, then we can see at once that $n \mid m$.

LEMMA 2.2 ([4]). Let G be a Frobenius group of even order with kernel K and complement H. Then t(G) = 2, the prime graph components of G are $\pi(H)$ and $\pi(K)$ and the following assertions hold:

- (1) K is nilpotent;
- $(2) |K| \equiv 1 \pmod{|H|}.$

LEMMA 2.3. If x is an element of $M - \{1\}$, then either $|cl_M(x)|_r = |M|_r$ or $|cl_M(x)|_r < |M|_r$ and

$$|cl_M(x)| = \frac{|M|(q-1)d}{|GL(1,q^3)|} = \frac{|GL(3,q)|}{|GL(1,q^3)|}.$$

Proof. It follows from [1, Corollary 2.8]. \square

LEMMA 2.4 ([6]). Let t be a positive integer dividing |G|. Then $t \mid |M_t(G)|$.

From Lemma 2.4, it may be concluded that:

COROLLARY 2.1. For a finite group G:

- (i) if $n \mid |G|$, then $n \mid \sum_{s \mid n} m_s$;
- (ii) if $n \in \pi_e(G)$, then $m_n = \phi(n)k$, where k is the number of cyclic subgroups of order n in G. In particular, $\phi(n) \mid m_n$.
- (iii) if $R \in \text{Syl}_r(G)$ is cyclic of prime order r, then $m_r = n_r(G)(r-1)$;
- (iv) if $P \in \operatorname{Syl}_p(G)$ is cyclic of prime order p and $r \in \pi(G) \{p\}$, then $m_{rp} = n_p(G)(p-1)(r-1)k$, where k is the number of cyclic subgroups of order r in $C_G(P)$.

LEMMA 2.5 ([11]). If $n \ge 6$ is a natural number, then there are at least s(n) prime numbers p_i such that $(n+1)/2 < p_i < n$. Here

$$s(n) = 1$$
, for $6 \le n \le 13$;
 $s(n) = 2$, for $14 \le n \le 17$;
 $s(n) = 3$, for $18 \le n \le 37$;
 $s(n) = 4$, for $38 \le n \le 41$;
 $s(n) = 5$, for $42 \le n \le 47$;
 $s(n) = 6$, for $n \ge 48$.

3. MAIN RESULTS

In this section, let G be a finite group such that $r \mid |G|$, $r^2 \nmid |G|$ and $\operatorname{nse}(G) = \operatorname{nse}(M)$. In the following, we are going to bring some useful lemmas which will be used during the proof of the main theorem:

LEMMA 3.1.
$$m_r(M) = \frac{1}{3}(r-1)q^3(q^2-1)(q-1)$$
.

Proof. By [7], $|N_M(S_r(M))| = 3 \cdot \frac{q^3 - 1}{(q-1)(3,q-1)}$ and hence,

$$n_r(M) = \frac{|M|}{|N_M(S_r(M))|} = \frac{1}{3}q^3(q^2 - 1)(q - 1).$$

Now, since $S_r(M)$ is cyclic, Corollary 2.1(iii) implies that $m_r(M) = n_r(M)(r-1) = \frac{1}{3}(r-1)q^3(q^2-1)(q-1)$, as desired. \square

Lemma 3.2.

- (i) For $u \in \pi_e(M)$, either $r \mid m_u(M)$ or u = r;
- (ii) For every $u \in \pi_e(G)$, $r \nmid m_u(G)$ if and only if $m_u(G) = m_r(M)$;
- (iii) $m_r(G) = m_r(M);$
- (iv) $m_2(G) = m_2(M)$.

Proof. (i) Obviously, $m_u(M) = \sum_{O(x_k)=u} |cl_M(x_k)|$, where $x_k s$ are selected

from distinct conjugacy classes of M. Thus Lemma 2.3 completes the proof of (i).

- (ii) Since $m_u(G) \in \text{nse}(G) = \text{nse}(M)$, (i) completes the proof.
- (iii) By Corollary 2.1(i), we have $r \mid (1 + m_r(G))$ and hence, $r \nmid m_r(G)$. Thus $m_r(G) = m_r(M)$, by (ii).
- (iv) By Corollary 2.1(ii), for every $u \in \pi_e(M)$, $\phi(u) \mid m_u(M)$. Thus if u > 2, then m_u is even. On the other hand, $2 \mid (1 + m_2(M))$ and hence, $m_2(M)$ is odd. Applying the same reasoning shows that the only odd number in $\operatorname{nse}(G)$ is $m_2(G)$ and hence, $m_2(G) = m_2(M)$, as wanted. \square

LEMMA 3.3. For every $s \in \pi(G) - \{r\}, sr \notin \pi_e(G)$.

Proof. Suppose on the contrary, $sr \in \pi_e(G)$. Since $r^2 \nmid |G|$, we deduce that $S_r(G)$ is cyclic and hence, Corollary 2.1(iv) forces $m_{rs}(G) = (r-1)(s-1)n_r(G)k$, for some natural number k. Thus $m_{rs}(G) = m_r(G)(s-1)k$ and hence, one of the following holds:

- (i) $r \mid m_{rs}(G)$. Then $r \mid (s-1)k$ and hence, $m_{rs}(G) > |M|$, along with Lemmas 3.1 and 3.2(iii). Thus $m_{rs}(G) \notin \text{nse}(M)$, which is a contradiction.
- (ii) $r \nmid m_{rs}(G)$. Then Lemma 3.2(ii) shows that $m_{rs}(G) = m_r(G)$ and hence, by Corollary 2.1(iv), s = 2. On the other hand, Corollary 2.1 (i) and Lemma 3.2(iv) show that $2r \mid (1 + m_2(G) + m_r(G) + m_{2r}(G)) = 1 + m_2(M) + 2m_r(G)$. Now, since by Corollary 2.1 (i) and Lemma 3.2(i), $r \mid (1 + m_r(G))$ and $r \mid m_2(M)$, we deduce that $r \mid m_r(G)$, which is a contradiction. \square

Corollary 3.1. r is an odd order component of G.

Proof. It follows from Lemma 3.3. \square

Lemma 3.4.

- (i) $n_r(G) = n_r(M) = \frac{1}{3}q^3(q^2 1)(q 1);$
- (ii) $\frac{1}{3}|M| \mid |G|$ and $|G| \mid \frac{1}{3}r(r-1)q^3(q^2-1)(q-1)$.

Proof. Since $S_r(G)$ is cyclic, Corollary 2.1(iii) forces $m_r(G) = \phi(r)n_r(G)$. Thus by Lemma 3.2(iii), $\phi(r)n_r(M) = m_r(M) = m_r(G) = \phi(r)n_r(G)$ and hence (i) follows. Now let $s \in \pi(G) - \{r\}$. By Lemma 3.3, $S_s(G)$ acts fixed point freely on the set of elements of order r in G and hence, $|G|_s | m_r(G) = \phi(r)n_r(G)$. Also, $|G|_r = r$ and $n_r(G) = \frac{1}{3}q^3(q^2 - 1)(q - 1)$. Thus |M|/3 | |G| and $|G| | \frac{1}{3}r(r-1)q^3(q^2-1)(q-1)$. \square

Proof of the main theorem. If $G \cong M$, then it is obvious that $\operatorname{nse}(G) = \operatorname{nse}(M)$. Now we assume that $\operatorname{nse}(G) = \operatorname{nse}(M)$. In the following, we show that G has a normal series $1 \subseteq H \subseteq K \subseteq G$ such that K/H is a non-abelian simple group.

Let $x \in G$ be an element of order r. Since r is the maximal prime divisor of |G| and an odd order component of G, $C_G(x) = \langle x \rangle$. Set $H = O_{r'}(G)$, the largest normal r'-subgroup of G. Since $\langle x \rangle$ acts on H fixed point freely, H is a nilpotent group. Suppose that K be a normal subgroup of G such that K/H is a minimal normal subgroup of G/H. Then K/H is a direct product of copies of same simple group. Since $r \mid |K/H|$ and $r^2 \nmid |K/H|$, K/H is a simple group. On the other hand, since $\langle x \rangle$ is a Sylow r-subgroup of K, $G = N_G(\langle x \rangle)K$ by the Frattini argument and so |G/K| divides r - 1. Now, it's not too hard to prove that $|K/H| \neq r$. Therefore, G has a normal series $1 \leq H \leq K \leq G$ such that K/H is a non-abelian simple group.

In the following, assume that d=(3,q-1) and $q'=p'^{\alpha}$, where p' is a prime and α is a positive integer. Also, for convenience let $f(q)=\frac{1}{3}r(r-1)q^3(q^2-1)(q-1)$. We are going to continue the prove of the main theorem in the following steps:

Step 1. K/H is not a Sporadic simple group.

Proof. Suppose that K/H is a Sporadic simple group. Thus $r = \frac{q^2 + q + 1}{d} \in \{5,7,11,13,17,19,23,29,31,37,41,43,47,59,67,71\}$. If $\frac{q^2 + q + 1}{d} \in \{5,11\}$, then since q is a prime power, we get a contradiction. Assume that $\frac{q^2 + q + 1}{d} = 7$ and d = 1. Thus q = 2. But $|PSL(3,2)| = 2^3.3.7$ and $K/H \in \{M_{22}, J_1, J_2, HS\}$, so $5 \mid |K/H|$, which is a contradiction. If d = 3, then q = 4 and $|PSL(3,4)| = 2^6.3^2.5.7$. Also, $K/H \in \{M_{22}, J_1, J_2, HS\}$. Now, similar to the above we get a contradiction. The same argument rules out the other possibilities of r. □

Step 2. K/H cannot be an alternating group \mathbb{A}_m , where $m \geq 5$.

Proof. If $K/H \cong \mathbb{A}_m$, then since $\frac{q^2+q+1}{d} = r \in \pi(K/H)$, $r \leq m$. Also, since $q \geq 2$ is a prime power, $r \geq 7$. Thus by Lemma 2.5, there exists a prime number $u \in \pi(\mathbb{A}_m) \subseteq \pi(G)$ such that (r+1)/2 < u < r. Lemma 3.4(ii) forces $u \mid \frac{1}{3}r(r-1)q^3(q^2-1)(q-1)$. We can check at once that $u \nmid q$, $u \nmid q-1$ and $u \nmid r-1$. Thus $u \in Z_2(q)$. It follows that u = r-2, where r=7 and q=4. So $|M| = |PSL(3,4)| = 2^6.3^2.5.7$. Since $|\mathbb{A}_m|$ divides |G|, we get $m \in \{7,8\}$. Note that |H| divides |G|/|K/H| and $S_7(G)$ acts fixed point freely on H and hence, $7 \mid |H|-1$. Therefore, considering the orders of G and K/H shows that either |H| = 8 and m=7 or |H| = 1. If |H| = 8 and m=7, then we can assume that H is a 2-elementary abelian group and hence, $\mathbb{A}_7 \lesssim GL(3,2)$. Thus $|\mathbb{A}_7|$ divides |GL(3,2)|, which is a contradiction. If |H| = 1, then $G \cong \mathbb{A}_7, \mathbb{S}_7$, \mathbb{A}_8 or \mathbb{S}_8 , which in two former cases $m_7(G) = m_7(\mathbb{A}_7) = 720 \neq 5760 = m_7(M)$, which is a contradiction. If $G \cong \mathbb{A}_8$, then $1344 \in \text{nse}(G) - \text{nse}(M)$ and if $G \cong \mathbb{S}_8$, then $763 \in \text{nse}(G) - \text{nse}(M)$, contradicting our assumptions. □

Step 3. K/H = PSL(3, q).

Proof. By Steps 1 and 2, and the classification theorem of finite simple groups, K/H is a simple group of Lie type such that $t(K/H) \geq 2$ and $r \in OC(K/H)$. Thus K/H is isomorphic to one of the following groups:

Case 1. Let t(K/H)=2. Then $OC_2(K/H)=r=\frac{q^2+q+1}{d}$. Thus we have:

- **1.1.** If $K/H \cong C_n(q')$, where $n = 2^u \ge 2$, then $\frac{q'^n+1}{(2,q'-1)} = \frac{q^2+q+1}{d}$. If (2, q'-1) = 2, then $\frac{q'^n+1}{2} = r$, so $q'^n = \frac{2(q^2+q+1)-d}{d}$ and hence, (q',r) = (q',q) = 1. Also, since p' is odd, we have $p \mid q-1$ or $p' \mid q-1$ and hence, $(p'^{\alpha})^{n^2} = |K/H|_{p'} \le |G|_{p'} \le \frac{1}{(3,p')}(q^2-1)_{p'}(q-1)_{p'}(\frac{q^2+q+1-d}{d})_{p'} < (\frac{2(q^2+q+1)-d}{d})^2 < (p'^{\alpha})^{2n}$. Therefore, n < 2, which is a contradiction. If (2,q'-1) = 1 and d = 1, then we have $q'^n = q(q+1)$, which is impossible. If (2,q'-1) = 1 and d = 3, then $q' = 2^{\alpha}$ and $q'^2 + 1 = r$. Thus $2^{2\alpha} + 1 = \frac{q^2+q+1}{3}$ and hence, $2^{2\alpha} = \frac{(q-1)(q+2)}{3}$. Since $3 \mid q-1$, $3 \mid q+2$ and hence, $3 \mid 2^{2\alpha}$, which is a contradiction. The same reasoning completes the proof in the case when either $K/H \cong B_n(q')$ or $K/H \cong {}^2D_n(q')$, where $n = 2^u \ge 4$.
- **1.2.** If $K/H \cong C_s(3)$ or $B_s(3)$, where s is prime, then $\frac{3^s-1}{2} = \frac{q^2+q+1}{d}$. So $3^s = \frac{2}{d}(q^2+q+\frac{d+2}{2})$ and hence, either (3,q)=1 and $3^{s+1} > q^2+q+\frac{d+2}{2}$ or q=s=3. In the former case, since $3^{s^2} = |K/H|_3 \le |G|_3 = (q^2-1)_3(q-1)_3 < (\frac{q^2+q+1-d}{d})^3 < 3^{3(s+1)}$, $s^2 < 3(s+1)$ and hence, s=3. So $q(q+1) \in \{12,38\}$. Obviously, $q(q+1) \ne 38$. If q(q+1) = 12, then q=3, which is a contradiction. If q=s=3, then r=13 and $|M| = |PSL(3,3)| = 2^4.3^3.13$, so $5 \nmid |G|$. On the other hand, $5 \mid |C_3(3)| = |B_3(3)|$, which is a contradiction.

- **1.3.** If $K/H \cong C_s(2)$, where s is prime, then $2^s 1 = \frac{q^2 + q + 1}{d}$ and hence, $2^s = \frac{q^2 + q + 1 + d}{d}$. Now, if $q \in \{2, 4\}$, then $\frac{q^2 + q + 1}{d} = 7$ and hence, s = 3. In these cases, $|PSL(3,2)| = 2^3.3.7$ and $|PSL(3,4)| = 2^6.3^2.5.7$. So $2^9 \nmid |G|$. On the other hand, $2^9 \mid |C_3(2)|$, which is a contradiction. If $q \notin \{2, 4\}$, then (2, q) = 1 and hence, $2^{s^2} = |K/H|_2 \le |G|_2 \le (\frac{q^2 1}{d})_2 (q 1)_2 (\frac{q^2 + q + 1 d}{d})_2 < (\frac{q^2 + q + 1 + d}{d})^3 = 2^{3s}$. So $s^2 < 3s$, which implies that s = 2. This forces $\frac{q^2 + q + 1}{d} = 3$, which is impossible.
- **1.4.** If $K/H \cong D_s(q')$, where $s \geq 5$ is prime and q' = 2, 3, 5, then $\frac{q'^s 1}{q' 1} = r$.
- Thus $q'^{s(s-1)} \prod_{i=1}^{s-1} (q'^{2i} 1) \mid \frac{1}{3} (r-1)q^3(q^2 1)(q-1)$. On the other hand,

$$r^5 = \frac{(q'^s - 1)^5}{(q' - 1)^5} < q'^{5s} \text{ and } q'^{s(s - 1)} \cdot q'^{\frac{s(s - 1)}{2}} < q'^{s(s - 1)} \prod_{i = 1}^{s - 1} (q'^{2i} - 1) \le \frac{1}{3} (r - 1) q^3 (q^2 - 1)$$

- $1)(q-1) < r^5$, which implies that $q'^{s(s-1) + \frac{s(s-1)}{2}} < q'^{5s}$ and hence, s < 5, which is a contradiction.
- **1.5.** If $K/H \cong {}^2D_n(3)$, where $9 \leq n = 2^m + 1$ and n is not prime, then $\frac{3^{n-1}+1}{2} = \frac{q^2+q+1}{d}$. Thus (3,q) = 1 and $3^{n-1} = \frac{2}{d}(q^2+q+\frac{2-d}{2})$ and hence, $3^n > q^2+q+\frac{2-d}{2}$. Since $3^{n(n-1)} = |K/H|_3 \leq |G|_3 = (q^2-1)_3(q-1)_3 < (q^2+q+\frac{2-d}{2})^3 < 3^{3n}$, we obtain n-1 < 3, which is impossible.
- **1.6.** If $K/H \cong {}^{2}D_{n}(2)$, where $n = 2^{m} + 1 \geq 5$, then $2^{n-1} + 1 = \frac{q^{2} + q + 1}{d}$. Thus $2^{n-1} = \frac{q^{2} + q + 1 d}{d}$ and hence, (2, q) = 1. Therefore, $2^{n(n-1)} = |K/H|_{2} \leq |G|_{2} < (\frac{q^{2} + q + 1 d}{d})^{3} = 2^{3(n-1)}$, so n < 3, which is impossible.
- **1.7.** If $K/H \cong D_{s+1}(q')$, where s is an odd prime and q' = 2, 3, then $\frac{q'^{s}-1}{(2,q'-1)} =$

r. Thus
$$q'^{s(s+1)}(q'^s+1)(q'^{s+1}-1)\prod_{i=1}^{s-1}(q'^{2i}-1)\mid \frac{1}{3}(r-1)q^3(q^2-1)(q-1)$$
. Also,

$$r^5 = \frac{(q'^s - 1)^5}{(2, q' - 1)^5} < q'^{5s} \text{ and } q'^{s(s+1)} q'^{s(s+1)/2} < q'^{s(s+1)} (q'^s + 1)(q'^{s+1} - 1) \prod_{i=1}^{s-1} (q'^{2i} - 1)^{s-1} (q'^{s+1} - 1) \prod_{i=1}^{s-1} (q'^{2i} - 1)^{s-1} (q'^{s+1} - 1) \prod_{i=1}^{s-1} (q'^{s+1} - 1$$

- 1) $\leq \frac{1}{3}(r-1)q^3(q^2-1)(q-1) < r^5$, which implies that $q'^{3s(s+1)/2} < q'^{5s}$ and hence, s < 3, which is a contradiction.
- **1.8.** If $K/H \cong {}^2D_s(3)$, where $5 < s \neq 2^m + 1$ and s is an odd prime, then

$$\frac{3^{s+1}}{4} = r$$
 and $3^{s(s-1)} \prod_{i=1}^{s-1} (3^{2i} - 1) \mid \frac{1}{3} (r-1) q^3 (q^2 - 1) (q-1)$. Thus $r^5 = \frac{(3^s + 1)^5}{1024} < \frac{1}{3} (q^2 - 1) (q-1)$.

$$3^{5s}$$
 and $3^{s(s-1)} < 3^{s(s-1)} \prod_{i=1}^{s-1} (3^{2i} - 1) \le \frac{1}{3} (r - 1) q^3 (q^2 - 1) (q - 1) < r^5$, which

implies that s(s-1) < 5s and hence, s-1 < 5, which is a contradiction.

- **1.9.** If $K/H \cong G_2(q')$, where $2 < q' \equiv \epsilon \pmod{3}$ and $\epsilon = \pm 1$, then $q^{2'} \epsilon q' + 1 = \frac{q^2 + q + 1}{d}$. Thus we can check at once that |K/H| > f(q), which is a contradiction. If $K/H \cong F_4(q')$, where q' is odd, then similar to the above, we get a contradiction.
- **1.10.** If $K/H \cong {}^2F_4(2)'$, then $|K/H| = 2^{11} \cdot 3^3 \cdot 5^2 \cdot 13$ and $\frac{q^2 + q + 1}{d} = 13$. If d = 1, then q = 3 and $|PSL(3,3)| = 2^4 \cdot 3^3 \cdot 13$, so $5 \nmid |G|$, which is a contradiction. If d = 3, then q(q + 1) = 38, which is impossible.
- **1.11.** If $K/H \cong PSU(4,2)$, then $|K/H| = 2^6 \cdot 3^4 \cdot 5$. Thus $\frac{q^2 + q + 1}{d} = 5$, which is impossible.
- **1.12.** If $K/H \cong PSL(s, q')$, where $(s, q') \neq (3, 2)$, (3, 4) and s is an odd prime,

then
$$r = \frac{q'^s - 1}{(s, q' - 1)(q' - 1)}$$
 and $q'^{\frac{s(s-1)}{2}} \prod_{i=1}^{s-1} (q'^i - 1) \mid \frac{1}{3} (r - 1) q^3 (q^2 - 1)(q - 1)$. On the

other hand,
$$r^5 = \frac{(q'^s-1)^5}{(s,q'-1)^5(q'-1)^5} < q'^{5s}$$
 and $q'^{s(s-1)} - s < q'^{\frac{s(s-1)}{2}} \prod_{i=1}^{s-1} (q'^i - q'^{s(s-1)}) - s < q'^{\frac{s(s-1)}{2}} \prod_{i=1}^{s-1} (q'^{i} - q'^{s(s-1)}) - s < q'^{\frac{s(s-1)}{2}} \prod_{i=1}^{s-1} (q'^{s(s-1)}) - s < q'^{\frac{s(s-$

1)
$$\leq \frac{1}{3}(r-1)q^3(q^2-1)(q-1) < r^5$$
, which implies that $s(s-1)-s < 5s$.

Hence s=3,5. If s=5, then $\frac{q^2+q+1}{d}=\frac{q'^4+q'^3+q'^2+q'+1}{(5,q'-1)}$ and hence, (q',q)=1. Also, $q'^{10}(q'-1)(q'^2-1)(q'^3-1)(q'^4-1)\mid \frac{1}{3}(r-1)q^3(q^2-1)(q-1)$. But $q'^{10}\nmid \frac{1}{3}(r-1)q^3(q^2-1)(q-1)$, which is a contradiction. If s=3, then $\frac{q'^3-1}{(3,q'-1)(q'-1)}=\frac{q^2+q+1}{d}$ and hence, $\frac{q'^2+q'+1}{(3,q'-1)}=\frac{q^2+q+1}{d}$. Now, we divide the proof into the following subcases:

- (i) Suppose that $(q', q) \neq 1$ and $q \mid q'$.
- (1) Let (3, q' 1) = 1 and d = 1. Thus $q'^2 + q' + 1 = q^2 + q + 1$, so q' = q and $K/H \cong PSL(3, q)$.
- (2) If (3, q' 1) = 3 and d = 3, then $\frac{q'^2 + q' + 1}{3} = \frac{q^2 + q + 1}{3}$ and similar to the above, $K/H \cong PSL(3,q)$.
- (3) If (3, q' 1) = 1 and d = 3, then $q'^2 + q' + 1 = \frac{q^2 + q + 1}{3}$ and hence, $q(q+1) = 3q'^2 + 3q' + 2$, which implies that $q \mid 3q'^2 + 3q' + 2$. Since $q \mid q', q \mid 2$, thus q = 2 and hence, $q'(q' + 1) = \frac{4}{3}$, which is a contradiction.
- (4) If (3,q'-1)=3 and d=1, then $\frac{q'^2+q'+1}{3}=q^2+q+1$ and hence, $q(q+1)=\frac{(q'-1)(q'+2)}{3}$, which implies that $q\mid q'^2+q'-2$. Thus $q\mid (-2)$ and hence, q=2. It follows that $18=q'^2+q'-2$. Hence, q'=4. But $(s,q')\neq (3,4)$ by assumption, which is a contradiction.

The same argument completes the proof when $q' \mid q$.

- (ii) Assume that (q', q) = 1.
- (1) If (3, q' 1) = 1 and d = 1, then $q'^2 + q' + 1 = q^2 + q + 1$ and hence, q'(q' + 1) = q(q + 1). Since (q', q) = 1, we get a contradiction.

- (2) If (3, q'-1)=3 and d=3, then $\frac{q'^2+q'+1}{3}=\frac{q^2+q+1}{3}$ and similar to the above, we get a contradiction.
- (3) If (3, q'-1) = 3 and d = 1, then $\frac{q'^2+q'+1}{3} = q^2+q+1$ and hence, $\frac{q'^2+q'-2}{3} = q(q+1)$. Thus $\frac{(q'-1)(q'+2)}{3} = q(q+1)$, which implies that 3k(k+1) = q(q+1). Considering the different possibilities of q leads us to get a contradiction.
- (4) If (3, q'-1) = 1 and d = 3, then similar to the above, we get a contradiction.
- **1.13.** If $K/H \cong PSL(s+1,q')$, where $(q'-1) \mid (s+1)$ and s is an odd prime,

then
$$r = \frac{q'^s - 1}{q' - 1}$$
 and $q'^{\frac{s(s+1)}{2}}(q'^{s+1} - 1) \prod_{i=1}^{s-1} (q'^i - 1) \mid \frac{1}{3}(r - 1)q^3(q^2 - 1)(q - 1)$. On the

other hand,
$$r^5 = \frac{(q'^s - 1)^5}{(q' - 1)^5} < q'^{5s}$$
 and $q'^{s(s+1) - s} < q'^{\frac{s(s+1)}{2}} (q'^{s+1} - 1) \prod_{i=1}^{s-1} (q'^i - 1) \le 1$

- $\frac{1}{3}(r-1)q^3(q^2-1)(q-1) < r^5 < q'^{5s}, \text{ which implies that } s+1 < 6. \text{ Hence } s=3, \text{ so } q'^2+q'+1=\frac{q^2+q+1}{d}. \text{ Since } (q'-1)\mid (s+1), \ q'\in\{2,3,5\}, \text{ which implies that } K/H\cong PSL(4,2), \ K/H\cong PSL(4,3), \ K/H\cong PSL(4,5).$ If $K/H\cong PSL(4,2)$, then since $PSL(4,2)\cong \mathbb{A}_8$, Step 2 leads us to get a contradiction. If $K/H\cong PSL(4,3)$, then $\frac{q^2+q+1}{d}=13$ and hence q=3. So $|K/H|\nmid |G|$, which is impossible. The same reasoning rules out the case when $K/H\cong PSL(4,5)$.
- **1.14.** If $K/H \cong E_6(q')$, then $r = \frac{q'^6 + q'^3 + 1}{(3,q'-1)}$ and $q'^{36}(q'^{12}-1)(q'^8-1)(q'^6-1)(q'^5-1)(q'^2-1) \mid \frac{1}{3}(r-1)q^3(q^2-1)(q-1)$. On the other hand, $r^5 = \frac{(q'^6 + q'^3 + 1)^5}{(3,q'-1)^5} < q'^{45}$ and $q'^{36}(q'^{12}-1)(q'^8-1)(q'^6-1)(q'^5-1)(q'^2-1) \le \frac{1}{3}(r-1)q^3(q^2-1)(q-1) < r^5 < q'^{45}$, which is a contradiction. The same reasoning rules out the case when $K/H \cong {}^2E_6(q')$, where q' > 2.
- **1.15.** If $K/H \cong {}^{3}D_{4}(q')$, then $r = q'^{4} q'^{2} + 1$ and $q'^{12}(q'^{4} + q'^{2} + 1)(q'^{6} 1)(q'^{2} 1) \mid \frac{1}{3}(r 1)q^{3}(q^{2} 1)(q 1)$. But $q'^{12}(q'^{4} + q'^{2} + 1)(q'^{6} 1)(q'^{2} 1) > \frac{1}{3}(r 1)q^{3}(q^{2} 1)(q 1)$, which is a contradiction.
- **1.16.** If $K/H \cong PSU(s+1,q')$, where $(s,q') \neq (3,3), (5,2), (q'+1) \mid (s+1)$ and
- s is an odd prime, then $r = \frac{q'^s + 1}{q' + 1}$ and $q'^{\frac{s(s+1)}{2}}(q'^{s+1} 1) \prod_{i=1}^{s-1} (q'^i (-1)^i) \mid \frac{1}{3}(r 1) \mid \frac{1}{$
- $1)q^3(q^2-1)(q-1). \text{ Moreover, } r^5=(\frac{q'^s+1}{q'+1})^5=(q'^{s-1}-q'^{s-2}+\ldots+1)^5< q'^{5(s-1)}$
- and $q'^{\frac{s(s+1)}{2}} \cdot q'^{\frac{s(s-1)}{2}+s} < q'^{\frac{s(s+1)}{2}} (q'^{s+1}-1) \prod_{i=1}^{s-1} (q'^i (-1)^i) \le \frac{1}{3} (r-1) q^3 (q^2 (-1)^i)$
- $1)(q-1) < r^5$, which implies that $s^2 + s < 5(s-1)$. Thus s < 2, which is a contradiction.
- **1.17.** If $K/H \cong PSU(s, q')$, where s is an odd prime, then $r = \frac{q'^s + 1}{(q' + 1)(s, q' + 1)}$ and

$$q'^{\frac{s(s-1)}{2}} \prod_{i=1}^{s-1} (q'^i - (-1)^i) \mid \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{1}{3} (r-1)q^3(q^2 - 1)(q-1). \text{ Also, } r^5 = \frac{(q'^s + 1)^5}{(q'+1)^5(s,q'+1)^5} < \frac{(q'^s + 1)^5}{(q'^s + 1)^5(s,q'+1)^5} < \frac{(q'^s + 1)^5}{(q'^s + 1)^5($$

$$q'^{5(s-1)} \text{ and } q'^{\frac{s(s-1)}{2}} q'^{\frac{s(s-1)}{2}} < q'^{\frac{s(s-1)}{2}} \prod_{i=1}^{s-1} (q'^i - (-1)^i) \le \frac{1}{3} (r-1) q^3 (q^2 - 1) (q-1) < q'^{5(s-1)}$$

 r^5 . This implies that s < 5. Thus s = 3 and hence, $r = \frac{q'^2 - q' + 1}{(3,q'+1)}$. This shows that q = q' - 1, q(q+1) = 3k(k+1) or q'(q'-1) = 3k(k+1). If q' = q+1, then we can see that $|K/H| \nmid |G|$, which is a contradiction. Considering the different possibilities of k in two latter cases shows that (q, q') = (4, 3), so $|G|_5 = 5$. Since $5 \nmid |\operatorname{Aut}(PSU(3,3))|$, so $|H|_5 = 5$. But $S_7(G)$ acts fixed point freely on $S_5(H)$ and hence, $7 \mid 5 - 1$, which is a contradiction.

Case 2. Let t(K/H) = 3. Then $r \in \{OC_2(K/H), OC_3(K/H)\}$:

- **2.1.** If $K/H \cong PSL(2,q')$, where $4 \mid q'$, then the odd order components of K/H are q'+1 and q'-1. If q'+1=r, then $q'=r-1=\frac{(q^2+q+1)}{d}-1$ and hence, either q'=q(q+1) or $q'=\frac{(q-1)(q+2)}{3}$, which are impossible. So let q'-1=r. Thus $q'=2^{\alpha}>4$, $q'=r+1=\frac{(q^2+q+1)}{d}+1$ and $n_r(K/H)=\frac{q'(q'+1)}{2}\mid n_r(G)=\frac{1}{3}q^3(q-1)(q^2-1)$. If d=1, then $q(q+1)=2(2^{\alpha-1}-1)$ and hence, either q=2 or $(q^3(q+1),|K/H|)\mid 6$. If q=2, then q'=8, so $n_r(K/H)\nmid n_r(G)$, which is a contradiction. In the latter case, $3q'(q'+1)\mid 2(q-1)^2$, which is impossible. Now let d=3. Then we can see at once that $(q+2)(q-1)=6(2^{\alpha-1}-1)$ and either (q,q')=1 or q=4 and q'=8. Thus if (q,q')=1, then the above statements show that $r+1=q'\mid 8|q+1|_2$, which is impossible. If q=4 and q'=8, then $|H|_5=5$ and hence, $7\mid 5-1$, which is a contradiction.
- **2.2.** If $K/H \cong PSL(2, q')$, where $4 \mid q' 1$, then q' = r or (q' + 1)/2 = r. If q' = r, then $n_r(K/H) = (q' + 1) \mid n_r(G) = \frac{1}{3}q^3(q 1)(q^2 1)$ and either $q' + 1 = q^2 + q + 2$ or $q' + 1 = \frac{(q^2 + q + 4)}{3}$. So we can see at once that $q' + 1 \mid 2$, which is a contradiction. If $\frac{(q' + 1)}{2} = r$, then $n_r(K/H) = \frac{1}{2}q'(q' 1) \mid n_r(G) = \frac{1}{3}q^3(q 1)(q^2 1)$ and $q' = 2q^2 + 2q + 1$ or $q' = \frac{(2q^2 + 2q 1)}{3}$. This forces q' = 5 and hence, r = 3, which is impossible. The same reasoning completes the proof when $K/H \cong PSL(2, q')$ and $4 \mid q' + 1$.
- **2.3.** If $K/H \cong PSU(6,2)$ or $K/H \cong PSL(3,2)$, then $|K/H| = 2^{15} \cdot 3^6 \cdot 5 \cdot 7 \cdot 11$ or $|K/H| = 2^3 \cdot 3 \cdot 7$. It follows that $\frac{q^2+q+1}{d} \in \{7,11\}$. We can check that $\frac{q^2+q+1}{d} \neq 11$ and hence $\frac{q^2+q+1}{d} = 7$. So $q \in \{2,4\}$. Thus $|PSU(6,2)| \nmid |G|$ and hence, $K/H \ncong PSU(6,2)$. Also, if $K/H \cong PSL(3,2)$ and q=4, then as mentioned in the previous cases $7 \mid 5-1$, which is a contradiction. Therefore, $K/H \cong PSL(3,2) = M$, as desired.
- **2.4.** If $K/H \cong {}^{2}D_{s}(3)$, where $s = 2^{t} + 1 \geq 5$, then $\frac{3^{s} + 1}{4} = \frac{q^{2} + q + 1}{d}$ or $\frac{3^{s-1} + 1}{2} = \frac{q^{2} + q + 1}{d}$

$$\frac{q^2+q+1}{d}$$
. If $\frac{3^s+1}{4} = r$, then $3^{s(s-1)} \prod_{i=1}^{s-1} (3^{2i}-1) \mid \frac{1}{3}(r-1)q^3(q^2-1)(q-1)$.

On the other hand, $r^5 = \frac{(3^s+1)^5}{1024} < 3^{5s}$ and $3^{2s(s-1)-s} < 3^{s(s-1)} \prod_{i=1}^{s-1} (3^{2i} - 1) \le 1$

- $\frac{1}{3}(r-1)q^3(q^2-1)(q-1) < r^5$. This implies that 2s(s-1) < 6s and hence, s < 4, which is a contradiction. The same reasoning rules out the other possibility.
- **2.5.** If $K/H \cong {}^2D_{s+1}(2)$, where $s = 2^n 1$ and $n \ge 2$, then $2^s + 1 = \frac{q^2 + q + 1}{d}$ or $2^{s+1} + 1 = \frac{q^2 + q + 1}{d}$. If $2^s + 1 = r$, then $2^s = q(q+1)$ or $2^s = \frac{(q-1)(q+2)}{3}$, which is impossible. The same reasoning rules out the other possibilities.
- **2.6.** If $K/H \cong G_2(q')$, where $q' \equiv 0 \pmod{3}$, then $q'^2 \pm q' + 1 = \frac{q^2 + q + 1}{d}$. We know that $|K/H| \mid |G|$ and $|G| \mid f(q)$, so $|K/H| \mid f(q)$. Since $|K/H| = q'^6(q'^2 1)(q'^6 1)$ and either $q'(q' \pm 1) = q(q + 1)$ or $q'(q' \pm 1) = \frac{1}{3}(q 1)(q + 2)$, we can check at once that $q'^6 \nmid |G|_{p'}$, which is a contradiction.
- **2.7.** If $K/H \cong {}^2G_2(q')$, where $q' = 3^{2t+1} > 3$, then $q' \sqrt{3q'} + 1 = \frac{q^2 + q + 1}{d}$ or $q' + \sqrt{3q'} + 1 = \frac{q^2 + q + 1}{d}$. Let (3,q) = 1. If $q' \sqrt{3q'} + 1 = \frac{q^2 + q + 1}{d}$, then $q' > \frac{q^2 + q + 1 d}{d}$. Thus $(3^{2t+1})^3 = |K/H|_3 \le |G|_3 < (\frac{q^2 + q + 1 d}{d})^3 < (3^{2t+1})^3$, which is a contradiction. Now let $q' + \sqrt{3q'} + 1 = \frac{q^2 + q + 1}{d}$. If d = 1, then $3^{t+1}(3^t + 1) = q(q + 1)$. Now, since $(3,q) = 1, 3 \nmid q$ and hence, $q \mid (3^t + 1)$ and $(q + 1)_3 = 3^{t+1}$, which is impossible. If d = 3, then $q' + \sqrt{3q'} + 1 = \frac{q^2 + q + 1}{3}$ and hence, $3^{t+2}(3^t + 1) = (q 1)(q + 2)$. Thus either $3^{t+1} \mid (q 1)$ and $(q + 2) \mid 3(3^t + 1)$ or $3^{t+1} \mid (q + 2)$ and $(q 1) \mid 3(3^t + 1)$. This forces $(q 1) = 3^{t+1}$ and $(q + 2) = 3(3^t + 1)$. This guarantees that $|G|_3 \le 3^{3t+2}$. On the other hand, $3^{3(2t+1)} = |K/H|_3 \le |G|_3 \le 3^{3t+2}$, which is a contradiction. Now assume that $(3,q) \ne 1$. So d = 1 and hence, $q' \pm \sqrt{3q'} + 1 = q^2 + q + 1$. This forces $q = 3^{t+1}$ and $q + 1 = 3^t \pm 1$, which is impossible.
- **2.8.** If $K/H \cong F_4(q')$, where q' is even, then $q'^4 + 1 = \frac{q^2 + q + 1}{d}$ or $q'^4 q'^2 + 1 = \frac{q^2 + q + 1}{d}$. Thus $r^6 = (q'^4 + 1)^6 < (q'^5)^6 = q'^{30}$ and $q'^{24}(q'^{12} 1)(q'^8 1)(q'^6 1)(q'^2 1) \mid \frac{1}{3}r(r-1)q^3(q^2-1)(q-1)$. Thus $q'^{36} \leq \frac{1}{3}r(r-1)q^3(q^2-1)(q-1) < r^6 < q'^{30}$, which is a contradiction.
- **2.9.** If $K/H \cong E_7(2)$, then $r \in \{73, 127\}$. Therefore, either r = 73 and q = 8 or r = 127 and q = 19. So either $|M| = |PSL(3,8)| = 2^9 \cdot 3^2 \cdot 7^2 \cdot 73$ or $|M| = |PSL(3,19)| = 2^4 \cdot 3^4 \cdot 5 \cdot 19^3 \cdot 127$. On the other hand, $13 \mid |E_7(2)|$, so $|K/H| \nmid |G|$, which is a contradiction.
- **2.10.** If $K/H \cong E_7(3)$, then $r \in \{757, 1093\}$. One can check at once that $\frac{(q^2+q+1)}{d} \neq 1093$. If $\frac{q^2+q+1}{d} = 757$, then d=1 and q=27. On the other hand, $|PSL(3,27)| = 2^4 \cdot 3^9 \cdot 7 \cdot 13^2 \cdot 757$ and $5 \mid |E_7(3)|$, which is a contradiction.

2.11. If $K/H \cong {}^2F_4(q')$, where $q' = 2^{2t+1} \geq 2$, then $r = q'^2 \pm \sqrt{2q'^3} + q' \pm \sqrt{2q'} + 1$. In both cases, one can check at once that |K/H| > |G|, which is a contradiction.

Case 3. Let $t(K/H) \in \{4, 5\}$. Then

$$r \in \{OC_2(K/H), OC_3(K/H), OC_4(K/H), OC_5(K/H)\},\$$

as follows:

- **3.1.** If $K/H \cong^2 E_6(2)$, then $\frac{q^2+q+1}{d} \in \{13,17,19\}$. Obviously, $\frac{q^2+q+1}{d} \neq 17$. If $\frac{q^2+q+1}{d} = 19$, then d=3 and q=7. Thus $|M| = |PSL(3,7)| = 2^5 \cdot 3^2 \cdot 7^3 \cdot 19$. On the other hand $11 \mid |^2 E_6(2)|$, which is a contradiction. The same reasoning rules out the case when r=13 and q=3.
- **3.2.** If $K/H \cong PSL(3,4)$, then $\frac{q^2+q+1}{d} \in \{5,7,9\}$. It is easy to check that $\frac{q^2+q+1}{d} \notin \{5,9\}$. If $\frac{q^2+q+1}{d} = 7$, then either q=2 or q=4. In the former case, $|K/H| \nmid |G|$, which is a contradiction. So q=4 and hence, $K/H \cong PSL(3,4) = M$, as desired.
- **3.3.** If $K/H \cong^2 B_2(q')$, where $q' = 2^{2t+1}$ and $t \geq 1$, then $r \in \{q'-1, q' \pm \sqrt{2q'}+1\}$. Let q'-1=r and d=1. Thus $2(2^{2t}-1)=q(q+1)$. If $|q|_2=2$, then q+1=3 and hence, t=1 and M=PSL(3,2). Therefore, $5 \nmid |G|$ and $5 \mid |K/H|$, which is a contradiction. This forces $q \mid 2^t-1$ or $q \mid 2^t+1$ and hence, $q(q+1) \leq 2(2^t+1)(2^{t-1}+1)$. Therefore, t=2 and q=5. Thus $|K/H| \nmid |G|$, which is a contradiction. If q'-1=r and d=3, then we can see that $2^2(3.2^{2t-1}-1)=q(q+1)$. If $|q|_2=2^2$, then q+1=5 and t=1, which is impossible as described above. Thus $|q+1|_2=2^2$ and hence, $|q-1|_2=2$. Also, $|r-1|_2=2$. So $2^{2(2t+1)} \leq |K/H|_2 \leq |G|_2 \leq 2^5$, which is a contradiction.

Now assume that $q' + \sqrt{2q'} + 1 = r$. If d = 3, then $\frac{q^2 + q - 2}{3} = 2^{t+1}(2^t + 1)$ and hence, $(q - 1)(q + 2) = 3 \cdot 2^{t+1}(2^t + 1)$. Since $3 \mid q - 1$, q - 1 = 3k for some positive integer k. Thus $3k(k+1) = 2^{t+1}(2^t + 1)$ and hence, $k(k+1) = 2^{t+1}(\frac{2^t + 1}{3})$. Now, if $2^{t+1} \mid k$, then $k+1 \leq \frac{2^t + 1}{3}$ and if $2^{t+1} \mid k+1$, then $k \leq \frac{2^t + 1}{3}$, which are impossible.

If d=1, then $q^2+q+1=q'+\sqrt{2q'}+1$ and hence, $q(q+1)=2^{t+1}(2^t+1)$, which is impossible. The same reasoning rules out the case when $q'-\sqrt{2q'}+1=r$.

3.4. If $K/H \cong E_8(q')$, then $r \in \{\frac{q'^{10} + q'^5 + 1}{q'^2 - q' + 1} = q'^8 - q'^7 + q'^5 - q'^4 + q'^3 - q' + 1, \frac{q'^{10} - q'^5 + 1}{q'^2 - q' + 1} = q'^8 + q'^7 - q'^5 - q'^4 - q'^3 + q' + 1, \frac{q'^{10} + 1}{q'^2 + 1} = q'^8 - q'^6 + q'^4 - q'^2 + 1, q'^8 - q'^4 + 1\}$. Thus $r < q'^9$. On the other hand, $r^5 < q'^{45}$ and $|G| \le \frac{1}{3}(r-1)q^3(q^2-1)(q-1) < r^5$. Since $q'^{120} \mid |K/H|$ and $|K/H| \mid |G|$, we get a contradiction.

The above cases show that $K/H \cong PSL(3,q)$.

Step 4. $G \cong M$.

Proof. By the previous argument and step 3, G has a normal series 1 extstyle H extstyle K extstyle G such that $K/H \cong M = PSL(3,q)$. We claim that H = 1. Suppose on the contrary, $H \neq 1$, so $|H| \geq 2$. Let $t \in \pi(H)$. By Frattini's argument $N_G(S_t(H))H = G$, so $N_G(S_t(H))/N_H(S_t(H)) \cong G/H$. Since $r \mid |G/H|$, $r \mid |N_G(S_t(H))|$ and hence, $N_G(S_t(H))$ contains an element x of order r. Also, by Lemma 3.3, $rt \notin \pi_e(G)$, thus < x > acts fixed point freely on $S_t(H) - \{1\}$, so $r \mid |S_t(H)| - 1$. On the other hand, $|S_t(H)| \mid |H|$ and since |G| = |G/K||K/H||H| and |K/H| = |PSL(3,q)|, $|H| \leq r - 1$. This forces $r \leq r - 1$, which is impossible. Therefore H = 1 and hence, $K \cong M$.

We know that $G \leq AutM$. If $q = p^m$, then since by Lemma 3.3, GK(G) is disconnected, by [14], $G/K \cong <\varphi>\times<\theta>$, where φ is the field automorphism of order 3^u and θ is the graph automorphism of order 2. Since $|G|_3 = |M|_3$, the order of φ is 1 and hence, G = K or $G = K \cdot <\theta>$. If $G = K \cdot <\theta>$, then $m_2(K \cdot <\theta>)>m_2(K)$, but nse(G) contains exactly one odd number $m_2(K)$, which is a contradiction. Therefore $G = K \cong M$. \square

REFERENCES

- [1] N. Ahanjideh, Thompson's conjecture for some finite simple groups. J. Algebra **344** (2011), 205–228.
- [2] N. Ahanjideh and B. Asadian, NSE characterization of some alternating groups. J. Algebra Appl 14(2) (2015).
- [3] S. Asgary and N. Ahanjideh, NSE characterization of some finite simple groups. To appear in Sci. Ann. Comput. Sci., 2015.
- [4] G.Y. Chen, On Frobenius and 2-Frobenius group. J. South China Normal Univ. Natur. Sci. Ed. 20(5) (1995), 485–487.
- [5] W. Feit, On large Zsigmondy primes. Proc. Amer. Math. Soc. 102(1) (1988), 29–36.
- [6] G. Frobenius, Verallgemeinerung des Sylowschen Satze. Berliner Sitz (1985), 981–993.
- [7] B. Huppert, Endliche Gruppen. Springer-Verlag, 1967.
- [8] A. Khalili Asboei, A new characterization of PGL(2, p). J. Algebra Appl. 12(7) (2013).
- [9] A. Khalili Asboei and A. Iranmanesh, A characterization of the linear groups $L_2(p)$. Czechoslovak Math. J. **64(139)** (2014), 459–464.
- [10] A.S. Kondratev, Prime graph components of finite simple groups. Math. USSR-Sb. **67(1)** (1990), 235–247.
- [11] A.S. Kondratev and V.D. Mazurov, Recognition of Alternating groups of prime degree from their element orders. Sib. Math. J. **41(2)** (2000), 294–302.
- [12] M. Khatami, B. Khosravi and Z. Akhlaghi, A new characterization for some linear groups. Monatsh. Math. 163 (2011), 39–50.
- [13] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups. London Math. Soc. Lecture Note Ser., 1990.
- [14] M.S. Lucido, Prime graph components of finite almost simple groups, Rend. Semin. Mat. Univ. Padova 102 (1999), 1–22.

- [15] C. Shao and Q. Jiang, A new characterization of PSL(2, p) by nse. J. Algebra Appl. 13(4) (2014).
- [16] R. Shen, C.G. Shao, Q.H. Jiang, W.J. Shi and V. Mazurov, A new characterization of A₅. Monatsh. Math. 160 (2010), 337–341.
- [17] J.S. Williams, Prime graph components of finite groups. J. Algebra 69 (1981), 487–513.

Received 19 January 2016

Shahrekord University
Department of Mathematics
Shahrekord, Iran
soleyman.asgary@stu.sku.ac.ir

Shahrekord University
Department of Mathematics
Shahrekord, Iran
ahanjideh.neda@sci.sku.ac.ir