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Let G be a group and 7.(G) be the set of element orders of G. Suppose that
k € 7.(G) and my is the number of elements of order k in G. Set nse(G) :=
{mir : k € 7(G)}. Let M = PSL(3,q), where ¢ is a prime power and r =
(¢> + ¢+ 1)/(3,q — 1) is a prime number and G be a finite group such that
r | |G|, r* { |G| and |G|3 = |M]|3. In this paper, we prove that G = M if and
only if nse(G) = nse(M).
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1. INTRODUCTION

If n is an integer, then we denote by 7(n) the set of all prime divisors of
n. If G is a finite group, then 7(|G|) is denoted by 7(G). We denote by 7.(G)
the set of element orders of G. Set my, = m;(G) := |{g € G : the order of g is
k}| and nse(G) := {mi(G) : k € m.(G)}.

Throughout this paper, we denote by ¢ the Euler totient function. If G
is a finite group and r is a prime, then we denote by S, (G) a Sylow r-subgroup
of G, by Syl,.(G) the set of Sylow r-subgroups of G and n,(G) is the number
of Sylow r-subgroups of G. |clg(x)| denotes the size of the conjugacy class of
G containing x. Let n be a positive integer and p be a prime number. Then
|n|, denotes the p-part of n.

The prime graph GK(G) of a finite group G is a graph whose vertex
set is 7(G) and two distinct primes p and ¢ are joined by an edge if and
only if G contains an element of order pq (we write p ~ ¢q). Let t(G) be
the number of connected components of GK(G) and let w1, 2, ..., Ty () be the
connected components of GK(G). If 2 € n(G), then we always suppose that
2 € m1(G). |G| can be expressed as a product of co-prime positive integers
OC;, i+ = 1,2,...,t(G), where 7(OC;) = m;. These OC;’s are called the or-
der components of G and the set of order components of G will be denoted
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by OC(G). Alsoif 2 € m(G), we call OCy, ..., OCy ) the odd order components
of G. The sets of order components of finite simple groups with disconnected
prime graph can be obtained using [10] and [17].

Let My(G) := {g € G : g* = 1}. Then G and H are of the same order
type if and only if |My(G)| = |My(H)|, t = 1,2,.... In 1987, J.G. Thompson
put forward the following problem:

THOMPSONS PROBLEM. Let T(G) = {(k,my) : k € me(G), mi € nse(G)},
where my, is the number of elements of G of order k. Suppose that H is a group
with T(G) = T(H). If G is solvable, then is it true that H is also necessarily
solvable?

It is easy to see that if T(G) = T'(H), then nse(G) = nse(H) and |G| =
|H|. We say that the group G is characterizable by nse (and the order) if every
group H with nse(G) = nse(H) (and |G| = |H]) is isomorphic to G. Note that
not all groups can be characterizable by nse. For instance, let G = Zy4 x Z4 and
H =75 x Qg. Then |G| = |H| and nse(G) = nse(H ), while G 2 H. In [12], it
is shown that the simple groups PSL(2,q), where ¢ < 13, are characterizable
by nse. In [9] and [15], it is proved that PSL(2,p), where p is a prime, is
characterizable by nse. Also, in [8], [2] and [3], the authors respectively showed
that for the prime number p, PGL(2,p), the alternating groups A,, where
n € {p,p+1,p+2} and, C,,(2), 2D,,(2) and 2D,,;1(2), where 2" + 1 = p, are
characterizable by nse under some extra conditions.

’+qtl

prime, namely r and M = PSL(3,q). In this paper, we are going to study the

characterization of M by nse. In fact, we prove the following theorem:
MAIN THEOREM. Let G be a finite group such that r | |G|, r* { |G| and
|G|s = |M|3. Then G = M if and only if nse(G) = nse(M).

Throughout this paper, let ¢ be a prime power such that is a

2. PRELIMINARIES

Definition 2.1 ([5]). Let a be a natural number and r be a prime such
that (a,r) = 1. If n is the smallest natural number such that r | (a™ — 1), then
r is named a Zsigmondy prime of a” — 1.

LEMMA 2.1 ([5]). Let a and n be natural numbers, then there erists a
Zsigmondy prime of a™ — 1, unless (a,n) = (2,1), (a,n) = (2,6) orn =2 and
a = 2% —1 for some natural number s.

Remark 2.1. If [ is a Zsigmondy prime of a™ — 1, then Fermat’s little
theorem shows that n |l — 1. Put

Zn(a) ={l:11is a Zsigmondy prime of a" — 1}.
If r € Z,(a) and r | a™ — 1, then we can see at once that n | m.
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LEMMA 2.2 ([4]). Let G be a Frobenius group of even order with kernel
K and complement H. Then t(G) = 2, the prime graph components of G are
m(H) and w(K) and the following assertions hold:
(1) K is nilpotent;
(2) |[K| =1 (mod |HJ).
LEMMA 2.3. If x is an element of M — {1}, then either |clyr(x)|, = |M]|,
or |ely(x)|r < |M|, and
Mlg-)d _ [GL(G,q)
IGL(1,¢%)]  |GL(1,¢%)]
Proof. 1t follows from [1, Corollary 2.8]. [

el ()]

LEMMA 2.4 ([6]). Lett be a positive integer dividing |G|. Thent | |M¢(G)|.
From Lemma 2.4, it may be concluded that:

COROLLARY 2.1. For a finite group G:
(i) if n| |G|, then n| Y my;
s|n

(ii) if n € me(G), then my, = ¢(n)k, where k is the number of cyclic subgroups
of order n in G. In particular, ¢(n) | my,.

(iii) if R € Syl,.(G) is cyclic of prime order r, then m, = n,(G)(r — 1);

(iv) if P € Syl,(G) is cyclic of prime order p and r € n(G) — {p}, then
myp = np(G)(p — 1)(r — 1)k, where k is the number of cyclic subgroups
of order r in Cq(P).

LEMMA 2.5 ([11]). If n > 6 is a natural number, then there are at least
s(n) prime numbers p; such that (n +1)/2 < p; <n. Here

s(n) =1, for 6 <n <13;

s(n) =2, for 14 <n <1T;
s(n) =3, for 18 <n < 37;
s(n) =4, for 38 <n < 41;
s(n) =5, for 42 <n < 4T,
s(n) =6, for n > 48.

3. MAIN RESULTS

In this section, let G be a finite group such that r | |G|, 7? { |G| and
nse(G) = nse(M). In the following, we are going to bring some useful lemmas
which will be used during the proof of the main theorem:
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LEMMA 3.1. my(M) = 3(r — 1)¢*(¢> = 1)(¢ — 1).
(M

)
)| = 3. ﬁ and hence,

INa(S- (M) — 37 P —1)(g—1).
)

Now, since S,(M) is cyclic, Corollary 2.1(iii) implies that m, (M) = n,(M)(r—
1) = %(r —1¢*(¢> —1)(¢ — 1), as desired. O

LEMMA 3.2.
(i) Foru € me(M), either r | my(M) or u=r;
(ii) For every u € me(G), 1 my(G) if and only if my(G) = my(M);
(iif) m(G) = m,(M);
(iv) ma(G) = ma(M).

Proof. (i) Obviously, m, (M) = Z lelyr(zx)|, where xps are selected

O(xzg)=u
from distinct conjugacy classes of M. (Th)us Lemma 2.3 completes the proof of
(1).
(ii) Since my,(G) € nse(G) = nse(M), (i) completes the proof.
(iii) By Corollary 2.1(i), we have r | (1 + m,(G)) and hence, r { m,(G). Thus
my(G) = m, (M), by (ii).
(iv) By Corollary 2.1(ii), for every u € me(M), ¢(u) | my(M). Thus if u > 2,
then m,, is even. On the other hand, 2 | (1 + ma(M)) and hence, ma(M) is
odd. Applying the same reasoning shows that the only odd number in nse(G)
is ma(G) and hence, ma(G) = ma(M), as wanted. [

Proof. By [7], |Nas(S

ny(M) =

LEMMA 3.3. For every s € n(G) — {r}, sr & me(G).

Proof. Suppose on the contrary, sr € m.(G). Since r? { |G|, we deduce
that S,(G) is cyclic and hence, Corollary 2.1(iv) forces m,s(G) = (r — 1)(s —
1)n,(G)k, for some natural number k. Thus m,s(G) = m,(G)(s — 1)k and
hence, one of the following holds:

(i) 7| mys(G). Then r | (s —1)k and hence, m,s(G) > |M]|, along with Lem-
mas 3.1 and 3.2(iii). Thus m,s(G) & nse(M), which is a contradiction.

(ii) 71 ms(G). Then Lemma 3.2(ii) shows that m,s(G) = m,(G) and hence,
by Corollary 2.1(iv), s = 2. On the other hand, Corollary 2.1 (i) and

Lemma 3.2(iv) show that 2r | (1 + ma(G) + m-(G) + m2,(G)) = 1 +

ma(M) + 2m,(G). Now, since by Corollary 2.1 (i) and Lemma 3.2(i),

r| (14 m.(G)) and r | ma(M), we deduce that r | m,(G), which is a

contradiction. [

COROLLARY 3.1. 7 is an odd order component of G.



5 Characterization of PSL(3,Q) by nse 429

Proof. 1t follows from Lemma 3.3. O

LEMMA 3.4.
(i) n(G) = no(M) = §¢3(¢* = 1)(q — 1);
(i) 5/M[||G] and |G| | 5r(r = 1)¢*(¢* —1)(g — 1).

Proof. Since S, (G) is cyclic, Corollary 2.1(iii) forces m,(G) = ¢(r)n,(G).
Thus by Lemma 3.2(iii), ¢(r)n,(M) = m,(M) = m,(G) = ¢(r)n,(G) and
hence (i) follows. Now let s € n(G) — {r}. By Lemma 3.3, Ss(G) acts fixed
point freely on the set of elements of order r in G and hence, |G|s | m,(G) =
o(r)n,(G). Also, |G|, = r and n,(G) = 3¢3(¢> — 1)(q — 1). Thus [M|/3 | |G]
and |G| | r(r = 1)¢*(¢* = 1)(¢—1). O

Proof of the main theorem. If G = M, then it is obvious that nse(G) =
nse(M). Now we assume that nse(G) = nse(M). In the following, we show
that G has a normal series 1 < H < K < G such that K/H is a non-abelian
simple group.

Let z € G be an element of order r. Since r is the maximal prime divisor
of |G| and an odd order component of G, Cg(z) =< = >. Set H = O,/(G),
the largest normal r’-subgroup of G. Since < z > acts on H fixed point freely,
H is a nilpotent group. Suppose that K be a normal subgroup of G such that
K/H is a minimal normal subgroup of G/H. Then K/H is a direct product
of copies of same simple group. Since r | |[K/H| and 72 { |K/H|, K/H is a
simple group. On the other hand, since < x > is a Sylow r-subgroup of K,
G = Ng(< = >)K by the Frattini argument and so |G/ K| divides r — 1. Now,
it’s not too hard to prove that |K/H| # r. Therefore, G has a normal series
1 <9 H < K <G such that K/H is a non-abelian simple group.

In the following, assume that d = (3, — 1) and ¢’ = p'®, where p’ is
a prime and « is a positive integer. Also, for convenience let f(q) = ér(r -
1)¢3(¢®> — 1)(¢ — 1). We are going to continue the prove of the main theorem
in the following steps:

Step 1. K/H is not a Sporadic simple group.

Proof. Suppose that K/H is a Sporadic simple group. Thus r = qgtfqﬂ €
{5,7,11,13,17,19,23,29,31,37,41,43,47,59,67,71}. If qz%ﬁl € {5,11}, then
since ¢ is a prime power, we get a contradiction. Assume that ‘72%2”1 =7 and
d=1. Thus ¢ = 2. But |PSL(3,2)| = 23.3.7 and K/H € {Maa, J1, Jo, HS},
so 5 | |K/H]|, which is a contradiction. If d = 3, then ¢ = 4 and |PSL(3,4)| =
20.32.5.7. Also, K/H € {Msa, J1, J2, HS}. Now, similar to the above we get a
contradiction. The same argument rules out the other possibilities of r. [

Step 2. K/H cannot be an alternating group A,,, where m > 5.
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Proof. If K/H = A,,, then since &Tqﬂ =ren(K/H), r <m. Also,
since g > 2 is a prime power, r > 7. Thus by Lemma 2.5, there exists a prime
number u € w(A,,) C 7(G) such that (r+1)/2 < u < r. Lemma 3.4(ii) forces
u | sr(r—1)¢*(¢*> — 1)(g — 1). We can check at once that u{gq, ut¢— 1 and
ufr—1. Thus u € Zs(q). It follows that w = r — 2, where r = 7 and ¢ = 4. So
|M| = |PSL(3,4)| = 26.32.5.7. Since |A,,| divides |G|, we get m € {7,8}. Note
that |H| divides |G|/|K/H| and S7(G) acts fixed point freely on H and hence,
7| |H| — 1. Therefore, considering the orders of G and K/H shows that either
|H| =8 and m =7 or |H| = 1. If |H| = 8 and m = 7, then we can assume
that H is a 2-elementary abelian group and hence, A7 < GL(3,2). Thus |A7|
divides |GL(3,2)|, which is a contradiction. If |H| = 1, then G = A7, S7, Ag or
Ss, which in two former cases m7(G) = m7(A7) = 720 # 5760 = m7(M ), which
is a contradiction. If G = Ag, then 1344 € nse(G) — nse(M) and if G = Sg,
then 763 € nse(G) — nse(M), contradicting our assumptions. [

Step 3. K/H = PSL(3,q).

Proof. By Steps 1 and 2, and the classification theorem of finite simple
groups, K/H is a simple group of Lie type such that t(K/H) > 2 and r €
OC(K/H). Thus K/H is isomorphic to one of the following groups:

Case 1. Let t(K/H) = 2. Then OCy(K/H) =1 = qQ%‘lﬁ'l. Thus we have:

1.1. If K/H = C,(¢), where n = 2* > 2, then (g:;‘,tll) — CHerl pf (2,4 —

1) = 2, then quH =r,s0 ¢" = 72(q2+‘31+1)_d and hence, (¢/,r) = (¢, q) = 1.
Also, since p’ is odd, we have p | ¢ — 1 or p’ | ¢ — 1 and hence, (p"“)"2 =
K/Hly < |Gly < ghy(a® — Dyplg — Dy (£FLHT), < (Falrarl=dy
(p*)®. Therefore, n < 2, which is a contradiction. If (2,¢' — 1) = 1 and
d = 1, then we have ¢ = q(¢ + 1), which is impossible. If (2,4 — 1) = 1
and d = 3, then ¢ =2% and ¢> +1 = 7. Thus 22 +1 = % and hence,
220 — %. Since 3 | ¢ — 1, 3 | ¢ + 2 and hence, 3 | 22¢, which is a
contradiction. The same reasoning completes the proof in the case when either
K/H = B, (¢") or K/H = 2D, (q"), where n = 2% > 4.

1.2. If K/H = C4(3) or Bs(3), where s is prime, then SST_l = q%?fq“. So
3% = %(q2 +q+ %) and hence, either (3,¢) = 1 and 3°T! > ¢% + ¢ + % or
¢ = s = 3. In the former case, since 35" = |K/H|s < |Gls = (¢*—1)3(¢—1)5 <
(W%l_d)g < 336+ 2 < 3(s+ 1) and hence, s = 3. So q(q+ 1) € {12,38}.
Obviously, q(¢+1) # 38. If ¢(¢+ 1) = 12, then ¢ = 3, which is a contradiction.
If g=s =23, then r = 13 and |M| = |PSL(3,3)| = 2*.33.13, s0 51 |G|. On the
other hand, 5 | |C3(3)| = |B3(3)|, which is a contradiction.
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1.3. If K/H = C4(2), where s is prime, then 2° — 1 = ‘12%‘?“ and hence,

25 = W%Hd. Now, if g € {2,4}, then (&fqﬂ = 7 and hence, s = 3. In these
cases, |[PSL(3,2)| = 23.3.7 and |PSL(3,4)| = 26.32.5.7. So 2 { |G|. On the
other hand, 27 | |C5(2)|, which is a contradiction. If ¢ & {2,4}, then (2,¢) =1
and hence, 2% = |K/H|y < |Gl < (T3 )a(g—1)s(HG1=1)y < (FHELTE)S -
235 So s? < 3s, which implies that s = 2. This forces f%ﬁl = 3, which is
impossible.

1.4. If K/H = Dy(q'), where s > 5 is prime and ¢’ = 2, 3,5, then (2,8:11 =r.

s—1

Thus q/s(sfl) H<q/2i _ 1) ’ ;(
=1

s—1
/s s(s— . ]_
o = ((q/ 11))55 < q 5 and q/s(sfl).q/ (2 1) < q/s(sfl) | |(q/2z_1) < (r—l)q3(q2—
=1

r —1)¢*(¢> — 1)(¢ — 1). On the other hand,

wl

1)(g—1) < 75, which implies that q's(3_1)+8(s2_1) < ¢ and hence, s < 5, which
is a contradiction.

1.5. If K/H =~ 2D,(3), where 9 < n = 2™ + 1 and n is not prime, then
3 1“ = 1 +j+1. Thus (3,¢q) = 1 and 3"°! = %(q2 +q+ %) and hence,
3" > C+q+ 5 d. Since 3M"~D = |K/H|3 < |G|z = (¢* —1)3(q — 1)3 <
(®+q+ %543 < 33”, we obtain n — 1 < 3, which is impossible.

1.6. If K/H 2 2D,,(2), where n = 2™ + 1 > 5, then 2"~ 41 = CH4FL Thys
2n—1 = ‘12+‘+1_d and hence, (2,q) = 1. Therefore, 27("~1) |K/H|2 <|Gl2 <
(W%l_d):g = 23(n=1) g5 n < 3, which is impossible.

1.7. f K/H = Dys11(¢'), where s is an odd prime and ¢’ = 2, 3, then "L _

(27ql_1)
s—1 ‘ 1
r. Thus 00 (g 1)(¢" - 1) [[(¢% 1) | 1~ Da(e* - (g~ 1). Also,
=1
s—1
o — ((211’;/—_11))55 < ¢5 and ¢S+ gs(s+1)/2 < q/s(s+1)(q/s+1)(q/s+1 ~1) H(q/2i _

i=1
1
1) < g(r ~1)¢*(¢> = 1)(g — 1) < r°, which implies that ¢/3*(+1/2 < ¢/ and
hence, s < 3, which is a contradiction.

1.8. If K/H = 2D(3), where 5 < s # 2™ + 1 and s is an odd prime, then
s—1

K : ]. S
% = r and 3561 H(321—1) | g(T—l)qg(qQ—l)(q—l). Thus r° = (315;1)5 <
i=1
s—1
) 1
3% and 357D < 3D J[(3% - 1) < S(r— 1¢*(¢> = 1)(¢ — 1) < r®, which
i=1

implies that s(s — 1) < 5s and hence, s — 1 < 5, which is a contradiction.
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1.9. If K/H = G(q'), where 2 < ¢’ = ¢ (mod 3) and € = +1, then ¢* —
e +1= ‘]Qtfqﬂ. Thus we can check at once that |K/H| > f(q), which is a
contradiction. If K/H = Fy(q'), where ¢’ is odd, then similar to the above, we
get a contradiction.

1.10. If K/H = 2F,(2)', then |K/H| = 2!1.33.52.13 and ‘fﬁTqH =13. Ifd =1,
then ¢ = 3 and |PSL(3,3)| = 2%.3%.13, so 51 |G|, which is a contradiction. If
d = 3, then ¢(q + 1) = 38, which is impossible.

1.11. If K/H = PSU(4,2), then |K/H| = 26-3%.5. Thus £X4+L — 5 which
is impossible.

1.12. If K/H = PSL(s,q), where (s,q') # (3,2), (3,4) and s is an odd prime,

s
Is__ s(s—1) . 1
then r = W and ¢~ 2 H(q”—l) | g(r— 1)¢*(¢* —1)(g—1). On the
=1
, 5 Z (s—1) soh
other hand, 7,5 — % < q/55 and q/S(S — 1) — S < q/ 2 H(qll _
=1

—_

1) < =(r—1g¢*(¢®> —1)(¢g — 1) < 75, which implies that s(s —1) — s < 5s.
Hence s = 3,5. If s = 5, then q2+j+1 = q/4+q(/§;qff)rq/+1 and hence, (¢, q) = 1.
Also, ¢"%(¢" = 1)(¢? = 1)(¢”® = 1)(¢" = 1) | 3(r = 1)¢*(¢* = 1)(¢ — 1). But
"t 1(r — 1)¢*(¢*> — 1)(¢ — 1), which is a contradiction. If s = 3, then

q?-1 _ d*4a+l a?+¢'+1 _ ¢®+g+1 f
(37f1’—1)(q’—1i = = and hence, Ga—D) = —d Now, we divide the proof

into the following subcases:

(i) Suppose that (¢',q) # 1 and ¢ | ¢

(1) Let 3, —1)=1landd=1. Thus ¢?> +¢ +1=¢*>+q+1,s0 ¢ = qand
K/H = PSL(3,q).

(2) If (3,4 — 1) = 3 and d = 3, then ql2+§/+1 = q2+3q+1 and similar to the
above, K/H = PSL(3,q).

(3) If 3, —1) = 1and d = 3, then ¢? +¢ +1 = % and hence,
q(q+1) = 3¢"* + 3¢’ + 2, which implies that ¢ | 3¢ +3¢' +2. Since ¢ | ¢, q | 2,
thus ¢ = 2 and hence, ¢'(¢' +1) = %, which is a contradiction.

(4) If (3, — 1) = 3 and d = 1, then q/2+7§/+1 = ¢*> + ¢ + 1 and hence,
q(g+1) = %, which implies that ¢ | ¢> + ¢ — 2. Thus ¢q | (—2) and
hence, ¢ = 2. It follows that 18 = ¢’>+¢'—2. Hence, ¢ = 4. But (s,q') # (3,4)
by assumption, which is a contradiction.

The same argument completes the proof when ¢’ | g.

(ii) Assume that (¢',q) = 1.

(1) If (3, —1) =1and d = 1, then ¢?> + ¢ + 1 = ¢*> + ¢ + 1 and hence,
qd(¢d +1)=q(g+1). Since (¢, q) = 1, we get a contradiction.

w
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(2) If 3,4 —1) = 3 and d = 3, then q/2+3q/+1 = q2+3‘1+1 and similar to the
above, we get a contradiction.

B)If(3,d—1)=3and d =1, thenw ¢*>+q+1 and hence, %:

q(g+1). Thus % q(g+ 1), which implies that 3k(k +1) = q(q+1).
Considering the different possibilities of ¢ leads us to get a contradiction.

(4) If (3,¢'—1) = 1 and d = 3, then similar to the above, we get a contradiction.
1.13. If K/H = PSL(s+1,¢'), where (¢ — 1) | (s+ 1) and s is an odd prime,

s—1

/s s(s . 1
thenr = ©=L and ¢ (¢ 1) [ (¢"~1) | 3 (r=1)a*(¢’=1)(g—1). On the
i=1
s—1
other hand, r° = ((‘1 b_l)) < ¢® and ¢t —s < q’s(ssrl) (¢*t1-1) H(q’i—l) <
i=1

%(r —1)*(¢? = 1)(qg— 1) < r° < ¢/, which implies that s + 1 < 6. Hence

=3, s0q¢d*+q¢d+1= qufqﬂ. Since (¢ — 1) | (s + 1), ¢ € {2,3,5},
which implies that K/H = PSL(4,2), K/H = PSL(4,3), K/H = PSL(4,5).
If K/H = PSL(4,2), then since PSL(4,2) = Ag, Step 2 leads us to get a
contradiction. If K/H = PSL(4,3), then ‘ftfﬁl = 13 and hence ¢ = 3. So
|K/H| 1 |G|, which is impossible. The same reasoning rules out the case when
K/H = PSL(4,5).

1.14. f K/H = FE4(q'), thenr = % and ¢"3%(¢"*?—1)(¢"®—1)(¢"°—1)(¢®

/6 /3 5
1)(q2=1) | 3(r=1)g*(¢2~1)(g—1). On the other hand, r5 = (L)% < 15

and ¢*%(¢"* = 1)(¢® = 1)(¢° = 1)(¢° = 1)(¢* = 1) < 5(r—=1)¢*(¢> = 1) (¢ —1) <
r5 < ¢'*, which is a contradiction. The same reasoning rules out the case
when K/H = 2E4(q), where ¢’ > 2.

1.15. If K/H = 3Dy(q), then r = ¢* — ¢’> + 1 and ¢"*?(¢"* + ¢’> + 1)(¢'®
1)(¢? =1) | 5(r = 1)g*(¢* = 1)(g —1). But ¢"*(¢" + ¢ +1)(¢° —1)(¢” - 1) >
+(r —1)¢*(¢* — 1)(¢ — 1), which is a contradiction.

1.16. If K/H = PSU(s+1,¢'), where (s,q') # (3,3),(5,2), (¢'+1) | (s+1) and
s—1

S S . . 1
s is an odd prime, then r = (2 L and ¢/ e (¢t 1) H(q” — (=Y | §(T _
i=1
1)g*(¢* —1)(g—1). Moreover, r° = (‘1(1',5:11)5 = (¢ =g 24 1)5 < 56D

s(s+1) /s(s—l)

9(9+1)
and ¢~ 2 .4 2z TS <q

s—1
. . 1
@ - D[~ (1) < s~ Da(a? -
i=1 3
1)(¢ — 1) < r°, which implies that s> + s < 5(s — 1). Thus s < 2, which is a
contradiction.
1.17. If K/H = PSU(s,q'), where s is an odd prime, then r =

/s

@ g+ and
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s—1
s(s—1)

7 7 1 /s 5
q 2 H(q, = (=1" | 5(7" —1)¢*(¢* = 1)(g = 1). Also, 1% = % <
i=1

s—1

s(s—1) s(s—1) s(s—1) . . 1
q/5(8—1) and q/ 5 q/ < q/ S H(q”*(*l)l) < g(r—l)q3(q2fl)(q—1) <
i=1

r°. This implies that s < 5. Thus s = 3 and hence, r = q(/;’;ff{)l. This shows
that g=¢ — 1, ql¢g+ 1) =3k(k+1)or ¢'(¢ —1) =3k(k+1). If ¢ =q+1,
then we can see that |K/H| { |G|, which is a contradiction. Considering the
different possibilities of k& in two latter cases shows that (¢,¢') = (4,3), so
|G|5 = 5. Since 51 |Aut(PSU(3,3))|, so |H|5 = 5. But S7(G) acts fixed point

freely on S5(H) and hence, 7 | 5 — 1, which is a contradiction.

Case 2. Let t(K/H) =3. Then r € {OCy(K/H), OC3(K/H)}:

2.1. If K/H = PSL(2,q'), where 4 | ¢/, then the odd order components of
K/Hareq+1land ¢ —1. If¢+1=r,theng =r—1= (qufqﬂ)—l and hence,
either ¢ = q(¢+1) or ¢’ = %, which are impossible. So let ¢ — 1 =r.
Thus ¢ =2*>4,¢ =r+1= (qQﬁfQH)—Fl and n,(K/H) = w | n(G) =
%q:}(q— 1)(¢?—1). If d = 1, then q(g+1) = 2(2°~! —1) and hence, either ¢ = 2
or (¢*(q+1),|K/H|) | 6. If ¢ = 2, then ¢’ = 8, so n,.(K/H) { n,-(G), which is
a contradiction. In the latter case, 3¢'(¢’ + 1) | 2(¢ — 1)?, which is impossible.
Now let d = 3. Then we can see at once that (¢ + 2)(¢ — 1) = 6(2%°1 — 1)
and either (¢,¢') =1 or ¢ =4 and ¢’ = 8. Thus if (¢,¢') = 1, then the above
statements show that r + 1 = ¢’ | 8|qg + 1|2, which is impossible. If ¢ = 4 and
¢ =8, then |H|5 =5 and hence, 7 | 5 — 1, which is a contradiction.

2.2. If K/H = PSL(2,q'), where 4 | ¢ — 1, then ¢ = r or (¢ +1)/2 = r.
If ¢ = r, then n,(K/H) = (¢ +1) | n,(G) = £¢3(q — 1)(¢*> — 1) and either

q’+1:q2+q+20rq’+1:(qufq+4). So we can see at once that ¢’ +1 | 2,

which is a contradiction. If (q,TH) =r, then n,(K/H) = 1¢'(¢ — 1) | n,(G) =
%q?’(q —1)(¢>—1)and ¢ =2¢* +2q+1or ¢ = M. This forces ¢ =5
and hence, r = 3, which is impossible. The same reasoning completes the proof
when K/H = PSL(2,¢') and 4 | ¢/ + 1.

2.3. If K/H = PSU(6,2) or K/H = PSL(3,2), then |K/H| =2'%.36.5.7.11
or |[K/H| = 23-3-7. Tt follows that ‘&Tﬁl € {7,11}. We can check that
‘&fqﬂ # 11 and hence qz%{qﬂ =17. So q € {2,4}. Thus |PSU(6,2)| {1 |G]
and hence, K/H % PSU(6,2). Also, if K/H = PSL(3,2) and q = 4, then as
mentioned in the previous cases 7 | 5 — 1, which is a contradiction. Therefore,
K/H = PSL(3,2) = M, as desired.

2.4. It K/H = 2D(3), where s = 2! 41 > 5, then 851 — €50+l o 3741
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s—1

2 s i 1

crarl pf 35 = ) then 35671 1—1(32z -1) | g(r - 1)a’(¢* — 1)(q — D).
=1

s—1
On the other hand, 7% = (315(;;14)5 < 35 and 3255~ D=s < 3s(s—1) H(S% -1)<
i=1

%(r—l)q3(q2—1)(q—1) < 75, This implies that 2s(s—1) < 6s and hence, s < 4,
which is a contradiction. The same reasoning rules out the other possibility.
2.5. If K/H 22D 1(2), where s = 2" —1 and n > 2, then 2° +1 = f%ﬁl or
25+l 41 = e +q+1 If 2° +1 =7, then 2° = g(¢+ 1) or 2° = ((1_1)3&, which
is impossible. The same reasoning rules out the other possibilities.

2.6. If K/H = G5(q'), where ¢ = 0 (mod 3), then ¢? £ ¢ +1 = quTqH.
We know that |K/H| | |G| and |G| | f(q), so |K/H| | f(q). Since |K/H| =
q"°(q* =1)(¢"° —1) and either ¢'(¢'£1) = q(q+1) or ¢'(¢'£1) = 5(¢—1)(¢+2),
we can check at once that ¢’® { |G|/, which is a contradiction.

2.7. If K/H = 2G5(q'), where ¢’ = 3%"*1 > 3 then ¢ — /3¢ +1 = £ +q+1
or ¢ +3¢ +1= qz%f“. Let (3,q) =1. If ¢ — 3¢ +1 = %, then
q > q2+qd+17d_ Thus (3%+1)3 = |K/H|3 < |G|3 < (q2+q;rl*d)3 < (3%+1)3,
which is a contradiction. Now let ¢ + /3¢ +1 = 7q2+dq+1. If d = 1, then
3138 +1) = q(q + 1). Now, since (3,¢) = 1, 31 ¢ and hence, ¢ | (3! + 1) and
(¢ +1)3 = 3!, which is impossible. If d = 3, then ¢’ + /3¢ + 1 = %
and hence, 372(3! + 1) = (¢ — 1)(¢ + 2). Thus either 3" | (¢ — 1) and
(q+2) | 333" +1) or 3! | (¢ +2) and (¢ — 1) | 3(3" + 1). This forces
(g —1) =3"1 and (¢ +2) = 3(3" + 1). This guarantees that |G|3 < 3%+2. On
the other hand, 3°+1) = |K/H|3 < |G|3 < 3%*2, which is a contradiction.
Now assume that (3,q) # 1. So d = 1 and hence, ¢ £ /3¢ +1=¢*> +q+ 1.
This forces ¢ = 3! and ¢ + 1 = 3" £ 1, which is impossible.

2.8. If K/H = Fy(q'), where ¢ is even, then ¢* +1 = ‘12+7q+1 or¢*—q?+1=
q2+dq+1' Thus 7“6 — (q/4 + 1)6 < (q/5)6 /30 and q/24( /12 o 1)(q/8 o 1)(q/6 _
D(g?=1) | 3r(r=1)g*(¢* = 1)(g—1). Thus ¢% < 3r(r=1)¢*(¢ ~1)(g—1) <
r0 < ¢"3°, which is a contradiction.

2.9. If K/H = E7(2), then r € {73,127}. Therefore, either r = 73 and ¢ = 8
or r = 127 and ¢ = 19. So either |[M| = |PSL(3,8)| = 2°-32.72.73 or
|M| = |PSL(3,19)| = 2*-3*.5.19% . 127. On the other hand, 13 | |E7(2)|, so
|K/H| 1 |G|, which is a contradiction.

2.10. If K/H = E;(3), then r € {757,1093}. One can check at once that
(q?-|++1) £ 1093. If qz%qﬂ = 757, then d = 1 and ¢ = 27. On the other hand,
|PSL(3,27)| =2%-3%.7-132.757 and 5 | | E7(3)|, which is a contradiction.
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2.11. If K/H = 2Fy(q'), where ¢/ = 22/*1 > 2 then r = ¢> + \/2¢3 + ¢ +
v2¢' + 1. In both cases, one can check at once that |K/H| > |G|, which is a
contradiction.

Case 3. Let t(K/H) € {4,5}. Then
r € {OCy(K/H), OC5(K/H), OC4(K/H), OC5(K/H)},
as follows:

3.1. If K/H 22F(2), then £X4+L € {13,17,19}. Obviously, LX4L £ 17, 1f
q2+dq+1 19, then d = 3 and ¢ = 7. Thus |M| = |PSL(3,7)| = 2°-32-73-19.
On the other hand 11 | |2Eg(2)|, which is a contradiction. The same reasoning
rules out the case when r = 13 and ¢ = 3.

3.2. If K/H = PSL(3,4), then qQ%jH € {5,7,9}. It is easy to check that

‘&Tﬁl ¢ {5,9}. If QQ%;]H = 7, then either ¢ = 2 or ¢ = 4. In the former
case, |[K/H| t |G|, which is a contradiction. So ¢ = 4 and hence, K/H =
PSL(3,4) = M, as desired.

3.3. If K/H =2 By(q'), where ¢/ = 221 and ¢t > 1, then r € {¢’ — 1,¢' +
V2¢ +1}. Let ¢ —1 =7 and d = 1. Thus 2(2% — 1) = q(q + 1). If |q]2 = 2,
then ¢ + 1 = 3 and hence, ¢t = 1 and M = PSL(3,2). Therefore, 5t |G| and
5| |K/H|, which is a contradiction. This forces ¢ | 2 — 1 or ¢ | 2! + 1 and
hence, g(q + 1) < 2(2t + 1)(2!= + 1). Therefore, t = 2 and ¢ = 5. Thus
|K/H| t |G|, which is a contradiction. If ¢’ — 1 = r and d = 3, then we can see
that 22(3.2271 — 1) = q(¢ + 1). If |g|a = 22, then ¢+ 1 = 5 and ¢t = 1, which
is impossible as described above. Thus |¢ + 1|2 = 22 and hence, |¢ — 1|2 = 2.
Also, |r — 1] = 2. So 22(**1) < |K/H|, < |G|y < 25, which is a contradiction.

Now assume that ¢’ +v/2¢’ +1 =r. If d = 3, then qurTqJ =20+1(2t + 1)
and hence, (¢ —1)(¢g+2) = 3.2!71(2" +1). Since 3 | ¢ — 1, ¢ — 1 = 3k for
some positive integer k. Thus 3k(k + 1) = 2!71(2¢ + 1) and hence, k(k + 1)
2t+1(2t+1) Now, if 20+1 | k, then k+1 < 2 ZH and if 2871 | k+1, then k < 2! zH
which are impossible.

Ifd =1, then ¢ +q¢+1 = ¢ ++/2¢ +1 and hence, ¢(qg+1) = 2!+1(21 4-1),
which is impossible. The same reasoning rules out the case when ¢’ — /2¢' + 1
=r.

3.4. If K/H = Eg(¢), then r € {Lnt@HL — 8 _ g7 4 5 — g4 + ¢ —

q’2—q +1
1015 /10
q + LIt =+ d" =" =" - P d LT = -+

qt - q’2 + 1,q’8 —¢* +1}. Thus r» < ¢’°. On the other hand, r° < ¢*> and
G| < 2(r—1)g3(¢* —1)(¢ — 1) < r°. Since ¢**° | |[K/H| and |K/H| | |G|, we
get a contradiction.

The above cases show that K/H = PSL(3,q). O
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Step 4. G = M.

Proof. By the previous argument and step 3, G has a normal series 1 <
H < K <G such that K/H = M = PSL(3,q). We claim that H = 1.
Suppose on the contrary, H # 1, so |H| > 2. Let t € w(H). By Frattini’s
argument Ng(Si(H))H = G, so Ng(S:(H))/Nu(S:(H)) = G/H. Since r |
|G/H]|, r | [Ng(S:(H))| and hence, Ng(S;(H)) contains an element = of order
r. Also, by Lemma 3.3, rt € m.(G), thus < z > acts fixed point freely on
Si(H) — {1}, so r | |S¢(H)| — 1. On the other hand, |S;(H)| | |H| and since
|G| = |G/K||K/H||H| and |K/H| = |PSL(3,q)|, |H| < r — 1. This forces
r < r — 1, which is impossible. Therefore H = 1 and hence, K = M.

We know that G < AutM. If ¢ = p™, then since by Lemma 3.3, GK(QG)
is disconnected, by [14], G/K =< ¢ > x < 6 >, where ¢ is the field au-
tomorphism of order 3% and 6 is the graph automorphism of order 2. Since
|G|s = |M|3, the order of ¢ is 1 and hence, G = K or G = K- < 6 >. If
G = K- <6 >, then my(K- < 6 >) > my(K), but nse(G) contains exactly
one odd number mq(K), which is a contradiction. Therefore G = K = M. O
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