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Let n be a non-square positive integer and Q∗(
√
n) the set {(a +

√
n)/c : a,

(a2 − n)/c, c are relatively prime integers}. Coset diagrams for orbits of the
Hecke group H(λ6) acting on projective line over the set Q∗(

√
n) are known. If

α is any real quadratic irrational number and αH(λ6) is an orbit of the group
H(λ6) under α then αH(λ6) ⊆ Q∗(

√
n). In this paper, we employ the coset

diagrams to prove some of the results for action of H(λ6) on real quadratic
fields, which are known to hold in case of well known modular group H(λ3).
In fact, we investigate the question: when does an orbit of H(λ6) containing a
circuit (closed path) of a given type exist? We also determine a condition for
existence of both a real quadratic irrational number γ (= (a+

√
n)/3c′) and its

algebraic conjugate γ̄ (= (a−
√
n)/3c′) in the orbit.
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1. INTRODUCTION

The Hecke group H(λq) is a finitely generated discrete subgroup of
PSL(2, R) generated by the transformations: z 7−→ −1/z and z 7−→ −1/(z +
λq) of order 2 and q respectively, where λq = 2cos(π/q), q is an integer > 2.
When q = 3, the Hecke group H(λ3) is isomorphic to the modular group. When
q = 6, we have the group H(λ6) = H(

√
3). If some results hold for one group

belonging to a class of groups then it is an immediate question to ask whether
the results hold for some other groups of the same class or for the whole class.
In this paper, we investigate the group H(

√
3) acting on real quadratic fields

for the results which are proved in [5] for the modular group. Motivation to
this work comes from the known results which are proved in literature through
use of coset diagrams for both modular group and the group H(

√
3).

Coset diagrams for the modular group are introduced in [2]. It is known
that in case of action of the modular group on real quadratic fields a finite
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number of ambiguous numbers of the form (a+
√
n)/c exist for a fixed value of

a non-square positive integer n; part of a coset diagram containing ambiguous
numbers forms a single circuit and it is the only circuit in the orbit [4]. In [5],
these circuits are further classified by finding a condition for existence of an
orbit of the modular group containing a circuit of a given type. Moreover,
necessary and sufficient conditions are also found for existence of two orbits
of the modular group; one containing (a +

√
n)/c along with its conjugate

(a−
√
n)/c; the other containing (a+

√
n)/c along with 1/(a−

√
n)/c.

Let H(
√

3) be denoted by H for remaining part of the paper. It is known
that H is generated by two linear-fractional transformations x : z → −1/3z
and y : z → −1/3(z + 1), satisfying the relations: x2 = y6 = 1 [6]. Suppose γ
denote a real quadratic irrational number (a+

√
n)/c, where n is a non-square

positive integer and the integers a, (a2 − n)/c, c are relatively prime. Let
the algebraic conjugate (a −

√
n)/c of γ be denoted γ̄. If both γ and γ̄ have

different signs then γ is called an ambiguous number [6]. In [6], it is proved
that a non-square positive integer n does not change its value in orbit γH of
the group H acting on the real quadratic fields; ambiguous numbers obtained
are finite in number; part of a coset diagram containing such numbers forms a
single closed path; and it is the only closed path in the orbit. In [1], it is shown
that if γ is of the form (a+

√
n)/3c′, c′ ∈ Z then a closed path can be found in

a coset diagram for γH . On the path all numbers are of the form (a+
√
n)/3c′

and belong to Q∗(
√
n). We continue further by investigating word structure of

the elements of H generating the numbers γ. We discuss characteristics of the
circuits containing these numbers. We find a condition for existence of an orbit
of H containing a circuit of a given type. In case of existence of the circuit,
we determine a condition for existence of a real quadratic irrational number γ
along with its algebraic conjugate γ̄ in the orbit.

The paper consists of two more sections. First section contains both the
coset diagrams employed and terminology used. One example is also included
in this section to explain the circuits and associated concepts. Second section
discusses action of the group H on Q∗ (

√
n) and the results.

2. DIAGRAMS AND TERMINOLOGY

Any 6-cycle of y in a coset diagram is denoted by six vertices of a hexagon
permuted anti-clockwise by y. Any two vertices interchanged by x are joined
by an edge. An alternating sequence v0, e1, v1, e2, . . ., et, vt of vertices and
edges of a coset diagram is called a path in a coset diagram if ei joins vi−1 and
vi for each i = 1, 2, 3, . . ., t, where ei 6= ej (for i 6= j). By a circuit, we
mean a closed path of edges and hexagons. Let n1, n2, . . ., n2t be a sequence
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of positive integers. By a circuit of type (n1, n2, . . ., n2t) we mean the circuit
such that n1 number of hexagons have four vertices outside the circuit; n2
number of hexagons have four vertices inside the circuit; and this pattern is
maintained till last positive integer n2t in the sequence. This circuit induces an
element g = (yx)n1(y−1x)n2 ...(y−1x)n2t of H, which fixes a particular vertex
of a hexagon lying on the circuit. As an example a circuit is shown in Fig. 1.
This circuit induces an element g = (yx)3(y−1x)4(yx)2(y−1x)2(yx)3(y−1x) of
H, which fixes the vertex v0 as shown in the diagram. This circuit is of the
type (3, 4, 2, 2, 3, 1).

Fig. 1

3. ACTION OF H ON Q∗(
√
n) AND RESULTS

We know that a finite number of ambiguous numbers of the form (a +√
n)/c (n is a non-square positive integer and a, (a2 − n)/c, c are relatively

prime integers) exist for a fixed value of n [6]. These numbers form a single
circuit in a coset diagram for an orbit of (a+

√
n)/c and it is the only circuit

containing the orbit. In [1], it has been proved further that in an orbit a circuit
can be found in which all the ambiguous numbers are of the form (a+

√
n)/3c′

(where n is a non square positive integer and a, (a2−n)/3c′ , 3c′ are relatively
prime integers). If t denote the number of sets of hexagons on the circuit
with four vertices outside the circuit and t́ the number of sets of hexagons on
the circuit with four vertices inside, then t = t́. The total number of sets of
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hexagons in the circuit, then becomes 2t. These sets of hexagons with four
vertices outside/inside occur alternately in these circuits.

Next we prove our results which are analogous to theorems 2.1, 2.2, 2.3,
2.4, 2.5 proved in [5] for circuits in case of action of the modular group on real
quadratic fields.

Theorem 3.1. Every finite order element of H, except the (group theo-
retic) conjugates of x, y±1, y2, and (yx)n, n > 0, has real quadratic irrational
numbers as fixed points.

Proof. Let g : z → (az + b)/(cz + d) belong to H and v0 a fixed point of
g. Then,

(1) cv20 + (d− a)v0 − b = 0.

It has real roots only when (d− a)2 + 4bc ≥ 0. Since g belongs to H, therefore,
ad− bc = 1 or 3. Let us discuss these two cases separately.

If the determinant ad − bc = 3, then d2 + a2 − 2ad + 4(ad − 3) ≥ 0. It
implies that (a+d)2−12 ≥ 0, where a+d is trace of the matrix corresponding
to g. Thus, for complex roots of (1), we have (a + d)2 < 12 and the possible
values of a+ d are 0, ±1, ±2, ±3.

If a+ d = 0, then g takes the form g : z → (az + b)/(cz − a) and g2 = 1.
Every element of order 2 is conjugate to x [7]. So g is conjugate to x. Thus, the
fixed points of the conjugates of x are some complex numbers. If a+ d = ±1;
since we can replace a, b, c, and d by −a, −b, −c, and −d, in g; therefore, we
can consider a+ d = −1. Now the possible values of order of g are 1, 2, 3, 6;
therefore, An = λI only when n = 1, 2, 3, 6, where A is a matrix corresponding
to g. We know for a 2 × 2 matrix A:

A2 = λI ⇐⇒ tr(A) = 0(2)

A3 = λI ⇐⇒ tr2(A) = det(A)(3)

A6 = λI ⇐⇒ tr2(A) = 3 det(A).(4)

If a+d = −1, then det(A) = 1. Thus, no matrix with trace −1 and determinant
3 having a finite order exists. The matrix corresponding to g has infinite order.

If a + d = ±2, then again, none of the equations (2), (3), (4), holds for
A with determinant 3. It implies that such matrices correspond to an element
of H having the infinite order. Thus, g, having the infinite order, has complex
numbers as fixed points.

If a+d = ±3, then (4) holds for A with determinant 3. Thus, g has order
6. It is a conjugate of y because every element of H of order 6 is a conjugate of
y [7]. It implies that fixed points of the conjugates of y±1are complex numbers.
If a+ d = m ≥

√
12, then (a+ d)2 − 12 ≥ 0; the roots are real.



5 On word structure of the Hecke group H(λ6) over real quadratic fields 5

If (a+ d)2 − 12 is a perfect square, then we shall be dealing with a coset
diagram for rational numbers. In this case, we know that ∞ is the only fixed
point [6]. Thus, (a+ d)2 − 12 cannot be a perfect square, and the fixed points
are real but irrational numbers.

If determinant ad − bc = 1, then (1) has real roots for (a + d)2 − 4 ≥ 0.
It implies that (a + d)2 < 4 for complex roots. In this case possible values of
a+ d are 0, ±1.

If a + d = 0, then g takes the form z → (az + b)/(cz − a) and g2 = 1.
By the argument given earlier for the other case, again g is a conjugate of x.
Thus, the fixed points of the conjugates of x are complex numbers.

When a+d = ±1, as discussed ealier in the proof it is sufficient to consider
only a+ d = −1. Consider a+ d = −1, this implies that only possibility is (2);
order of g is 3; and g is a conjugate of y2 [7]. This shows that fixed points of
conjugates of y2 are complex numbers.

If a+ d = ±2, then the characteristic equation for A is A2 − 2A+ I = 0.
By repeatedly multiplying this equation by A and substituting 2A− I for A2,
we get An − nA+ (n− 1)I = 0 for a positive integer n. Thus, g in this case is
a conjugate of (yx)n : z −→ z + n and ∞ is the only fixed point of it.

If a+ d = ±3, then none of (2), (3), (4), holds for A with determinant 1.
Thus, we get real quadratic irrational numbers as fixed points except for the
conjugates of x, y±1, y2 and (yx)n, n > 0. �

Let γ be a real quadratic irrational number fixed by g = (yx)n1(y−1x)n2

. . . (y−1x)n2t , ni > 0 for all i = 1, 2, . . ., 2t, of H. If B(g) denotes the
matrix corresponding to g, then the size of its trace determines the size of
the circuit (n1, n2, . . ., n2t) containing γ. This indeed means that there is a
relationship between n1, n2, . . ., n2t (sequence of positive integers) and the
trace. In Theorem 3.2, we establish this relationship.

Theorem 3.2. Let E = {1, 2, . . ., 2t} be a cyclically ordered set of
positive integers and the orbit of γ contains a circuit of the type (n1, n2, . .
., n2t), ni > 0. Let S be the collection of non-empty subsets of E obtained by
striking out any number of adjacent pairs of elements of E. Let nJ =

∏
i∈J ni

for J ∈ S. Then, the trace of B(g) is 2 +
∑

J∈S λiJnJ , λiJ = 3kJ , kJ is some
positive integer.

Proof. Consider an element g = (yx)n1(y−1x)n2 . . . (y−1x)n2t , ni > 0,
of H, corresponding to the circuit of the type (n1, n2, . . ., n2t), such that a
real quadratic irrational number γ is fixed by g. Since yx : z −→ z + 1 and
y−1x : z −→ z/(3z + 1) represent the matrices[

1 1
0 1

]
and

[
1 0
3 1

]
,
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therefore the matrix corresponding to g has the form:

B(g) =

[
1 n1
0 1

] [
1 0

3n2 1

]
...

[
1 ni
0 1

] [
1 0

3ni+1 1

]
...

[
1 n2t−1
0 1

] [
1 0

3n2t 1

]
.(5)

If we consider a matrix A written in the form[
a
(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

][
a
(2)
11 a

(2)
12

a
(2)
21 a

(2)
22

]
...

[
a
(m)
11 a

(m)
12

a
(m)
21 a

(m)
22

]
,

the trace of A, of course, is of the type

(6)
∑

a
(1)
λmλ1a

(2)
λ1λ2... a

(m)
λm−1λm.

In case of B(g), the factor matrices are alternately[
1 ni
0 1

]
and

[
1 0

3nj 1

]
,

therefore in any term of (6) if some a
(l)
λiλj = 0, the entire term is zero. We can

ignore any a
(l)
λiλj which is 1. We consider only those terms which are neither 0

nor 1. Let us consider the following portion of three matrices from (5).[
1 0

3np 1

] [
1 nq
0 1

] [
1 0

3nr 1

]
Trace of B(g) is sum of the certain products obtained by choosing one

entry from each matrix in (5); therefore, we suppose that from the middle
matrix of the three matrices, we choose nq. In order to have a non-zero product,
we choose 3nr from the third matrix and 1 from the top left-hand corner of
the first matrix. On the other hand, if from the first matrix, we choose 3np
instead of 1, then from the third matrix, we need to choose 1 in the second
row and the second column. In a similar way, consider the following portion of
three matrices from (5):[

1 np
0 1

] [
1 0

3nq 1

] [
1 nr
0 1

]
,

and choose 3nq from the middle matrix. We must then choose np from the
first matrix; 1 in the first row and first column of the third matrix or if we
choose 1 in the second row and second column of the first matrix, then we need
to choose nr from the third matrix. In fact, this means that we are striking
out any number of adjacent pairs of elements of E. Thus, for J ∈ S, if we let
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nJ =
∏
i∈J ni, then the trace of B(g) is 2 +

∑
J∈S

λiJnJ , λiJ = 3kJ , kJ is some

positive integer. �

For a given sequence of positive integers n1, n2, . . ., n2t, a circuit of the
type (n1, n2, . . ., n2t∗ , n1, n2, . . ., n2t∗ , . . ., n1, n2, . . ., n2t∗), where t

∗
divides

t, is said to have a period of length 2t
∗
. In Theorem 3.3, we prove that there

does not exist a circuit of this type in an orbit of H acting on Q∗(
√
n).

Theorem 3.3. For a given sequence of positive integers n1, n2, . . ., n2t,
there does not exist a circuit, which has a period of length 2t∗, where t∗ divides
t, in an orbit of H.

Proof. If there exists a circuit which has a period of length 2t∗, then it
will be of the type (n1, n2, . . ., n2t∗ , n1, n2, . . ., n2t∗ , . . ., n1, n2, . . ., n2t∗)
and will be as shown in Fig. 2.

It does not matter if we reverse the orientation of the hexagons on the
circuit. If v0 , v1 , . . ., vt/t∗ are the vertices of the hexagons on the circuit as

shown in Fig. 2 and g = (yx)n1(y−1x)n2 . . .(y−1x)n2t∗ 6= 1, then vi+1 = vig,
where i = 0, 1, 2, . . ., (t/t∗−1) (indices modulo t/t∗). It implies that v0 6= v0g.
Since for all i, vi = vi(g)t/t

∗
and (g)t/t

∗ 6= 1; therefore, it is a contradiction to
the fact that if g 6= 1 is an element of H, then g has 1 or 2 fixed points, and
these are the only fixed points of it unless gn = 1 for some suitable n. Thus,
no orbit γH contains a circuit of the type (n1, n2, . . ., n2t∗ , n1, n2, . . ., n2t∗ , .
. ., n1, n2, . . ., n2t∗). �

Fig. 2
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Theorem 3.4. For a given sequence n1, n2, . . ., n2t of positive integers
there exists a real quadratic irrational number γ such that a circuit in the orbit
of γ under H has the type (n1, n2, . . ., n2t) if the circuit does not have a period
of even length.

Proof. In Theorem 3.3, it has been established that a given sequence has
no circuit with repetitions. In order to prove this condition to be sufficient, we
are to just show that a fixed point k of g = (yx)n1(y−1x)n2 . . . (y−1x)n2t is a
real quadratic irrational number. Since g fixes k, therefore, by Theorem 3.1 g
is not a conjugate of x, y±1, y2, and (yx)n, where n > 0. By using Theorem 3.2,
the trace of matrix B(g) is r = 2 +

∑
J∈S λiJnJ , λiJ = 3kJ (kJ is some positive

integer, where nJ =
∏
i∈J ni). It implies that

√
r2 − 4 is not a complex number.

Moreover, r2 − 4 is not a perfect square. If it were a perfect square, then k
must be ∞ because of being fixed point of g [6]. We know that k is not ∞ and
det(B(g)) = 1; therefore, k is a real quadratic irrational number, and it belongs
to an orbit γH . But in a coset diagram for the orbit, the ambiguous numbers
form a set of circuits [6], and Theorem 3.3 implies that the orbit contains a
circuit of the type (n1, n2, . . ., n2t). �

In Theorem 3.5, we give the necessary and sufficient condition for a circuit
to contain a real quadratic irrational number γ along with its conjugate γ̄.

Theorem 3.5. A circuit contains γ with its conjugate γ̄ if and only if the
circuit is of the type (n1, n2, . . ., nt−1, nt, nt, . . ., n2, n1).

Fig. 3
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Proof. We note that if γ and γ̄ are conjugates to each other, then γg and

γ̄g are also conjugates to each other for every g in H. This implies that it is

enough to prove the result for any one element in the circuit to complete the

proof. Suppose γ, γ̄ belong to a circuit and γ is fixed by g = (yx)n1(y−1x)n2 . .

. (y−1x)n2t , where ni > 0, i = 1, 2, . . ., 2t. We index the vertices which belong

to the circuit shown in Fig. 3 by the finite set {1, 2, . . ., n}. If γ occupies

the vertices with odd labels, then no γ̄ can occupy any of these vertices. If

any γ̄ occupies such a vertex, then γ̄ = γ(yx)n1(y−1x)n2 . . . (y−1x)nr for

some r < t. This implies that γ and γ̄ are fixed points of g = (yx)n1(y−1x)n2

. . . (y−1x)n2t and h = (yx)nr+1(y−1x)nr+2 . . . (y−1x)n2t(yx)n1(y−1x)n2 . . .

(y−1x)nr respectively. However, γ and γ̄ being conjugate to each other are fixed

by the same element of H. So g must be equal to h. If it is the case, then g =

f m for some m > 1; γ will be a fixed point of f . By Theorem 3, this cannot

happen except for gt, t ≥ 1 . It is a contradiction. Thus, no γ̄ can occupy an

odd labelled vertex. This means that all γ occupy the vertices labelled with

even numbers; so γ̄ is fixed under the transformation h = (yx)nt(y−1x)nt−1 .

. . (yx)n1(y−1x)n2t . . . (y−1x)nt+1 . This shows that γ corresponds to (n1, n2,

. . ., n2t) and γ̄ corresponds to (nt, nt−1, . . ., n1, n2t, n2t−1, . . ., nt+1) but

with orientation of the hexagons in the reversed order. It means the type of

the circuit corresponding to γ is the same as the type of circuit corresponding

to γ̄, but with signs reversed and starting at a different point. Since the types

must be the same, therefore, the circuit containing both γ and γ̄ must be of

the type (n1, n2, . . . , nk−1, nk, nk, . . ., n2, n1). �
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