
COMMUTATORS HAVING IDEMPOTENT VALUES
WITH AUTOMORPHISMS IN SEMI-PRIME RINGS

MOHAMMAD ASHRAF, MOHD ARIF RAZA and SAJAD AHMAD PARY

Communicated by Constantin Năstăsescu

In the present paper, it is shown that a semi-prime ring R of characteristic not
2 and 3 contains a non-zero central ideal of R, if R admits an automorphism ζ
such that [sζ , w]m = [sζ , w] for every s, w ∈ R, where 1 < m ∈ Z+. We shall
also study the case when the underlying condition holds for the elements from
a non-cental Lie ideal of a prime ring R. The latter result is in the spirit of
Herstein’s theorem which deals with the commutator having idempotent values
in rings.
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1. INTRODUCTION

In the mid forties of the twentieth century, after the development of the
general structure theory for rings, a great deal of work was done that showed
that under certain types of hypotheses, rings had to be commutative or almost
commutative. A classical result of ring theory established by Jacobson states
that if every element s of a ring R satisfies the condition sm = s, where
1 < m ∈ Z+, then R is commutative. This result generalizes the theorem
of Wedderburn that every finite division ring is commutative and also the
result that every Boolean ring is a commutative ring. Then much significant
work in this area was done by I. N. Herstein alone by proving some classical
commutativity theorems.

In [7], Herstein established that a ring R must be commutative if it sa-
tisfies [s, w]m = [s, w] for every s, w ∈ R, where 1 < m ∈ Z+. Inspired by the
above mentioned result, a lot of work has been done to investigate the circum-
stances under which a ring becomes commutative, for instance, generalizing
Herstein’s identities, using restrictions on polynomials, introducing derivations,
skew-derivations and generalized derivations on rings, looking for special pro-
perties for rings, etcetera. For ongoing contributions in this direction see [16]
and references therein.
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It is possible to constitute several problems by taking suitable conditions
on the subset K(T,Y) = {[T(s), s]n : s ∈ Y}, where Y is an appropriate subset
of R, while T is an additive map on R and 1 < m ∈ Z+. In 2000, Carini
and De Filippis [3] established that a prime ring R of characteristic not 2
is commutative if it satisfies K(∂,Y) = 0, where ∂ is a non-zero derivation
of R and Y = L. Recently, Wang [19] studied the similar identities for an
automorphism ζ of a prime ring R. In particular, he investigated the nature
of an automorphism ζ satisfying K(ζ,L) = 0. Many researchers have studied
similar differential/functional identities on various ways (see [11,12,14,15,17–
19] and references therein). In view of the above motivation it is genuine to
discuss the case when K(ζ,L) 6= 0, i.e., commutator having idempotent values
with an automorphism ζ of a ring R. In this manuscript, we investigate the
above mentioned problem and prove the following:

Theorem 1.1. Let 1 < m ∈ Z+ and R be a semi-prime ring of characte-
ristic not 2 and 3. If R admits an automorphism ζ such that [sζ , w]m = [sζ , w]
for every s, w ∈ R, then R contains a non-zero central ideal.

2. PRELIMINARIES AND RESULTS

For the sake of completeness we shall begin with few preliminary notions
which are required for the development of the proof of our main theorem.
Some of these notions are classical and we present them briefly, R is a (semi-)
prime ring and Q = Qmr(R) is the maximal right ring of quotients of R.
Also we know that any automorphism of R can be uniquely extended to an
automorphism of Q. An automorphism ζ of R is called Q-inner if there exists
an invertible element g ∈ Q such that sζ = gsg−1 for every s ∈ R. Otherwise,
ζ is called Q-outer. To facilitate our discussion, we begin with the following
known facts.

Fact 2.1 ([5, Theorem 1]). Let R be a prime ring and I be a two sided
ideal of R. Then I,R and Q satisfy the same generalized polynomial identi-
ties (GPIs) with automorphisms.

Fact 2.2 ([9]). Let R be a domain and ζ be an automorphism of R which

is outer. If R satisfies a GPI Ψ(si, s
ζ
i ), then R also satisfies the nontrivial

GPI Ψ(si, wi), where si and wi are distinct indeterminates.

Fact 2.3 ([1, Lemma 7.1 ]). Let VD be a vector space over a division ring
D with dimVD ≥ 2 and S ∈ End(V). If s and Ss are D-dependent for every
s ∈ V, then there exists χ ∈ D such that Ss = χs for every s ∈ V.
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Fact 2.4 ([5, Theorem 3]). Suppose that R is a prime ring and A an
independent subset of G modulo Hi. Let φ = Φ(s

aj
i ) = 0 be a generalized

identity with automorphisms of R reduced with respect to A. If for every si ∈
X, aj ∈ G, the s

aj
i -word degree of φ = Φ(s

aj
i ) is strictly less than char(R) when

char(R) 6= 0, then Φ(zij) = 0 is also a GPI of R.

Let VD be a right vector space over a division ring D. We denote by
End(VD) the ring of D-linear transformations on VD. A map S : V → V is
called a semi-linear transformation if S is additive and there is an automorphism
ζ of D such that S(vξ) = (Sv)ζ(ξ) for every v ∈ V and ξ ∈ D. By a theorem of
Jacobson [8, Isomorphism Theorem, p.79], sζ = SsS−1 for every s ∈ End(VD),
where ζ is an automorphism of End(VD) and S is the invertible semi-linear
transformation.

We start with the following propositions which are necessary for the es-
tablishment of our main theorem.

Proposition 2.1. Let 1 < m ∈ Z+ and ζ be an automorphism of
End(VD) such that [[s, w]ζ , [z, t]]m = [[s, w]ζ , [z, t]], for every s, w, z, t
∈ End(VD). If dim(VD) ≥ 2, then ζ is identity map of End(VD).

Proof. As remarked above, we have sζ = SsS−1 for every s ∈ End(VD).
Also, for every v ∈ V, ξ ∈ D, S(vξ) = (Sv)ζ(ξ). Using our hypotheses, we find
that

0 = [[s, w]ζ , [z, t]]m − [[s, w]ζ , [z, t]]
= [S[s, w]S−1, [z, t]]m − [S[s, w]S−1, [z, t]]

for every s, w, z, t ∈ End(VD). We divide our proof into the following cases:
First we assume that {v, Sv, S−1v} is D-independent. For this, let s, w, z,

t ∈ End(VD) such that

sv = 0, sS−1v = v, sSv = v, zv = v, zSv = 0;
wv = v, wS−1v = 0, wSv = 0, tv = 0, tSv = 2v.

We see that [s, w]S−1v = −v, [z, t]Sv = 2v, [z, t]v = 0 and hence, by the main
assumption we get

0 = ([S[s, w]S−1, [z, t]]m− [S[s, w]S−1, [z, t]])v = (2m−2)v 6= 0, a contradiction.

Next we suppose that {v, Sv, S−1v} is D-dependent. Thus, for µ, ϑ ∈ D

we can write S−1v = vµ + Svϑ. We have to prove that ϑ 6= 0, otherwise if
ϑ = 0, then we get a contradiction as S−1v = vµ implies v = S−1vµ. Now we
take s, w, z, t ∈ End(VD) such that

sv = 0, sSv = v, zv = v, zSv = 0;
wv = v, wSv = 0, tv = 0, tSv = 2v.

We can easily see that 0 = ([S[s, w]S−1, [z, t]]m−[S[s, w]S−1, [z, t]])v = (2mϑm−
2ϑ)v, a contradiction.
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Therefore v and S−1v are D-dependent for every v ∈ V. By Fact 2.3,
we have S−1v = vχ, where χ ∈ D and v ∈ V. Thus for every s ∈ End(VD),
S−1(sv) = svχ and hence sv = S(svχ) = S(s(vχ)) = SsS−1(v) = sζv for
every s ∈ End(VD), v ∈ V. Moreover, we find that (sζ − s)V = (0) for every
s ∈ End(VD). Thus in all, sζ = s for every s ∈ End(VD). This shows that ζ is
the identity map of End(VD). �

Proposition 2.2. Let 1 < m ∈ Z+ and R be a prime ring of characteris-
tic not 2 and 3. If ζ is an outer automorphism of R such that [[s, w]ζ , [z, t]]m =
[[s, w]ζ , [z, t]] for every s, w, z, t ∈ R, then R is commutative.

Proof. Let ζ be the identity map on R. Then [[s, w], [z, t]]m = [[s, w], [z, t]]
for every s, w, z, t ∈ R, i.e., R is a polynomial identity (PI) ring. Thus, R and
Mk(F) satisfy the same polynomial identities [10, Lemma 1], i.e., for each
s, w, z, t ∈ Mk(F), [[s, w], [z, t]]m = [[s, w], [z, t]]. Let k ≥ 2 and eij be the
usual unit matrix. Then for s = e12, w = e21, z = e11 and t = e12, we get a
contradiction 2e12 = 0. Thus k = 1 and we get the required conclusion.

Next we suppose that ζ is a non-identity map. Therefore [[s, w]ζ , [z, t]]m =
[[s, w]ζ , [z, t]] is a non-trivial GPI for R [4, Main Theorem]. Also, by Fact 2.1
,Q satisfies [[s, w]ζ , [z, t]]m = [[s, w]ζ , [z, t]]. Moreover, Q is a primitive ring
which is isomorphic to a dense ring of linear transformations of some vector
space V over a division ring D [13, Theorem 3].

In case Q is a domain, Q satisfies the GPIs [[y, x], [z, t]]m = [[y, x], [z, t]]
(Fact 2.2). By using the same argument as above, we find that Q is commuta-
tive and hence R is also commutative.

From now on, Q is not a domain. As mentioned above, we have sζ =
SsS−1 for every s ∈ Q. Therefore, we have [S[s, w]S−1, [z, t]]m = [S[s, w]S−1,
[z, t]] for every s, w, z, t ∈ Q. We realise that, if for any v ∈ V there exists ϑ ∈ D

such that S−1v = vϑ. In this case, by Proposition 2.1 we get a contradiction
that ζ is the identity map. Therefore, there exists v ∈ V such that v and
S−1v are linearly D-independent. In this case, first we take dimVD ≥ 3. Let
{u, v, S−1v} be linearly D-independent for u ∈ V. Therefore, by the density of
Q, there exist s, w, z, t ∈ Q such that

zv = v, sS−1v = u, yu = S−1u, zu = 0;
tv = 0, wS−1v = 0, xv = 0, tu = 2v.

Therefore, we get

0 = ([S[s, w]S−1, [z, t]]m − [S[s, w]S−1, [z, t]])v = (2m − 2)v 6= 0,

again a contradiction.
Finally, we consider the case when dimVD = 2, i.e., Q = M2(D). Thus,

[[s, w]ζ , [z, t]]m− [[s, w]ζ , [z, t]] = 0 for every s, w, z, t ∈ Q. Since sζ-word degree
is 2 and char(R) > 3, by Fact 2.4, [[y, x], [z, t]]m − [[y, x], [z, t]] = 0 for every
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s, w, t, z ∈ Q, which leads to the conclusion thatQ is commutative (by using the
same argument presented above), and henceR is commutative. This completes
the proof. �

Theorem 2.1. Let 1 < m ∈ Z+ and R be a prime ring of characteristic
different from 2 and 3 and L be a non-central Lie ideal of R. If ζ is an
automorphism of R such that [uζ , v]m = [uζ , v] for every u, v ∈ L, then R is
commutative.

Proof. Since L is non-central Lie ideal of R, there exists an ideal I of R
such that 0 6= [I,R] ⊆ L. Thus by the given hypotheses, I as well as R (Fact
2.1) satisfy [[s, w]ζ , [z, t]]m = [[s, w]ζ , [z, t]]. Taking into consideration Proposi-
tion 2.2, we get the desire conclusion when ζ will be an outer automorphism
of R. Hence from now on, we assume that ζ is an inner automorphism, i.e.,
sζ = psp−1 for every s ∈ R. If p ∈ C, then ζ is the identity map and we have
nothing to prove. Assume that p /∈ C. Then

Φ(r) = [p[s, w]p−1, [z, t]]m − [p[s, w]p−1, [z, t]] = 0

is a non-trivial GPI of R and hence Q as well.
Assume that F is the algebraic closure of C when C is infinite and F = C

when C finite. Therefore Q⊗C F is a prime ring with extended centroid F [6,
Theorem 3.5]. Clearly Q ∼= Q⊗CC ⊆ Q⊗CF. Thus we can have Q is a subring

of Q⊗C F and in all Φ(r) is a non-trivial GPI of Q⊗C F. If Q̆ = Qmr(Q⊗C F),

then Φ(r) is also a non-trivial GPI on Q̆ ( [2, Theorem 6.4.4]). Moreover, we get

Q̆ ∼= End(VD) (see Martindale’s theorem [13]). As we have already mentioned
above either F is algebraically closed or finite. Therefore D = F, when D

is finite over F. Thus in all Q̆ ∼= End(VF). By Proposition 2.1, we get the
required conclusion. �

Keeping in mind Theorem 2.1, we can write the following corollary

Corollary 2.1. Let 1 < m ∈ Z+ and R be a prime ring of characteristic
not 2 and 3. If ζ is an automorphism of R such that [sζ , w]m = [sζ , w] for every
s, w ∈ R, then R is commutative.

Now we provide an example which shows that the same conclusion does
not hold for semi-prime ring.

Example 2.1. Let R = M2(F)⊕M2(F) and L = M2(F)⊕ 0. We see that
L is a non-zero Lie ideal of a semi-prime ring R. Now we construct a mapping
ζ : R→ R such that (s1, s2)

ζ = (s2, s1). It is easy to verify that that ζ satisfies
the hypotheses of Theorem 2.1, i.e., [uζ , v]m = [uζ , v] for every u, v ∈ L, where
1 < m ∈ Z+.

Proposition 2.3. Let 1 < m ∈ Z+ and R be a prime ring of characte-
ristic not 2 and 3 and let ζ be an epimorphism of R but not a monomorphism.
If R satisfies [sζ , w]m = [sζ , w] for every s, w ∈ R, then R is commutative.
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Proof. By the given hypotheses, we have [sζ , w]m = [sζ , w] for every s, w ∈
R. Let X=Kerζ. Then X is a non-zero ideal of R. For s, w ∈ R and κ ∈ X we
have,

0 = [(s+ κ)ζ , w + κ]m − [(s+ κ)ζ , w + κ]

= [sζ , w + κ]m − [sζ , w + κ].

It is well known that X and R satisfy the same GPIs [2, Theorem 6.4.4], and
hence [sζ , w + κ]m − [sζ , w + κ] = 0 for every s, w, κ ∈ R. Replacing κ with
κ−w in the latter identity, we obtain [sζ , w]m− [sζ , w] = 0 for every s, w ∈ R.
In the light of the above discussion and by Corollary 2.1, we get the desired
result. �

Now we are in position to prove our main result.

Proof of Theorem 1.1. Let W be a prime ideal of R, set R̂ = R/W and

write ŝ = s+ W ∈ R̂ for every s ∈ R.
Firstly we assume that Wζ * W. For s, w ∈ R and X ∈W,

0̂ =
̂

[(s+ X)ζ , w + X]m − ̂
[(s+ X)ζ , w + X] = [ŝζ + X̂ζ , ŵ]m − [ŝζ + X̂ζ , ŵ].

Thus [ŝζ + ẑ, ŵ]m − [ŝζ + ẑ, ŵ] = 0̂ for every s, w ∈ R and z ∈ Wζ . Since

Wζ * W, Ŵζ = (Wζ + W)/W is a non-zero ideal of the prime ring R̂. By [2,

Theorem 6.4.4], [ŝζ + ẑ, ŵ]m − [ŝζ + ẑ, ŵ] = 0̂ for every s, w, z ∈ R. Replacing
z by z − sζ , we obtain [ẑ, ŵ]m − [ẑ, ŵ] = 0̂ for every w, z ∈ R. This shows that

R̂ is commutative by Corollary 2.1. So [R̂, R̂] = 0̂, and hence, [R,R] ⊆W.

Assume next that Wζ ⊆ W. Define ζ̂ : R̂ → R̂ by ŝζ̂ = ŝζ . Then ζ̂ is

an epimorphism of R̂. Then 0̂ = ̂[sζ , w]m − [̂sζ , w] = [ŝζ , ŵ]m − [ŝζ , ŵ] for all

s, w ∈ R. By Corollary 2.1 and Proposition 2.3, R̂ is commutative, that is,
[R,R] ⊆W.

Keeping in mind the argument presented as above, for any prime ideal
W of R, either Rζ ⊆ W or [R,R] ⊆ W. Thus we can write Rζ [R,R] ⊆⋂
iWi = (0) and [Rζ ,R] ⊆

⋂
iWi = (0), where Wi are all prime ideals of R.

In particular, since Rζ 6= 0, the non-zero ideal generated by Rζ is central in
R, we get the desired result.
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